Detect X: programming for the benefit of medicine

Authors

  • Nicolle Bauermann Schubert Escola SESI de Ensino Médio José Pedro Fernando Piovan, São Leopoldo, Rio Grande do Sul, Brasil.
  • Cauê Martins Barruffe Escola SESI de Ensino Médio José Pedro Fernando Piovan, São Leopoldo, Rio Grande do Sul, Brasil.
  • Ellen Utzig Gonçalves Escola SESI de Ensino Médio José Pedro Fernando Piovan, São Leopoldo, Rio Grande do Sul, Brasil.
  • Luísa Pereira Ferreira Escola SESI de Ensino Médio José Pedro Fernando Piovan, São Leopoldo, Rio Grande do Sul, Brasil.
  • Luiz Ricardo Bertoldi de Oliveira Escola SESI de Ensino Médio José Pedro Fernando Piovan, São Leopoldo, Rio Grande do Sul, Brasil.
  • Ana Cristina Sulzbach Escola SESI de Ensino Médio José Pedro Fernando Piovan, São Leopoldo, Rio Grande do Sul, Brasil.

Keywords:

Cancer, Lung, Programming, PCA, X-ray

Abstract

The early diagnosis of lung cancer allows the treatment / disease more quickly and accurately, decreasing chances of metastasis [8]. In 2008, lung cancer caused 1.2 million deaths, 45% of which occurred in Latin America and the Caribbean, according to PAHO (Pan American Health Organization) [8]. From this scenario, a project was developed to generate early and effective treatment by the assisting in the screening of cancerous neoplasms. This project consists of a software, Detect X, which identifies cancerous tumors in X-ray images through vectors, known as line segments used to represent some vector quantity. After identifying the inserted image, the program generates 3 figures, the PCA (Principal Component Analysis) [11] with the RGB separation (red, green and blue color system) [2]. The images generated by the program are composed of vectors that originate from the color variation between pixels [2]. The greater the color variation between pixels, the greater the vector, consequently showing the possible presence of a tumor in the analyzed body region. The lighter or darker part highlights where the tumor is located and where it is likely to spread, allowing treatment to be started earlier. Detect X uses the MATLAB (Matrix Laboratory) programming language to perform its mathematical function. The software is currently being improved so it can later be implemented in clinics and hospitals, helping physicians in the early diagnosis of neoplasms.

Downloads

Download data is not yet available.

References

CTB. (2022) Cistose Tumores na Boca. Disponível em: https://www.saizakiodontologia.com.br/especialidades/ver/MTQ= acesso em 13/06/2022.

DE QUEIROZ, José Eustáquio Rangel; GOMES, Herman Martins. (2006) Introdução ao processamento digital de imagens. Rita, v. 13, n. 2, p. 11-42.

DILEVA, Gianpiero; CROCE, Carlo M. (2010) Roles of small RNAs in tumor formation. Trends in molecular medicine,v.16,n.6,p.257-267.

DIAS. (2002) Analogias em medicina: Bala de canhão nos pulmões. Disponível em: https://newslab.com.br/analogias-em-medicina-bala-de-canhao-nos-pulmoes/ acesso em 12/08/2022

ISLAMI, Farhad; TORRE, Lindsey A.; JEMAL, Ahmedin. (2015) Global trends of lung cancer mortality and smoking prevalence. Translational lung cancer research, v.4, n. 4, p. 327, 2015.

MALHOTRA, Jyoti et al. (2016) Risk factors for lung cancer worldwide. European Respiratory Journal, v. 48, n. 3, p. 889-902, 2016.

ONG Oncoguia. (2021) Disponível em: http://www.oncoguia.org.br/conteudo/com-82-de-mortalidade-cancer-de-pulmao-e-o-que-mais-mata-no-brasil/12460/42/ acesso em 29/11/2021

OPAS. Organização Pan-Americana da Saúde. (2021) Disponível em: Câncer -OPAS/OMS | Organização Pan-Americana da Saúde (paho.org) acesso em 25/11/2021

PALUSZEK,M.T.S.( 2023) MATLABmachinelearning.Disponível em: https://books.google.com.br/books?hl=ptBR&lr=&id=3kXODQAAQBAJ&oi=fnd&pg=PR6&dq=learning+Matlab+&ots=ZMOqVPd9sN&sig=m413I6kcrAB0HHopyN3pg8oFd-Y#v=onepage&q=learning%20Matlab&f= acesso em 30/03/2023.

RAIMUNDO, Nuno; BAYSAL, Bora E.; SHADEL, Gerald S. (2011) Revisiting the TCA cycle: signaling to tumor formation. Trends in molecular medicine, v. 17, n. 11, p. 641-649, 2011.

SCHABATH. (2023) Cancer epidemiology, biomarkers & prevention. Disponível em: https://aacrjournals.org/cebp/article/28/10/1563/71761/Cancer-Progress-and-Priorities-Lung-CancerCancer acesso em 22/03/2023

SHLENS, Anotações em arXiv preprintar Xiv:1404.1100,2014. Disponível em https://arxiv.org/abs/1404.1100 acesso em 29/03/2023

TAO, Meng-Hua. (2019) Epidemiology of lung cancer. Lung Cancer and Imaging.

XUE, Yueguang et al. (2022) Air pollution: A culprit of lung cancer. Journal of Hazardous Materials, p. 128937.

SILVA, Giovanni Lucca Françada. (2015) Análise de nódulos pulmonares usando índices de diversidades para estabelecer possíveis diferenças entre padrões malignos e benignos.

Published

2023-12-12

How to Cite

Schubert, N. B., Barruffe, C. M., Gonçalves, E. U., Ferreira, L. P., Oliveira, L. R. B. de, & Sulzbach, A. C. (2023). Detect X: programming for the benefit of medicine. Journal Of Exact Sciences and Technological Applications, 2, e75157. Retrieved from https://periodicos.ufsm.br/JESTA/article/view/75157

Issue

Section

Mathematics