Generation of energy through temperature difference
Keywords:
Seebeck effect, Solar energy, Thermoelectric energy, Renewable energyAbstract
Solar energy is a renewable energy source that can be harnessed either directly or indirectly. One way to utilize solar energy indirectly is through the Seebeck effect, which involves generating an electrical potential difference from a temperature difference between two conductive or semiconductor materials. Based on the operational principle of this effect, the present study aims to develop a prototype for powering electronic devices using the energy generated from Peltier plates attached to a thermal box. In the conducted tests, it was possible to achieve up to 0.6W of electrical power at the charging terminals. This result is directly influenced by the low incidence of solar radiation and the number of Peltier plates used, suggesting that the generated power can be increased by incorporating more Peltier modules. The research aims to contribute to the understanding of thermoelectric technology in the indirect generation of solar energy, with implications for future advancements in renewable energy.
Downloads
References
Goldemberg, J.; & Paletta, F. C. (2012). Energias renováveis. São Paulo: Blucher.
Kemerich, P. D. da C., Flores, C. E. B., Borba, W. F. de, Silveira, R. B. da, França, J. R., & Levandoski, N. (2016). Paradigm of solar energy in Brazil and the world. Revista Eletrônica Em Gestão, Educação E Tecnologia Ambiental, 20(1), 241–247. Recuperado de https://periodicos.ufsm.br/reget/article/view/16132. doi: https://doi.org/10.5902/2236117016132
Machado, P. L. O. (2019). Investigação experimental do uso de gerador termoelétrico para conversão de energia térmica em energia elétrica por meio do efeito Seebeck (Trabalho de Conclusão de Curso). Universidade Tecnológica Federal do Paraná, Ponta Grossa, PR, Brasil.
Pourkiaei, S. M., Ahmadi, M. H., Sadeghzadeh, M., Moosavi, S., Pourfayaz, F., Chen, L., Yazdi, M. A. P., & Kumar, R. (2019). Thermoelectric cooler and thermoelectric generator devices: A review of present and potential applications, modeling and materials. Energy, 186, 115-130. Recuperado de https://www.sciencedirect.com/science/article/abs/pii/S036054421931521X?via%3Dihub. doi: https://doi.org/10.1016/j.energy.2019.07.179
Tohidi, F., Ghazanfari Holagh, S., & Chitsaz, A. (2022). Thermoelectric Generators: A comprehensive review of characteristics and applications. Applied Thermal Engineering, 201, 117793. Recuperado de https://www.sciencedirect.com/science/article/abs/pii/S1359431121012175?via%3Dihub. doi: https://doi.org/10.1016/j.applthermaleng.2021.117793.
Bergman, T. L., Lavine, A. S., & Incropera, F. P. (2011). Fundamentals of Heat and Mass Transfer (7a ed.). Hoboken: John Wiley & Sons. ISBN 978-1-118-13725-3.
Reverter, F. (2021). A Tutorial on Thermal Sensors in the 200th Anniversary of the Seebeck Effect. IEEE Sensors Journal, 21(20), 22122-22132. Reuperado de: https://ieeexplore.ieee.org/document/9514860. doi: 10.1109/JSEN.2021.3105546.
Zhang, Q. H., Huang, X. Y., Bai, S. Q., Shi, X., Uher, C., & Chen, L. D. (2016). Thermoelectric Devices for Power Generation: Recent Progress and Future Challenges. Advanced Engineering Materials, 18(2), 194-213. Recuperado de: https://onlinelibrary.wiley.com/doi/abs/10.1002/adem.201500333. doi: 10.1002/adem.201500333.
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
A revista adota o padrão de licença Creative Commons, de acesso livre.