A mathematical model to identify companies' adaptation variables to cyber-physical production systems

Authors

DOI:

https://doi.org/10.5902/1983465988466

Keywords:

Production planning and control, Industry 4.0, Benchmarking, Logistic regression, Survey

Abstract

Purpose: With the fourth industrial revolution, it becomes necessary to identify how companies are adapting to the use of technologies aimed at cyber-physical production systems. Therefore, this article aimed to develop a mathematical model to identify the degree of maturity of cyber-physical production systems.

Design/methodology/approach: The methodology draws from theoretical definitions, followed by a survey, in which 61 medium and large companies from the South of Brazil in the textile and clothing sector participated. Afterwards, a mathematical model was developed with logistic regression.

Findings: The results showed that the maturity level was classified as intermediate in the validated textile companies, with opportunities for advances in the implementation of real-time monitoring and other technologies of industry 4.0. This result was expected, given the field studies and observations with companies, which reveal that the mathematical model is valid and can be replicated in other organizations.

Research limitations/implications: The restriction is that the model was tested in the reality of the Brazilian textile industries.

Originality/value: The originality is to propose a model for using cyber-physical systems as a complement to decision-making in production scheduling with ERP that have finite capacity and thus adding an APS algorithm to assist in monitoring production.

Downloads

Download data is not yet available.

Author Biographies

Ana Julia Dal Forno, Universidade Federal de Santa Catarina

Assistant Professor, Postgraduate Program in Textile Engineering, Universidade Federal de Santa Catarina – UFSC campus Blumenau, Blumenau/SC, Brasil

Rafael Fernando Petri, Universidad Federal de Santa Catarina

Master in Textile Engineering from Federal University of Santa Catarina campus Blumenau/SC, Brazil

Liane Mählmann Kipper, Universidade de Santa Cruz do Sul

Full professor at Postgraduate Program in Industrial Systems and Process, University of Santa Cruz do Sul, Santa Cruz do Sul/RS, Brazil. Doctor in Production Engineering from Federal University of Santa Catarina, Florianópolis/SC, Brazil.

Antônio Augusto Ulson de Souza, Universidade Federal de Santa Catarina

Full Professor in Chemical and Food Engineering, Santa Catarina Federal University – UFSC, Post Graduate Program in Textile Engineering, Blumenau/SC, Brazil. Doctor in Chemical Engineering from Federal University of Santa Catarina, Florianópolis/SC, Brazil.

Rosiane Serrano, Instituto Federal do Rio Grande do Sul

Assistant Professor in Fashion Design Department, Rio Grande do Sul Federal Institut, IFRS Erechim/RS, Brazil. Doctor in Production Engineering from UNISINOS, São Leopoldo/RS, Brazil.

References

Addo-Tenkorang, R., & Helo, P. (2011, October 19). Enterprise Resource Planning (ERP): A Review Literature Report. Proceedings of the World Congress on Engineering and Computer Science.

Alff, L. A., Kipper, L. M., Helfer, D. G., Tedesco, L. P., Furtado, J. C., & Goecks, L. S. (2022). Framework to Support the Implementation of an Intelligent Factory. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.4308226 DOI: https://doi.org/10.2139/ssrn.4308226

Allaoui, H., Guo, Y., & Sarkis, J. (2019). Decision support for collaboration planning in sustainable supply chains. Journal of Cleaner Production, 229, 761–774. https://doi.org/10.1016/j.jclepro.2019.04.367 DOI: https://doi.org/10.1016/j.jclepro.2019.04.367

Alquthami, T., Zulfiqar, M., Kamran, M., Milyani, A. H., & Rasheed, M. B. (2022). A Performance Comparison of Machine Learning Algorithms for Load Forecasting in Smart Grid. IEEE Access, 10, 48419–48433. https://doi.org/10.1109/ACCESS.2022.3171270 DOI: https://doi.org/10.1109/ACCESS.2022.3171270

Andronie, M., Lăzăroiu, G., Ștefănescu, R., Uță, C., & Dijmărescu, I. (2021). Sustainable, Smart, and Sensing Technologies for Cyber-Physical Manufacturing Systems: A Systematic Literature Review. Sustainability, 13(10), 5495. https://doi.org/10.3390/su13105495 DOI: https://doi.org/10.3390/su13105495

Babaei, M., Gholami, Z., & Altafi, S. (2015). Challenges of Enterprise Resource Planning implementation in Iran large organizations. Information Systems, 54, 15–27. https://doi.org/10.1016/j.is.2015.05.003 DOI: https://doi.org/10.1016/j.is.2015.05.003

Bueno, A., Godinho Filho, M., & Frank, A. G. (2020). Smart production planning and control in the Industry 4.0 context: A systematic literature review. Computers & Industrial Engineering, 149, 106774. https://doi.org/10.1016/j.cie.2020.106774 DOI: https://doi.org/10.1016/j.cie.2020.106774

Cardoso Ermel, A. P., Lacerda, D. P., Morandi, M. I. W. M., & Gauss, L. (2021). Literature Reviews. Springer International Publishing. https://doi.org/10.1007/978-3-030-75722-9 DOI: https://doi.org/10.1007/978-3-030-75722-9

Cloppenburg, F., Münkel, A., Gloy, Y., & Gries, T. (2017). Industry 4.0 – How will the nonwoven production of tomorrow look like? IOP Conference Series: Materials Science and Engineering, 254(13), 132001. https://doi.org/10.1088/1757-899X/254/13/132001 DOI: https://doi.org/10.1088/1757-899X/254/13/132001

Corrar, L. J., Dias, J. M. F., & Paulo, E. (2007). Análise multivariada para os cursos de administração, ciências contábeis e economia (1st ed.). Atlas.

Dal Forno, A. J., Bataglini, W. V., Steffens, F., & Ulson de Souza, A. A. (2023). Industry 4.0 in textile and apparel sector: a systematic literature review. Research Journal of Textile and Apparel, 27(1), 95–117. https://doi.org/10.1108/RJTA-08-2021-0106 DOI: https://doi.org/10.1108/RJTA-08-2021-0106

Elliott, R. (2013). Manufacturing Execution System (MES) An Examination of Implementation Strategy [Thesis]. Faculty of California Polytechnic State University.

Enrique, D. V., Marcon, É., Charrua-Santos, F., & Frank, A. G. (2022). Industry 4.0 enabling manufacturing flexibility: technology contributions to individual resource and shop floor flexibility. Journal of Manufacturing Technology Management, 33(5), 853–875. https://doi.org/10.1108/JMTM-08-2021-0312 DOI: https://doi.org/10.1108/JMTM-08-2021-0312

Farooq, B., Bao, J., Li, J., Liu, T., & Yin, S. (2020). Data-Driven Predictive Maintenance Approach for Spinning Cyber-Physical Production System. Journal of Shanghai Jiaotong University (Science), 25(4), 453–462. https://doi.org/10.1007/s12204-020-2178-z DOI: https://doi.org/10.1007/s12204-020-2178-z

Goldenberg, M. (1997). A arte de pesquisar: como fazer pesquisa qualitativa em ciências sociais (17th ed.). Record.

Guise, A., Oliveira, J., Teixeira, S., & Silva, Â. (2023). Development of tools to support the production planning in a textile company. Procedia Computer Science, 219, 889–896. https://doi.org/10.1016/j.procs.2023.01.364 DOI: https://doi.org/10.1016/j.procs.2023.01.364

Helfer, D. G., Alff, L. A., Kipper, L. M., & Tedesco, L. P. (2021). Nível de maturidade para indústria 4.0: Um estudo de caso em empresa de parafusos / Maturity level for industry 4.0: A case study in a screw company. Brazilian Journal of Development, 7(11), 102801–102818. https://doi.org/10.34117/bjdv7n11-077 DOI: https://doi.org/10.34117/bjdv7n11-077

Hvolby, H.-H., & Steger-Jensen, K. (2010a). Technical and industrial issues of Advanced Planning and Scheduling (APS) systems. Computers in Industry, 61(9), 845–851. https://doi.org/10.1016/j.compind.2010.07.009

Hvolby, H.-H., & Steger-Jensen, K. (2010b). Technical and industrial issues of Advanced Planning and Scheduling (APS) systems. Computers in Industry, 61(9), 845–851. https://doi.org/10.1016/j.compind.2010.07.009 DOI: https://doi.org/10.1016/j.compind.2010.07.009

Jang, S., Choi, J. Y., Yoo, E. S., Lim, D. Y., Lee, J. Y., Kim, J. K., & Pang, C. (2021). Printable wet-resistive textile strain sensors using bead-blended composite ink for robustly integrative wearable electronics. Composites Part B: Engineering, 210, 108674. https://doi.org/https://doi.org/10.1016/j.compositesb.2021.108674 DOI: https://doi.org/10.1016/j.compositesb.2021.108674

Jeon, B. W., Um, J., Yoon, S. C., & Suk-Hwan, S. (2017). An architecture design for smart manufacturing execution system. Computer-Aided Design and Applications, 14(4), 472–485. https://doi.org/10.1080/16864360.2016.1257189 DOI: https://doi.org/10.1080/16864360.2016.1257189

Jeong, Y.-M., Son, I., & Baek, S.-H. (2019). Binder–free of NiCo–layered double hydroxides on Ni–coated textile for wearable and flexible supercapacitors. Applied Surface Science, 467–468, 963–967. https://doi.org/https://doi.org/10.1016/j.apsusc.2018.10.252 DOI: https://doi.org/10.1016/j.apsusc.2018.10.252

Jiang, Y., Yin, S., & Kaynak, O. (2018). Data-Driven Monitoring and Safety Control of Industrial Cyber-Physical Systems: Basics and Beyond. IEEE Access, 6, 47374–47384. https://doi.org/10.1109/ACCESS.2018.2866403 DOI: https://doi.org/10.1109/ACCESS.2018.2866403

Jung, W.-K., Kim, D.-R., Lee, H., Lee, T.-H., Yang, I., Youn, B. D., Zontar, D., Brockmann, M., Brecher, C., & Ahn, S.-H. (2021). Appropriate Smart Factory for SMEs: Concept, Application and Perspective. International Journal of Precision Engineering and Manufacturing, 22(1), 201–215. https://doi.org/10.1007/s12541-020-00445-2 DOI: https://doi.org/10.1007/s12541-020-00445-2

Khedher, A. Ben, Henry, S., & Bouras, A. (2011). Integration between MES and Product Lifecycle Management. ETFA2011, 1–8. https://doi.org/10.1109/ETFA.2011.6058993 DOI: https://doi.org/10.1109/ETFA.2011.6058993

Kim, J. H. (2017). A Review of Cyber-Physical System Research Relevant to the Emerging IT Trends: Industry 4.0, IoT, Big Data, and Cloud Computing. Journal of Industrial Integration and Management, 02(03), 1750011. https://doi.org/10.1142/S2424862217500117 DOI: https://doi.org/10.1142/S2424862217500117

Kipper, L. M., Furstenau, L. B., Hoppe, D., Frozza, R., & Iepsen, S. (2020). Scopus scientific mapping production in industry 4.0 (2011–2018): a bibliometric analysis. International Journal of Production Research, 58(6), 1605–1627. https://doi.org/10.1080/00207543.2019.1671625 DOI: https://doi.org/10.1080/00207543.2019.1671625

Kjellsdotter Ivert, L., & Jonsson, P. (2014). When should advanced planning and scheduling systems be used in sales and operations planning? International Journal of Operations & Production Management, 34(10), 1338–1362. https://doi.org/10.1108/IJOPM-03-2011-0088 DOI: https://doi.org/10.1108/IJOPM-03-2011-0088

Ku, C.-C., Chien, C.-F., & Ma, K.-T. (2020). Digital transformation to empower smart production for Industry 3.5 and an empirical study for textile dyeing. Computers & Industrial Engineering, 142, 106297. https://doi.org/10.1016/j.cie.2020.106297 DOI: https://doi.org/10.1016/j.cie.2020.106297

Kumar, V., Agrawal, T. K., Wang, L., & Chen, Y. (2017). Contribution of traceability towards attaining sustainability in the textile sector. Textiles and Clothing Sustainability, 3(1), 5. https://doi.org/10.1186/s40689-017-0027-8 DOI: https://doi.org/10.1186/s40689-017-0027-8

Kusi-Sarpong, S., Gupta, H., Khan, S. A., Chiappetta Jabbour, C. J., Rehman, S. T., & Kusi-Sarpong, H. (2023). Sustainable supplier selection based on industry 4.0 initiatives within the context of circular economy implementation in supply chain operations. Production Planning & Control, 34(10), 999–1019. https://doi.org/10.1080/09537287.2021.1980906 DOI: https://doi.org/10.1080/09537287.2021.1980906

Levin, J. (1987). Estatística aplicada à ciências humanas (2nd ed.). Harbra.

Li, H., Wang, Y., Zhao, P., Zhang, X., & Zhou, P. (2015). Cutting tool operational reliability prediction based on acoustic emission and logistic regression model. Journal of Intelligent Manufacturing, 26(5), 923–931. https://doi.org/10.1007/s10845-014-0941-4 DOI: https://doi.org/10.1007/s10845-014-0941-4

Liu, Y., Peng, Y., Wang, B., Yao, S., & Liu, Z. (2017). Review on cyber-physical systems. IEEE/CAA Journal of Automatica Sinica, 4(1), 27–40. https://doi.org/10.1109/JAS.2017.7510349 DOI: https://doi.org/10.1109/JAS.2017.7510349

Lu, Y. (2017). Industry 4.0: A survey on technologies, applications and open research issues. Journal of Industrial Information Integration, 6, 1–10. https://doi.org/https://doi.org/10.1016/j.jii.2017.04.005 DOI: https://doi.org/10.1016/j.jii.2017.04.005

Lugaresi, G., Alba, V. V., & Matta, A. (2021). Lab-scale Models of Manufacturing Systems for Testing Real-time Simulation and Production Control Technologies. Journal of Manufacturing Systems, 58, 93–108. https://doi.org/https://doi.org/10.1016/j.jmsy.2020.09.003 DOI: https://doi.org/10.1016/j.jmsy.2020.09.003

Luu, H., Ferreira, F., & Marques, A. D. (2019). Digitisation and Industry 4.0 in the Portuguese T&C sector. Industria Textila, 70(4), 342–345. https://doi.org/10.35530/IT.070.04.1612 DOI: https://doi.org/10.35530/IT.070.04.1612

Magalhães, L. C., Magalhães, L. C., Ramos, J. B., Moura, L. R., de Moraes, R. E. N., Gonçalves, J. B., Hisatugu, W. H., Souza, M. T., de Lacalle, L. N. L., & Ferreira, J. C. E. (2022). Conceiving a Digital Twin for a Flexible Manufacturing System. Applied Sciences, 12(19), 9864. https://doi.org/10.3390/app12199864 DOI: https://doi.org/10.3390/app12199864

Manglani, H., Hodge, G. L., & Oxenham, W. (2019). Application of the Internet of Things in the textile industry. Textile Progress, 51(3), 225–297. https://doi.org/10.1080/00405167.2020.1763701 DOI: https://doi.org/10.1080/00405167.2020.1763701

Mantravadi, S., & Møller, C. (2019). An Overview of Next-generation Manufacturing Execution Systems: How important is MES for Industry 4.0? Procedia Manufacturing, 30, 588–595. https://doi.org/10.1016/j.promfg.2019.02.083 DOI: https://doi.org/10.1016/j.promfg.2019.02.083

Marconi, M. de A., & Lakatos, E. M. (2010). Fundamentos de metodologia científica (7th ed.). Atlas.

Masood, T., & Sonntag, P. (2020). Industry 4.0: Adoption challenges and benefits for SMEs. Computers in Industry, 121, 103261. https://doi.org/10.1016/j.compind.2020.103261 DOI: https://doi.org/10.1016/j.compind.2020.103261

Mathew, D., & Brintha, N. C. (2023). Artificial Intelligence in the Field of Textile Industry: A Systematic Study on Machine Learning and Neural Network Approaches. In Recent Trends in Computational Intelligence and Its Application (pp. 222–228). CRC Press. https://doi.org/10.1201/9781003388913-30 DOI: https://doi.org/10.1201/9781003388913-30

Mattar, F. N. (2012). Pesquisa de marketing: edição compacta (2nd ed.). GEN Atlas.

Mellado, J., & Núñez, F. (2022). Design of an IoT-PLC: A containerized programmable logical controller for the industry 4.0. Journal of Industrial Information Integration, 25, 100250. https://doi.org/10.1016/j.jii.2021.100250 DOI: https://doi.org/10.1016/j.jii.2021.100250

Merhi, M. I., & Harfouche, A. (2023). Enablers of artificial intelligence adoption and implementation in production systems. International Journal of Production Research, 1–15. https://doi.org/10.1080/00207543.2023.2167014 DOI: https://doi.org/10.1080/00207543.2023.2167014

Minussi, J. A., Damacena, C., & Ness Jr, W. L. (2002). Um modelo de previsão de solvência utilizando regressão logística. Revista de Administração Contemporânea, 6(3), 109–128. https://doi.org/10.1590/S1415-65552002000300007 DOI: https://doi.org/10.1590/S1415-65552002000300007

Naedele, M., Chen, H.-M., Kazman, R., Cai, Y., Xiao, L., & Silva, C. V. A. (2015). Manufacturing execution systems: A vision for managing software development. Journal of Systems and Software, 101, 59–68. https://doi.org/10.1016/j.jss.2014.11.015 DOI: https://doi.org/10.1016/j.jss.2014.11.015

Öztürk, C., & Ornek, A. M. (2014). Operational extended model formulations for Advanced Planning and Scheduling systems. Applied Mathematical Modelling, 38(1), 181–195. https://doi.org/10.1016/j.apm.2013.05.049 DOI: https://doi.org/10.1016/j.apm.2013.05.049

Park, K. T., Kang, Y. T., Yang, S. G., Zhao, W. Bin, Kang, Y.-S., Im, S. J., Kim, D. H., Choi, S. Y., & Do Noh, S. (2020). Cyber Physical Energy System for Saving Energy of the Dyeing Process with Industrial Internet of Things and Manufacturing Big Data. International Journal of Precision Engineering and Manufacturing-Green Technology, 7(1), 219–238. https://doi.org/10.1007/s40684-019-00084-7 DOI: https://doi.org/10.1007/s40684-019-00084-7

Peng, C.-Y. J., Lee, K. L., & Ingersoll, G. M. (2002). An introduction to logistic regression analysis and reporting. Journal of Educational Research. The Journal of Educational Research, 96(1), 3–14. DOI: https://doi.org/10.1080/00220670209598786

Pereira, F., Carvalho, V., Vasconcelos, R., & Soares, F. (2022). A Review in the Use of Artificial Intelligence in Textile Industry (pp. 377–392). https://doi.org/10.1007/978-3-030-79168-1_34 DOI: https://doi.org/10.1007/978-3-030-79168-1_34

Petri, R. F., Forno, A. J. D., De Souza, A. A. U., & Kipper, L. M. (2021). Uma análise das publicações no SIMPEP sobre indicadores da manufatura enxuta e a indústria 4.0 no segmento têxtil. In E. M. Pinheiro, P. M. de A. Filho, & G. T. F. Coelho (Eds.), ENGENHARIA 4.0: A era da produção inteligente (1st ed., Vol. 5, pp. 385–399). Editora Pascal.

Petri, R. F., Maestri, G., Bessa, G. C., Steffens, F., Oliveira, F. R., Dal Forno, A. J., Rincon, L. M., Merlini, C., & de Souza, A. A. U. (2021). Estimativa de benefícios na implementação de projeto de automação da etiquetagem de embalagens na indústria têxtil. The Academic Society Journal, 29–44. https://doi.org/10.32640/tasj.2021.5.29 DOI: https://doi.org/10.32640/tasj.2021.5.29

Rathore, Dr. B. (2023). Future of Textile: Sustainable Manufacturing & Prediction via ChatGPT. Eduzone : International Peer Reviewed/Refereed Academic Multidisciplinary Journal, 12(01), 52–62. https://doi.org/10.56614/eiprmj.v12i1y23.253 DOI: https://doi.org/10.56614/eiprmj.v12i1y23.253

Sacomano, J. B., Gonçalves, R. F., Bonilla, S. H., Silva, M. T. da, & Sátyro, W. C. (2020). Indústria 4.0: Conceitos e Fundamentos (Vol. 1). Editora Blucher.

Sadiku, M. N. O., Wang, Y., Cui, S., & Musa, S. M. (2017). Cyber-Physical Systems: A Literature Review. European Scientific Journal, ESJ, 13(36), 52. https://doi.org/10.19044/esj.2017.v13n36p52 DOI: https://doi.org/10.19044/esj.2017.v13n36p52

Saenz de Ugarte, B., Artiba, A., & Pellerin, R. (2009). Manufacturing execution system – a literature review. Production Planning & Control, 20(6), 525–539. https://doi.org/10.1080/09537280902938613 DOI: https://doi.org/10.1080/09537280902938613

Schwarz, I., & Kovačević, S. (2017). Textile Application: From Need to Imagination. In Textiles for Advanced Applications. InTech. https://doi.org/10.5772/intechopen.68376 DOI: https://doi.org/10.5772/intechopen.68376

Seraj, E., Wang, Z., Paleja, R. R., Martin, D., Sklar, M., Patel, A., & Gombolay, M. C. (2022). Learning Efficient Diverse Communication for Cooperative Heterogeneous Teaming. 21st International Conference on Autonomous Agents and Multiagent Systems, AAMAS 2022, 1173–1182.

Shahriar, M. M., Parvez, M. S., Islam, M. A., & Talapatra, S. (2022). Implementation of 5S in a plastic bag manufacturing industry: A case study. Cleaner Engineering and Technology, 8, 100488. https://doi.org/10.1016/j.clet.2022.100488 DOI: https://doi.org/10.1016/j.clet.2022.100488

Shao, J., He, X., Wang, J., Bai, X., Lei, X., & Liu, C. (2015). Design of Textile Manufacturing Execution System Based on Big Data. Journal of Mechanical Engineering, 51(5), 160–170. https://doi.org/10.3901/JME.2015.05.160 DOI: https://doi.org/10.3901/JME.2015.05.160

Shen, Y.-C., Chen, P.-S., & Wang, C.-H. (2016). A study of enterprise resource planning (ERP) system performance measurement using the quantitative balanced scorecard approach. Computers in Industry, 75, 127–139. https://doi.org/10.1016/j.compind.2015.05.006 DOI: https://doi.org/10.1016/j.compind.2015.05.006

Sikka, M. P., Sarkar, A., & Garg, S. (2022). Artificial intelligence (AI) in textile industry operational modernization. Research Journal of Textile and Apparel. https://doi.org/10.1108/RJTA-04-2021-0046 DOI: https://doi.org/10.1108/RJTA-04-2021-0046

Song, C. H., Elvers, D., & Leker, J. (2017). Anticipation of converging technology areas — A refined approach for the identification of attractive fields of innovation. Technological Forecasting and Social Change, 116, 98–115. https://doi.org/10.1016/j.techfore.2016.11.001 DOI: https://doi.org/10.1016/j.techfore.2016.11.001

Sousa, T. B. de, Camparotti, C. E. S., Guerrini, F. M., Silva, A. L. da, & Azzolini Júnior, W. (2014). AN OVERVIEW OF THE ADVANCED PLANNING AND SCHEDULING SYSTEMS. Independent Journal of Management & Production, 5(4). https://doi.org/10.14807/ijmp.v5i4.239 DOI: https://doi.org/10.14807/ijmp.v5i4.239

Souza, K. D. L., Nascimento, I. B. do, Keine, S., & Fleig, R. (2021). Desenvolvimento de um Sistema de Execução de Manufatura (MES) no Planejamento e Controle de Produção: uma Aplicação da Indústria 4.0 no Processo de Fabricação de Tubos de Aço. Produto & Produção, 22(1). https://doi.org/10.22456/1983-8026.102371 DOI: https://doi.org/10.22456/1983-8026.102371

Storch, L. A., Nara, E. O. B., & Kipper, L. M. (2013). The use of process management based on a systemic approach. International Journal of Productivity and Performance Management, 62(7), 758–773. https://doi.org/10.1108/IJPPM-12-2012-0134 DOI: https://doi.org/10.1108/IJPPM-12-2012-0134

Taghaboni‐Dutta, F., Trappey, A. J. C., Trappey, C. V., & Wu, H. (2009). An exploratory RFID patent analysis. Management Research News, 32(12), 1163–1176. https://doi.org/10.1108/01409170911006911 DOI: https://doi.org/10.1108/01409170911006911

Taha, M. F., ElMasry, G., Gouda, M., Zhou, L., Liang, N., Abdalla, A., Rousseau, D., & Qiu, Z. (2022). Recent Advances of Smart Systems and Internet of Things (IoT) for Aquaponics Automation: A Comprehensive Overview. Chemosensors, 10(8), 303. https://doi.org/10.3390/chemosensors10080303 DOI: https://doi.org/10.3390/chemosensors10080303

Urbina Coronado, P. D., Lynn, R., Louhichi, W., Parto, M., Wescoat, E., & Kurfess, T. (2018). Part data integration in the Shop Floor Digital Twin: Mobile and cloud technologies to enable a manufacturing execution system. Journal of Manufacturing Systems, 48, 25–33. https://doi.org/10.1016/j.jmsy.2018.02.002 DOI: https://doi.org/10.1016/j.jmsy.2018.02.002

Wang, L.-C., Chen, C.-C., Liu, J.-L., & Chu, P.-C. (2021). Framework and deployment of a cloud-based advanced planning and scheduling system. Robotics and Computer-Integrated Manufacturing, 70, 102088. https://doi.org/10.1016/j.rcim.2020.102088 DOI: https://doi.org/10.1016/j.rcim.2020.102088

Witsch, M., & Vogel-Heuser, B. (2012). Towards a Formal Specification Framework for Manufacturing Execution Systems. IEEE Transactions on Industrial Informatics, 8(2), 311–320. https://doi.org/10.1109/TII.2012.2186585 DOI: https://doi.org/10.1109/TII.2012.2186585

Yin, S., Bao, J., Zhang, Y., & Huang, X. (2017). M2M Security Technology of CPS Based on Blockchains. Symmetry, 9(9), 193. https://doi.org/10.3390/sym9090193 DOI: https://doi.org/10.3390/sym9090193

Younus, M., Peiyong, C., Hu, L., & Yuqing, F. (2010). MES development and significant applications in manufacturing -A review. 2010 2nd International Conference on Education Technology and Computer, V5-97-V5-101. https://doi.org/10.1109/ICETC.2010.5530040 DOI: https://doi.org/10.1109/ICETC.2010.5530040

Yue, L., Wang, L., Niu, P., & Zheng, N. (2019). Building a reference model for a Manufacturing Execution System (MES) platform in an Industry 4.0 context. Journal of Physics: Conference Series, 1345(6), 062002. https://doi.org/10.1088/1742-6596/1345/6/062002 DOI: https://doi.org/10.1088/1742-6596/1345/6/062002

Downloads

Published

2025-08-19

How to Cite

Dal Forno, A. J., Petri, R. F., Kipper, L. M., Souza, A. A. U. de, & Serrano, R. . (2025). A mathematical model to identify companies’ adaptation variables to cyber-physical production systems. Revista De Administração Da UFSM, 18(2), e7. https://doi.org/10.5902/1983465988466

Issue

Section

Articles