UV-Vis analysis of the formation of iron-based nanoparticles
DOI:
https://doi.org/10.5902/2965694X92183Keywords:
Nanoparticles synthesis, UV-Vis spectroscopy, IronAbstract
The present study investigated the temporal formation of iron nanoparticles (FeNPs) by means of UV-Vis spectroscopy, evaluating the behavior of both isolated and mixed reagents. The results validated the sensitivity and reliability of the method in monitoring nanoparticle formation and colloidal stability, with minimal spectral changes detected over four hours. Long-term monitoring is recommended to identify significant shifts in the wavelength of maximum absorption (Amax), which may be indicative of structural alterations or changes in their compositions.
Downloads
References
ARAE, Karina Sanae Palace. Síntese e caracterização de nanopartículas de óxido de ferro. 2020. 49 f. Trabalho de Conclusão de Curso (Graduação em Química) – Universidade de Brasília, Brasília, 2020. Disponível em: https://bdm.unb.br/bitstream/10483/29780/1/2020_KarinaSanaePalaceArae_tcc.pdf. Acesso em: 1 maio 2025.
GUPTA, Ajay Kumar; GUPTA, Mona. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials, v. 26, n. 18, p. 3995-4021, 2005. DOI: 10.1016/j.biomaterials.2004.10.012. Disponível em: https://www.sciencedirect.com/science/article/pii/S0142961204009317. Acesso em: 17 maio 2025.
MENG, Yan-Qing et al. Recent trends in preparation and biomedical applications of iron oxide nanoparticles. Journal of Nanobiotechnology, v. 22, n. 1, p. 24, 2024. DOI: 10.1186/s12951-023-02235-0. Disponível em: https://jnanobiotechnology.biomedcentral.com/articles/10.1186/s12951-023-02235-0. Acesso em: 17 maio 2025.
SHEN, Zhuqi; YIN, Guochuan. The reactivity of the active metal oxo and hydroxo intermediates and their implications in oxidations. Chemical Society Reviews, v. 44, n. 4, p. 1083-1100, 2015. DOI: 10.1039/C4CS00244J. Disponível em: https://pubs.rsc.org/en/content/articlelanding/2015/cs/c4cs00244j. Acesso em: 19 maio 2025.
POIZOT, P. et al. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature, v. 407, p. 496-499, 2000. DOI: 10.1038/35035045. Disponível em: https://www.nature.com/articles/35035045. Acesso em: 20 maio 2025.
KREMER, Ingrid dos Santos et al. Hybrid electricity generation through residue-based nanogenerator. Renewable Energy, v. 185, p. 1-12, 2024. DOI: 10.1016/j.renene.2021.12.056. Disponível em: https://www.sciencedirect.com/science/article/pii/S0960148121017858. Acesso em: 1 maio 2025.
ZIELINSKA, A. et al. Nanotechnology in modern pharmaceutical industry: drug delivery applications, toxicity, and safety challenges. Pharmaceutics, v. 12, n. 5, p. 465, 2020. Disponível em: https://pmc.ncbi.nlm.nih.gov/articles/PMC7339788. Acesso em: 23 maio 2025.
KHADKA, D. et al. Evaluating the photocatalytic activity of green synthesized iron oxide nanoparticles. Catalysts, v. 14, n. 11, p. 751, 2024. Disponível em: https://www.mdpi.com/2073-4344/14/11/751. Acesso em: 24 maio 2025.
QUEVEDO, A. C. et al. UV-Vis spectroscopic characterization of nanomaterials in aqueous media. Journal of Visualized Experiments, n. 176, e61764, 2021. Disponível em: https://www.jove.com/pt/t/61764/uv-vis-spectroscopic-characterization-nanomaterials-aqueous. Acesso em: 24 maio 2025.
KELLY, K. Lance et al. The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment. The Journal of Physical Chemistry B, v. 107, n. 3, p. 668-677, 2003. DOI: 10.1021/jp026731y. Disponível em: https://pubs.acs.org/doi/10.1021/jp026731y. Acesso em: 3 maio 2025.
PADAYATTY, S. J. et al. Vitamin C as an antioxidant: evaluation of its role in disease prevention. The American Journal of Clinical Nutrition, v. 77, n. 1, p. 25-27, 2003. Disponível em: https://pubmed.ncbi.nlm.nih.gov/12569111/. Acesso em: 23 maio 2025.
TARTAJ, P.; MORALES, M. P.; GONZÁLEZ-CARREÑO, T.; VEINTEMILLAS - VERDAGUER, S.; SERNA, C. J. The preparation of magnetic nanoparticles for applications in biomedicine. Journal of Physics D: Applied Physics, v. 36, n. 13, p. R182-R197, 2003. DOI: https://doi.org/10.1088/0022-3727/36/13/202. Acesso em: 22 maio 2025.
CHEN, Y.; ZHANG, J.; WANG, Z.; ZHOU, Z. Solvothermal synthesis of size-controlled monodispersed superparamagnetic iron oxide nanoparticles. Applied Sciences, v. 9, n. 23, p. 5157, 2019. DOI: https://doi.org/10.3390/app9235157. Acesso em: 22 maio 2025.
BEGUM, S. et al. Fabrication of iron nanoparticles using different bioactive precursors, their characterization and bioactivity evaluation. Sustainable Chemistry for the Environment, v. 6, p. 100100, 2024. Disponível em: https://www.sciencedirect.com/science/article/pii/S2949839224000439. Acesso em: 24 maio 2025.
MOURDIKOUDIS, S.; PALLARÉS, R. M.; THANH, N. T. K. Characterization techniques for nanoparticles: comparison and complementarity upon studying nanoparticle properties. Nanoscale, v. 10, p. 12871–12934, 2018. DOI: 10.1039/C8NR02278J. Acesso em: 22 maio 2025.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Arthur Batista Bromirsky, Larissa Friedrich, Glauber Rodrigues de Quadros, Patrícia Regina Ebani, Marcus Paulo de Oliveira, Luisa Dias Lopes, Maria Cecília Caldeira Vieira, Mateus Amâncio Correa Neres, Lucas Alves Lamberti, Jocenir Boita

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
A revista adota o padrão de licença Creative Commons, de acesso livre.

