Detect X: programming for the benefit of medicine
Keywords:
Cancer, Lung, Programming, PCA, X-rayAbstract
The early diagnosis of lung cancer allows the treatment / disease more quickly and accurately, decreasing chances of metastasis [8]. In 2008, lung cancer caused 1.2 million deaths, 45% of which occurred in Latin America and the Caribbean, according to PAHO (Pan American Health Organization) [8]. From this scenario, a project was developed to generate early and effective treatment by the assisting in the screening of cancerous neoplasms. This project consists of a software, Detect X, which identifies cancerous tumors in X-ray images through vectors, known as line segments used to represent some vector quantity. After identifying the inserted image, the program generates 3 figures, the PCA (Principal Component Analysis) [11] with the RGB separation (red, green and blue color system) [2]. The images generated by the program are composed of vectors that originate from the color variation between pixels [2]. The greater the color variation between pixels, the greater the vector, consequently showing the possible presence of a tumor in the analyzed body region. The lighter or darker part highlights where the tumor is located and where it is likely to spread, allowing treatment to be started earlier. Detect X uses the MATLAB (Matrix Laboratory) programming language to perform its mathematical function. The software is currently being improved so it can later be implemented in clinics and hospitals, helping physicians in the early diagnosis of neoplasms.
Downloads
References
CTB. (2022) Cistose Tumores na Boca. Disponível em: https://www.saizakiodontologia.com.br/especialidades/ver/MTQ= acesso em 13/06/2022.
DE QUEIROZ, José Eustáquio Rangel; GOMES, Herman Martins. (2006) Introdução ao processamento digital de imagens. Rita, v. 13, n. 2, p. 11-42.
DILEVA, Gianpiero; CROCE, Carlo M. (2010) Roles of small RNAs in tumor formation. Trends in molecular medicine,v.16,n.6,p.257-267.
DIAS. (2002) Analogias em medicina: Bala de canhão nos pulmões. Disponível em: https://newslab.com.br/analogias-em-medicina-bala-de-canhao-nos-pulmoes/ acesso em 12/08/2022
ISLAMI, Farhad; TORRE, Lindsey A.; JEMAL, Ahmedin. (2015) Global trends of lung cancer mortality and smoking prevalence. Translational lung cancer research, v.4, n. 4, p. 327, 2015.
MALHOTRA, Jyoti et al. (2016) Risk factors for lung cancer worldwide. European Respiratory Journal, v. 48, n. 3, p. 889-902, 2016.
ONG Oncoguia. (2021) Disponível em: http://www.oncoguia.org.br/conteudo/com-82-de-mortalidade-cancer-de-pulmao-e-o-que-mais-mata-no-brasil/12460/42/ acesso em 29/11/2021
OPAS. Organização Pan-Americana da Saúde. (2021) Disponível em: Câncer -OPAS/OMS | Organização Pan-Americana da Saúde (paho.org) acesso em 25/11/2021
PALUSZEK,M.T.S.( 2023) MATLABmachinelearning.Disponível em: https://books.google.com.br/books?hl=ptBR&lr=&id=3kXODQAAQBAJ&oi=fnd&pg=PR6&dq=learning+Matlab+&ots=ZMOqVPd9sN&sig=m413I6kcrAB0HHopyN3pg8oFd-Y#v=onepage&q=learning%20Matlab&f= acesso em 30/03/2023.
RAIMUNDO, Nuno; BAYSAL, Bora E.; SHADEL, Gerald S. (2011) Revisiting the TCA cycle: signaling to tumor formation. Trends in molecular medicine, v. 17, n. 11, p. 641-649, 2011.
SCHABATH. (2023) Cancer epidemiology, biomarkers & prevention. Disponível em: https://aacrjournals.org/cebp/article/28/10/1563/71761/Cancer-Progress-and-Priorities-Lung-CancerCancer acesso em 22/03/2023
SHLENS, Anotações em arXiv preprintar Xiv:1404.1100,2014. Disponível em https://arxiv.org/abs/1404.1100 acesso em 29/03/2023
TAO, Meng-Hua. (2019) Epidemiology of lung cancer. Lung Cancer and Imaging.
XUE, Yueguang et al. (2022) Air pollution: A culprit of lung cancer. Journal of Hazardous Materials, p. 128937.
SILVA, Giovanni Lucca Françada. (2015) Análise de nódulos pulmonares usando índices de diversidades para estabelecer possíveis diferenças entre padrões malignos e benignos.
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
A revista adota o padrão de licença Creative Commons, de acesso livre.