Colégio Politécnico da UFSM, Santa Maria – RS Revista de Gestão e Organizações Cooperativas – RGC RGC – Santa Maria, RS, v.5, n.10, Jul./Dez. 2018

ISSN: 2359-0432

DOI: 10.5902/2359043229025

Gestão da cadeia de suprimentos: análise do desempenho ambiental de fornecedores verdes por meio do método fuzzy *TOPSIS*

Supply chain management: analysis of environmental performance of green suppliers by means of the fuzzy TOPSIS method

Resumo

Há um grande interesse por parte das organizações pela adoção de práticas sustentáveis, visando melhorar o desempenho de suas cadeias de suprimentos. Regulamentos ambientais, consumo de recursos e descarte de resíduos são alguns dos fatores que podem influenciar na tomada de decisão quanto a contratação de fornecedores verdes. Este estudo ilustra o caso de um fabricante de implementos agrícolas do setor metal mecânico que busca implementar o gerenciamento da cadeia de suprimentos verdes (GSCM) e selecionar um fornecedor que atenda aos requisitos ambientais determinados. Portanto, o objetivo desta pesquisa consiste em avaliar o desempenho ambiental de três potenciais fornecedores por meio do método de tomada de decisão multicritério fuzzy TOPSIS e selecionar a melhor alternativa. Além disso, é realizada uma análise de sensibilidade para comprovar a robustez do método utilizado. O resultado mostra que o fornecedor A3 ocupa o primeiro lugar entre os três fornecedores avaliados, demonstrando um forte desempenho ambiental, sobretudo, em quatro critérios: parceiros ambientais, imagem verde, reciclagem e descarte de resíduos.

Palavras-chave: GSCM; Fornecedores verdes; Desempenho ambiental; Fuzzy TOPSIS

Abstract

There is great interest from organizations in adopting sustainable practices to improve the performance of their supply chains. Environmental regulations, resource consumption and waste disposal are some of the factors that can influence decision making regarding the contracting of green suppliers. This study illustrates the case of a metalworking agricultural implements manufacturer looking to implement green supply chain management (GSCM) and select a supplier that meets specific environmental requirements. Therefore, the objective of this research is to evaluate the environmental performance of three potential suppliers through the TOPSIS fuzzy multicriteria decision-making method and to select the best alternative. In addition, a sensitivity analysis is performed to prove the robustness of the method used. The result shows the supplier A₃ occupies the first place among the best sellers, demonstrating a strong environmental performance, especially in four criteria: environmental partners, green image, recycling and waste disposal.

Keywords: GSCM; Green suppliers; Environmental performance; Fuzzy TOPSIS

Recebido: 12/09/2017 Aceito: 05/10/2017

Bruno Miranda¹, Cyro Prato Neto², Jovani Patias³, Alexandre Ferreira⁴, Leoni Godoy⁵

¹ Mestrando em Engenharia de Produção pela Universidade Federal de Santa Maria – UFSM – brmiranda10@gmail.com

² Mestrando em Engenharia de Produção pela Universidade Federal de Santa Maria – UFSM – cyroprato@yahoo.com.br

³ Mestre em Engenharia de Produção pela Universidade Federal de Santa Maria – UFSM – jovanipatias@gmail.com

⁴ Doutorando em Engenharia de Produção pela UNISINOS – alexandreferreira.rs@gmail.com

⁵ Prof^a. Dr^a. Do Programa de Pós-Graduação em Engenharia de Produção – UFSM – leonigodoy@gmail.com

1 Introdução

moderna é aliar o conhecimento sustentável com as problemáticas ambientais que fazem parte da atual realidade, estabelecendo uma sinergia entre as companhias e as responsabilidades de atuação no mercado, baseadas em metodologias de gestão voltadas para o desenvolvimento sustentável (DE CARVALHO; BARBIERI, 2013; SHEN et al., 2013). Tal fato evidencia o reflexo dos resultados positivos econômicos e sociais em políticas sustentáveis realizadas pelas empresas, para o alcance de vantagens competitivas de mercado.

A conscientização industrial para políticas ambientais teve seu início antes da década de 1980, com inciativas para redução de resíduos, consumo de energia materiais tóxicos. Após, foram desenvolvidas tecnologias limpas, com a finalidade de diminuir o impacto ambiental nas etapas de produção, atuando diretamente processo. no Posteriormente, na década de 1990, a conscientização ambiental se voltou na fase de projetos de produtos e serviços, introduzindo desenhos ecológicos (ANDIÇ; YURT; BALTACIOĞLU, 2013; SHEN et al., 2013). Atualmente, políticas de melhorias são executadas nos processos produtivos utilizando tecnologias limpas e reengenharia nos processos de fabricação, assim como o desenvolvimento de políticas ambientais nas indústrias de fornecedores da cadeia de suprimentos.

A utilização de critérios baseados na sustentabilidade para a seleção de fornecedores, incentivam as empresas que estão dentro da cadeia de suprimentos a adotarem políticas ambientais, como certificações e a implementação de práticas verdes (SHEN et al., 2013). A medida que evoluiu a conscientização para tais práticas, é natural a busca pela aquisição de produtos ou serviços que ofereçam baixo custo, alta qualidade e conformidade com padrões ambientais. Deste modo, para que ocorra a transformação desejada empresas pelas desenvolvimento de produtos e processos, necessária a relação direta com uma adequação dos fornecedores ambientalmente aptos. Segundo Zadeh (1965), a teoria dos conjuntos fuzzy é proposta para trabalhar com a imprecisão do pensamento humano na tomada de decisão, sendo identificado sua melhor utilização quando se aborda equidade e satisfação dos

respondentes, vindo a fortalecer a compreensão dos resultados.

Para a seleção de fornecedores da cadeia produtiva, baseando-se em questões que englobam a sustentabilidade, utiliza-se o método de preferência por ordem de similaridade à solução ideal (TOPSIS). Desenvolvido por Hwang e Yoon (1981), esta metodologia é muito reconhecida para tomada de decisões multicritérios, uma vez que integra fatores qualitativos e quantitativos. Sua utilização é amplamente reconhecida, facilmente pois é desenvolvida em processos computacionais, na utilização de uma solução ideal e não ideal para se obter uma tendência de resposta, por meio da análise dos dados obtidos (CHEN; LIN; HUANG, 2006; JUNIOR; OSIRO; CARPINETTI, 2014).

Consta na literatura pesquisada, estudos desenvolvidos com a abordagem multicritério *fuzzy* para seleções de fornecedores, como a pesquisa de Shen et al. (2013), artigo que propõem uma abordagem *fuzzy*, baseada na *green supply chain management* (GSCM), que avalia fornecedores verdes, executando a metodologia *fuzzy* para compilar as percepções humanas linguísticas que, combinadas com a método TOPSIS geram uma pontuação global para cada fornecedor. Os estudos com a utilização da metodologia *fuzzy* TOPSIS nos últimos anos são investigados por diversos autores, como por exemplo: Awasthi, Chauhan e Goyal (2010); Gupta e Barua (2017); Dubey et al. (2015); e Luthra et al. (2016).

Gupta e Barua (2017) direcionaram seu estudo para a seleção de fornecedores entre pequenas e médias empresas, avaliando sua capacidade de inovação verde. Dubey et al. (2015) apontaram na literatura quatro influências na adoção de práticas sustentáveis na cadeia de suprimento verde, indicando seus facilitadores, assim como métodos mistos de maior utilização, realizaram também uma modelagem matemática para estruturar o índice de utilização dos métodos e por fim o nível de impacto do comprometimento organizacional da empresa na adoção de práticas para a GSCM. Luthra et al. (2016) forneceram em seus estudos avaliações comparativas das práticas de GSCM em empresas de fabricação de componentes automotivos da Índia, utilizando a técnica de TOPSIS difuso aplicado para avaliações comparativas para classificar as empresas selecionadas, teste realizado em quatro empresas.

O restante deste artigo subdivide-se em: seção 2, referencial teórico, na seção 3 é apresentada a

metodologia abordada e o desenvolvimento da pesquisa. Dentro da seção 4, evidenciam-se os resultados e a seção 5 é exposto a conclusão.

2 Referencial teórico

O Sistema de Gestão Ambiental (SGA) é considerado uma abordagem para o cumprimento da regulamentação ambiental (EL HOUR et al., 2016). requisitos a isso, legais, controle operacional, avaliação de desempenho, entre outros (MAZZI et al., 2016). Pode-se nomear a ISO 14000 e BS 7750, como alguns dos SGA adotados por adequarem-se requisitos empresas para aos ambientais impostos (SHEN et al., 2012).

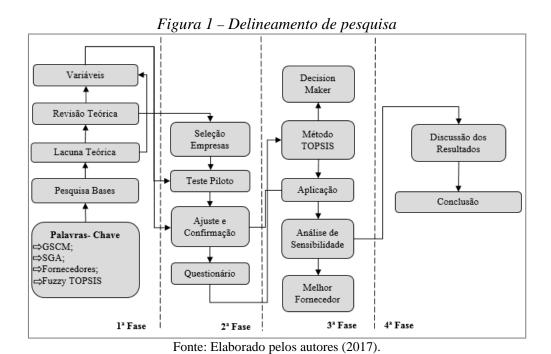
A vantagem de possuir um SGA pode gerar, de forma personalizada e consistente, uma abordagem para o entendimento do monitoramento ambiental, acerca de diversos âmbitos (KHALILI; DUECKER, 2013). Analisando-se a literatura da área, percebe-se a presença de estudos relacionados à preocupação ambiental atrelada à seleção de fornecedores. No estudo de Shen et al. (2012), foram pesquisadas referências para avaliação do desempenho ambiental de fornecedores, totalizando 24 estudos, no período de 1998 a 2012. A Tabela 1 busca completar a pesquisa bibliográfica supracitada.

Tabela 1 – Avaliação do desempenho ambiental de fornecedores

Resumo dos artigos	Referências
Abordar a diferença no processo de seleção de fornecedores verdes em 3	Chiou et al.
diferentes indústrias de eletrônicos na China	(2008)
Analisar a performance dos critérios de seleção (entre eles o SGA), para posterior implementação de um modelo <i>fuzzy</i> -AHP para avaliação dos fornecedores verdes	Grisi et al. (2010)
Considerar o fator ambiental na aplicação da abordagem da teoria dos conjuntos <i>fuzzy</i> e análise relacional <i>grey</i> para seleção dos fornecedores de uma indústria de eletrônicos	Chen et al. (2010)
Avaliação e seleção de fornecedores verdes usando o método VIKOR embutido em um sistema especializado fuzzy com números difusos com valor de intervalo	Datta et al. (2012)
Buscar o desenvolvimento de um sistema que fosse eficiente na	Sahu, N. et al.
avaliação das práticas ambientais dos fornecedores	(2012)
Abordagens de decisão multicréditos para avaliação e seleção de	Govindan, et al.
fornecedores verdes: uma revisão da literatura	(2013)
Métodos FAHP, ARAS-F e MSGP integrados para avaliação e seleção	Liao et al.
de fornecedores verdes	(2015)
Avaliando fornecedores verdes de uma perspectiva ambiental verde	Tsai et al. (2015)
Investigar o impacto do tamanho das organizações relacionado à adoção	Vijayvargy, L.
de práticas de gestão da cadeia de suprimentos na indústria indiana	et al. (2016)
Fonta: Elaborado palos autoros (2017)	•

Fonte: Elaborado pelos autores (2017).

Nas últimas décadas, pressões governamentais e sociais sobre as indústrias de componentes fornecedoras da indústria metal mecânica, têm aumentado para melhorarem o desempenho ambiental da cadeia de suprimentos e reduzirem os impactos ambientais (SUSANTY et al., 2016). Papadopoulos et al. (2014) ressaltam que, considerar estratégias verdes como um diferenciador no mercado, devem estar relacionadas com os comportamentos dos consumidores e da imagem social. Os gestores dessas empresas devem começar a pensar em práticas verdes em todas as etapas de


produção, reduzindo seus impactos ambientais e aumentando sua eficiência ecológica.

A preocupação ambiental e a sustentabilidade no setor industrial estão em evidencia no panorama mundial, direcionando maiores atenções para as questões que envolvem estes temas. Segundo Sharma et al. (2017), os fornecedores da cadeia de suprimentos que procuram se manter no mercado e prospectar crescimento, passaram a fomentar o aprimoramento das suas responsabilidades ambientais investir imagem na impulsionando seus negócios. Geralmente, ao se avaliar o desempenho dos fornecedores, as empresas utilizam critérios como qualidade, prazo, preço, por exemplo. Entretanto, a introdução de questões

ambientais na GSC passou a ser vista como um diferencial competitivo (VANALLE et al., 2017).

3 Metodologia

Iniciou-se com a escolha do tema, por meio da análise nas bases de periódicos (*Web of Science* e *Emerald Insight*) por meio das palavras-chave presentes na Figura 1. A partir disso, pelas lacunas encontradas originou-se o problema de pesquisa. Em seguida, foram elencadas as variáveis pertinentes ao estudo. O presente estudo, de caráter exploratório-descritivo (GIL, 2010), segue as etapas apresentadas na Figura 1.

Na segunda fase, pré-seleção das empresas em estudo, foi realizado um teste piloto para otimizar a assertividade das escolhas. A partir disso, aplicou-se um questionário para cada gestor, sendo um gestor de produção e outro um supervisor de qualidade, estruturado e formal, desenvolvido com base na literatura. Após a obtenção dos resultados, aplicou-se a modelagem com método *fuzzy* TOPSIS e, após, análise de sensibilidade. A quarta e última etapa consiste nos resultados e considerações finais.

3.1 Conjuntos *fuzzy* e números *fuzzy*

Um número fuzzy triangular pode ser representado na forma $\tilde{a}=(a_1,a_2,a_3)$, sendo que a_2 evidencia um valor crisp formal para o conjunto fuzzy, a_1 é o limite inferior e a_3 é o limite superior. A teoria dos conjuntos fuzzy é caracterizada por uma função de associação $\mu_{\tilde{a}}(x)$ que representa cada elemento através de um número real no intervalo [0,1]. A Equação 1 apresenta a definição de números triangulares fuzzy (ZAKERI, 2015). Onde a função de associação $\mu_{\tilde{a}}(x)$ é dada por:

$$\mu_{\tilde{a}}(x) = \begin{cases} 0, x \le a_1 \\ \frac{x - a_1}{a_2 - a_1}, a_1 \le x \le a_2 \\ \frac{a_3 - x}{a_3 - a_2}, a_2 \le x \le a_3 \\ 0, x > a_3 \end{cases}$$
(1)

no qual $a_1 a_2$ e a_3 são números reais e $a_1 < a_2 < a_3$. O valor de x em a_2 apresenta um grau máximo de $\mu_{\tilde{a}}(x)$, como por exemplo, $\mu_{\tilde{a}}(x) = 1$. O valor de xem a_1 apresenta o grau mínimo de $\mu_{\tilde{a}}(x)$, como por exemplo, $\mu_{\tilde{a}}(x) = 0$. As constantes a_1 e a_3 superior, representam o limite inferior respectivamente. Essas constantes refletem os atributos de avaliação, em que quanto menor for o intervalo $[a_1, a_3]$, maior será a precisão dos dados de avaliação (LIANG, 1999).

3.2 O método fuzzy TOPSIS

O fuzzy TOPSIS é uma extensão da técnica TOPSIS usada para resolver problemas de tomada de decisão multicritério MCDM, foi originalmente proposto por Hwang e Yoon (1981), incluindo avaliações difusas de critérios e alternativas (AWASTHI et al., 2010; SHEN et al., 2012). Nesta abordagem, usada amplamente em problemas de tomada de decisão, a alternativa ótima deve ter a menor distância da solução ideal positiva (FPIS⁺) e a maior distância da solução ideal negativa (FNIS⁻). A modelagem completa está presente nos estudos de Awasthi et al. (2010), Shen et al. (2012), Jabbour et al. (2013) e Mangla et al. (2015). As alternativas são classificadas de acordo com o CC_i em ordem decrescente. A melhor alternativa será a que estiver mais próxima da FPIS+ e mais distante da FNIS-. Os passos do método (CHEN, 2000; LIMA JUNIOR; CARPINETTI, 2015) são:

Passo 1: Agregar os valores linguísticos fornecidos pelos tomadores de decisão (DMs) em relação à pontuação das alternativas e ao peso dos critérios, utilizada para agregar as pontuações das alternativas;

Passo 2: Construção da matriz de decisão fuzzy (\widetilde{D}) para as pontuações e para vetor fuzzy \widetilde{W} para o peso dos critérios, de acordo com as Equações 5 e 6, respectivamente, onde \tilde{x}_{ij} , $\forall i,j$ e \tilde{W}_i (sendo i = 1, 2, ..., m; j = 1, 2, ..., n) são variáveis lingüísticas que podem ser descritas por números fuzzy;

$$\widetilde{D} = A_{1} \begin{bmatrix} \widetilde{x}_{11} & \cdots & \widetilde{x}_{12} & \cdots & \widetilde{x}_{1n} \\ \vdots & & \vdots & & \vdots \\ \widetilde{x}_{21} & \cdots & \widetilde{x}_{22} & \cdots & \widetilde{x}_{in} \\ \vdots & & \vdots & & \vdots \\ A_{m} \begin{bmatrix} \widetilde{x}_{11} & \cdots & \widetilde{x}_{12} & \cdots & \widetilde{x}_{1n} \\ \vdots & & \vdots & & \vdots \\ \widetilde{x}_{m1} & \cdots & \widetilde{x}_{m2} & \cdots & \widetilde{x}_{mn} \end{bmatrix}, \quad (2)$$

$$\widetilde{W} = [\widetilde{w}_1, \widetilde{w}_2, \dots, \widetilde{w}_n] \tag{3}$$

Passo 3: Normalizar matriz de decisão fuzzy \widetilde{D} , obtida através da Equação 7. Em seguida a matriz normalizada, obtida por meio da multiplicação dos pesos (\widetilde{W}_i) pelos elementos (\widetilde{r}_{ii}) ;

$$\tilde{R} = [\tilde{r}_{ij}]mxn$$

$$i = 1, 2, \dots, m; j = 1, 2, \dots, n$$

Onde,

$$\tilde{r}_{ij} = \left(\frac{a_{ij}}{c_j^+}, \frac{b_{ij}}{c_j^+}, \frac{c_{ij}}{c_j^+}\right), c_j^+ = \max_i c_{ij}$$
(Critérios de benefício)

$$\tilde{r}_{ij} = \left(\frac{a_j^-}{c_{ij}}, \frac{a_j^-}{b_{ij}}, \frac{a_j^-}{a_{ij}}\right), a_j^- = min_i a_{ij}$$
(Critérios de custo)

Passo 4: A matriz normalizada ponderada (\tilde{V}) para os critérios é calculada multiplicando os pesos (\widetilde{w}) dos critérios com a matriz de decisão fuzzy normalizada (\tilde{r}_{ij})

$$\tilde{V} = \left[\tilde{v}_{ij}\right] mxn \tag{7}$$

$$i=1,2,\ldots,m; j=1,2,\ldots,n \; onde \; \tilde{v}_{ij}=\tilde{r}_{ij} \otimes \widetilde{w}_j$$

Passo 5: Definir a solução ideal positiva (A⁺) e a solução ideal negativa (A-), conforme as Equações 8 e 9;

$$A^{+} = (\tilde{v}_{1}^{+}, \tilde{v}_{2}^{+}, \dots, \tilde{v}_{n}^{+}) onde \ \tilde{v}_{j}^{+} = max_{i} \{v_{ij3}\}$$
(8)

$$A^{-} = (\tilde{v}_{1}^{-}, \tilde{v}_{2}^{-}, \dots, \tilde{v}_{n}^{-}) onde \ \tilde{v}_{j}^{-} = min_{i} \{v_{ij1}\}$$
(9)

Passo 6: Calcular a distância (D_i^+) de cada alternativa de A+ (Fuzzy Positive Ideal Solution - $FPIS^+$) com os valores da matriz \tilde{R} , usando a

Equação 10. E a distância (D_i^-) de A⁻ (Fuzzy Negative Ideal Solution - FNIS⁻) e os valores da matriz \tilde{R} , pela Equação 11, respectivamente.

$$d_i^+ = \sum_{i=1}^n d_v(\tilde{v}_{ii}, \tilde{v}_i^+), i = 1, 2, ..., m$$
 (10)

$$d_i^- = \sum_{j=1}^n d_v(\tilde{v}_{ij}, \tilde{v}_i^-), i = 1, 2, ..., m$$
 (11)

Ainda, tais equações representam a distância entre dois números *fuzzy*, que para este artigo foram utilizados números fuzzy triangulares, por apresentarem maior simplicidade de modelagem (CHEN, 2000), podendo ser determinado por meio da Equação 12.

$$d(\tilde{a}, \tilde{b}) = \sqrt{\frac{1}{3}[(a_1 - b_1)^2 + (a_2 - b_2)^2 + (a_3 - b_3)^2]}$$
 (12)

Passo 7: Calcular a proximidade de cada alternativa e classificar as alternativas, e definir ranking de forma descrescentes dos valores de CC_i.

$$CC_i = \frac{d_i^-}{d_i^- + d_i^+}, i = 1, 2, ..., m$$
 (13)

Para a avaliação e seleção da melhor alternativa, foram selecionados sete critérios, com base na literatura especifica da área de gestão da cadeia de suprimentos verdes. Foram avaliadas três alternativas potenciais de fornecedores (A_1, A_2, A_3) para uma indústria metal mecânica. Os critérios e suas referências podem ser visualizados conforme se apresenta no Quadro 1.

Quadro 1 - Critérios de seleção e avaliação de fornecedores verdes

Critérios	Nome	Definição	Referência
C1	Parceiros ambientais	Relação entre empresa fornecedora e seus parceiros colaborativos associados no contexto verde	Shibao, Santos e Moori (2015); Ganga, et al. (2016)
C2	Consumo de recursos	Consumo de recursos em termos de energia, água e matéria prima	Cai, et al. (2014); Jennings e Stadler (2015)
C3	Treinamento	Treinamento de colaboradores articulando a aprendizagem das melhores práticas verdes	Jehanzeb e Bashir (2013); Ford (2014)
C4	Imagem verde	Produtos ou serviços com ênfase em sustentabilidade	Agrawal e Das (2014); Mishra e Sharma (2014); Polonsky (2015)
C5	Políticas de proteção ambiental de fornecedores	Refere-se à adesão de leis, regulamentos e outras políticas / mecanismos de proteção ambiental	Oliveira (2016); Mendonça, et al. (2017)
C6	Reciclagem	É uma reutilização de recursos de forma eficiente para reduzir o custo de produção e poluição ambiental	Barbieri (2007); Binnemans, et al. (2013)
C 7	Descarte de resíduos	Descarte final ou destruição de resíduos, excesso, sucata, etc., de acordo com a Política Nacional de Resíduos Sólidos Lei nº 12.305/10	Brasil (2010); Pereira e Chaves (2015)

Fonte: Elaborado pelos autores (2017).

Cabe destacar, que C_2 é definido como critério de custo (quanto menor o valor, mais ideal é o fornecedor), no mesmo sentido que, os outros são critérios de benefício (quanto maior o valor, mais ideal é o fornecedor).

Para obtenção dos dados necessários para o método, dois especialistas de uma indústria metal

mecânica, sendo um Gerente de produção (DM1) e o outro um Supervisor do setor de compras (DM2), foram orientados a responder um questionário, de acordo com a escala linguística *fuzzy* apresentada na Tabela 2.

Tabela 2 - Variáveis linguísticas para avaliar desempenho e importância dos critérios

Importância d	los critérios	Desempenho dos critérios		
Variável linguística	Números fuzzy	Variável linguística	Números fuzzy	
Muito baixo (MB)	(1,1,3)	Muito ruim (MR)	(1,1,3)	
Baixo (B)	(1,3,5)	Ruim (R)	(1,3,5)	
Médio (M)	(3,5,7)	Bom (B)	(3,5,7)	
Alto (A)	(5,7,9)	Muito bom (MB)	(5,7,9)	
Muito alto (MA)	(7,9,9)	Ótimo (O)	(7,9,9)	

Fonte: Elaborado pelos autores (2017).

Um trecho do questionário para avaliação de critérios ambientais é mostrado na Tabela 3. Foram avaliados três potenciais fornecedores para uma

indústria metal mecânica, como exemplo ilustrativo do método *fuzzy* TOPSIS.

Tabela 3 - Questionário para avaliação de critérios ambientais

Critério	Importância dos critérios					
	Muito baixo	Baixo	Médio	Alto	Muito alto	
Parceiros ambientais						
Consumo de recursos						
Treinamento		V				
Imagem verde						
Políticas de proteção ambiental de fornecedores						
Reciclagem						
Descarte de resíduos						

Fonte: Elaborado pelos autores (2017).

4 Resultados e discussões

A importância de cada um dos fornecedores com relação a cada um dos critérios de avaliação é fornecida com base na percepção dos DMs em relação aos critérios levantados, conforme a Tabela 4.

Tabela 4 – Avaliações linguísticas e pesos agregados fuzzy

Critérios	Avaliação lingu	ística dos DM's	Pesos dos cri	itérios fuzzy	Agregado pesos fuzzy	
	DM1	DM2	DM1	DM2	100	
C ₁	MA	MA	(7.0,9.0,9.0)	(7.0,9.0,9.0)	(7.0,9.0,9.0)	
C_2	M	В	(3.0,5.0,7.0)	(1.0,3.0,5.0)	(1.0,4.0,7.0)	
C ₃	В	M	(1.0,3.0,5.0)	(3.0,5.0,7.0)	(1.0,4.0,7.0)	
C ₄	MA	A	(7.0,9.0,9.0)	(5.0, 7.0, 9.0)	(5.0,8.0,9.0)	
C ₅	В	В	(1.0,3.0,5.0)	(1.0,3.0,5.0)	(1.0,3.0,5.0)	
C ₆	A	A	(5.0,7.0,9.0)	(5.0, 7.0, 9.0)	(5.0,7.0,9.0)	
C ₇	A	MA	(5.0,7.0,9.0)	(7.0,9.0,9.0)	(5.0,8.0,9.0)	

Fonte: Elaborado pelos autores (2017).

A análise dos resultados obtidos na Tabela 4 evidencia-se que os critérios: Parceiros ambientais (C_1) , Imagem verde (C_4) e Descarte de resíduos (C_7) , na visão dos DMs, têm maior peso de importância quanto aos critérios estabelecidos. As preocupações da empresa vão ao encontro das definições de Scur e Barbosa (2017), para os autores, deve-se atentar para os fatores que se referem ao uso de materiais reciclados e geração de resíduos tóxicos. Dentro do critério C_4 , por exemplo, os DMs destacam que a imagem verde dos fornecedores pode influenciar no modo que os consumidores veem sua empresa, em vista disso, se busca por empresas que promovam

seus produtos ou serviços usando apelos ecológicos, como forma de motivar seus consumidores a adquirir seus produtos ou serviços. De Jesus Pacheco et al. (2016) abordam que o cumprimento de normas ambientais, bem como a divulgação de produtos ambientalmente amigáveis contribuem para que o cliente construa uma imagem de empresa consciente e ecologicamente correta nas suas atividades em geral.

Em seguida, os pesos *fuzzy* agregados dos fornecedores foram calculados. Nesta etapa, os DMs forneceram suas pontuações, com base nos critérios, para cada alternativa (fornecedor) considerada. Os resultados são apresentados na Tabela 5.

Tabela 5 – Avaliação dos fornecedores pelos DMs

Critérios	Fornec	Fornecedor A1		Fornecedor A2		
	DM1	DM2	DM1	DM2	DM1	DM2
C1	R	R	В	MB	MB	MB
C2	В	R	В	В	В	MB
C3	В	R	R	R	В	R
C4	В	В	R	R	MB	MB
C5	В	MB	R	В	В	В
C6	R	R	В	В	В	MB
C7	R	В	В	В	MB	В

Fonte: Elaborado pelos autores (2017).

Após, foram calculados os pesos agregados *fuzzy*, para cada fornecedor, com base nas respostas dos gestores, conforme apresentado na Tabela 6.

Tabela 6 – Pesos agregados fuzzy das alternativas

Critérios	Fornecedor A1	Fornecedor A2	Fornecedor A3
C1	(1.0,3.0,5.0)	(3.0,6.0,9.0)	(5.0,7.0,9.0)
C2	(1.0,4.0,7.0)	(3.0,5.0,7.0)	(3.0,6.0,9.0)
C3	(1.0,4.0,7.0)	(1.0,3.0,5.0)	(1.0,4.0,7.0)
C4	(3.0,5.0,7.0)	(1.0,3.0,5.0)	(5.0,7.0,9.0)
C5	(3.0,6.0,9.0)	(1.0,4.0,7.0)	(3.0,5.0,7.0)
C6	(1.0,3.0,5.0)	(3.0,5.0,7.0)	(3.0,6.0,9.0)
C7	(1.0,4.0,7.0)	(3.0,5.0,7.0)	(3.0,6.0,9.0)

Fonte: Elaborado pelos autores (2017).

Na etapa seguinte, a matriz de decisão *fuzzy* das alternativas é normalizada e ponderada, conforme apresentado na Tabela 7. Aqui, cabe destacar, que o

critério C_2 é calculado como critério de custo e o restante como critérios de benefício.

Tabela 7 – Alternativas normalizadas e ponderadas, FNIS⁻ e FPIS⁺

Critérios	Matriz o	Matriz de decisão fuzzy normalizada e ponderada				
	A_1	A_2	A_3			
C ₁	(0.78,3.0,5.0)	(2.33,6.0,9.0)	(3.89,7.0,9.0)	0.78	9	
C ₂	(0.14,1.0,7.0)	(0.11,0.80,2.33)	(0.11,0.67,2.33)	0.11	7	
C ₃	(0.11,0.89,3.89)	(0.11,1.33,3.89)	(0.11,1.78,5.44)	0.11	5.44	
C ₄	(1.67,4.44,7.0)	(0.56, 2.67, 5.0)	(2.78,6.22,9.0)	0.56	9	
C ₅	(0.33,2.0,5.0)	(0.11,1.33,3.89)	(0.33,1.67,3.89)	0.11	5	
C ₆	(0.56,2.33,5.0)	(1.67,3.89,7.0)	(1.67,4.67,9.0)	0.56	9	
C ₇	(1.67,5.33,9.0)	(1.67,4.44,7.0)	(1.67,5.33,9.0)	1.67	9	

Fonte: Elaborado pelos autores (2017).

Em seguida, foram obtidas a solução ideal positiva *FPIS*⁺ e a solução ideal negativa *FNIS*⁻. Os resultados são apresentados nas duas últimas colunas da Tabela 7. As distâncias entre os fornecedores são

apresentadas na Tabela 8, representando o espaço entre dois números *fuzzy* conforme o método *vertex*, no caso de números *fuzzy* triangulares.

Tabela 8 – Distância entre fornecedores em relação a cada critério

Critérios	$d_v(A_i, A^-)$)		$d_v(A_i, A^+)$)	
	$\overline{A_1}$	A_2	A_3	A_1	A_2	A_3
C_1	4,768	9,779	10,463	8,633	4,880	3,565
C_2	6,947	2,328	2,292	7,188	8,720	8,815
C ₃	3,858	3,972	5,589	5,708	5,361	4,783
C_4	7,548	4,914	10,244	6,533	8,938	4,541
C ₅	5,244	3,972	4,089	4,032	4,759	4,428
C_6	4,781	7,278	9,408	9,177	6,932	6,058
C ₇	8,194	6,009	8,194	5,601	6,533	5,601
Σ	41,341	38,251	50,279	46,872	46,122	37,791

Fonte: Elaborado pelos autores (2017).

A maior distância identificada a partir dos resultados obtidos na Tabela 8 é da alternativa A_3 , cuja se mostra 21% mais distante da solução ideal negativa e 24% mais próxima da solução ideal positiva, quando comparada com a alternativa A_1 . A solução ótima deve estar mais próxima da solução ideal positiva e mais distante da solução ideal negativa (Uygun e Dede, 2016). Finalmente, combinando a diferença entre as distancias, obtém-se o coeficiente de proximidade CC_i . Os resultados são apresentados na Tabela 9.

Tabela 9 – Coeficiente de proximidade (CC_i).

	Fornecedores				
	A_1 A_2 A_3				
$\overline{d_i^-}$	41,341	38,251	50,279		
d_i^+	46,872	46,122	37,791		
CC_i	0,469	0,453	0,571		

Fonte: Elaborado pelos autores (2017).

Comparando os resultados das três alternativas, por meio dos valores de CC_i , destaca-se que, em ordem decrescente, o *ranking* dos fornecedores é $A_3 > A_1 > A_2$. É possível identificar

que o fornecedor A_3 apresentou o maior desempenho global entre as alternativas. Isto significa que é o fornecedor mais próximo da solução ideal positiva $(FPIS^+)$ e mais distante da solução ideal negativa $(FNIS^-)$, confirmando as definições apresentadas por Uygun e Dede (2016). Na análise dos dados em relação a ponderação dos pesos pelos DMs, o fornecedor A_3 é o que apresenta maior afinidade com os critérios ambientais analisados, sobretudo, nos critérios C_1 , C_4 , C_6 e C_7 , onde verificou-se que são

fatores que podem definir pela contratação ou não de determinado fornecedor.

4.1 Análise de sensibilidade

Aplicou-se a análise de sensibilidade para ratificar as respostas encontradas no desenvolvimento do método. Dessa forma, foi investigado o impacto do peso dos critérios sobre a seleção de fornecedores verdes. Para isso, os pesos de cada um dos critérios foram alternados, resultando em 7 combinações, conforme detalhado na Tabela 10.

Experimento	Definição	A_1	A_2	A_3	Ranking
E1	C1 = (3.0,5.0,7.0), C2 - C7 = (1.0,4.0,7.0)	0,351	0,318	0,396	$A_3 > A_1 > A_2$
E2	C2 = (5.0, 7.0, 9.0), C1, C3 - C7 = (5.0, 7.0, 7.0)	0,415	0,375	0,480	$A_3 > A_1 > A_2$
E3	C3 = (7.0,9.0,9.0), C1, C2 - C7 = (1.0,4.0,7.0)	0,363	0,332	0,412	$A_3 > A_1 > A_2$
E4	C4 = (1.0,4.0,7.0), C1, C3 - C7 = (7.0,7.0,9.0)	0,454	0,426	0,519	$A_3 > A_1 > A_2$
E5	C5 = (5.0,8.0,9.0), C1, C4 - C7 = (5.0,7.0,9.0)	0,476	0,425	0,518	$A_3 > A_1 > A_2$
E6	C6 = (7.0,9.0,9.0), C1, C5 - C7 = (5.0,8.0,9.0)	0,489	0,457	0,568	$A_3 > A_1 > A_2$
F.7	C7 = (3.0, 5.0, 5.0), C1 - C6 = (5.0, 7.0, 9.0)	0.439	0.407	0.508	$A_3 > A_1 > A_2$

Tabela 10 - Experimentos da análise de sensibilidade

Fonte: Elaborado pelos autores (2017).

Nota-se que, entre as 7 simulações realizadas, a alternativa A_3 obteve a maior pontuação em todas, corroborando o resultado encontrado no desenvolvimento do método fuzzy TOPSIS. Entretanto, não se pode concluir que o peso dos critérios não influencia na tomada de decisão, haja vista que, mais simulações, variando o peso de importância dos critérios, poderiam ter sido

realizadas. Porém, por uma limitação de pesquisa, foram consideradas 7 variações aleatórias de peso. Sendo assim, em cada experimento variou-se o peso para cada um dos critérios, definindo como mais alto (7.0,9.0,9.0) até o mais baixo (1.0,4.0,7.0). Os resultados da análise de sensibilidade são apresentados na Figura 2.

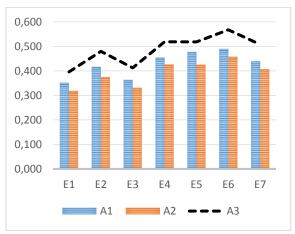


Figura 2 – Resultados da análise de sensibilidade.

Fonte: Elaborado pelos autores (2017).

Pode ser observado que, nas 7 simulações realizadas, o fornecedor A_3 perpassa as pontuações dos fornecedores A_1 e A_2 . Isto significa que, dos 7 critérios que foram levantados, com base nas práticas da GSCM, o fornecedor A_3 apresentou um equilíbrio considerável, no que se refere ao seu desempenho ambiental, demonstrando que atende, de maneira satisfatória, a maioria dos critérios analisados, especialmente, parceiros ambientais (C_1) , imagem verde (C_4) , reciclagem (C_6) e descarte de resíduos (C_7) . Por outro lado, os fornecedores A_1 e A_2 , embora não tenham apresentado desempenho global acima de seu concorrente, nos critérios políticas de proteção ambiental (C_5) e parceiros ambientais (C_1) , demonstraram possuir bom desempenho.

O efeito positivo de ações ambientais na gestão da cadeia de suprimentos e no desempenho operacional é evidenciado no desenvolvimento de algumas pesquisas, em diferentes seguimentos industriais (Awasthi et al., 2010; Jabbour et al., 2013). A nível estratégico da organização, esta pesquisa mostra que a preocupação com as questões relacionadas a sustentabilidade da cadeia de fornecimento, tem refletido em ações mais proativas dos gestores, buscando reduzir os impactos ambientais de suas operações.

5 Conclusões

A GSCM no Brasil possui um campo fértil para a pesquisa, pois ainda é considerado um assunto carente de atenção com intuito de alcançar menores índices de impactos ao meio ambiente, embora que, a literatura referente a fornecedores seja opulenta, as pesquisas no país que abordam critérios ambientais para seleção de fornecedores verdes ainda são limitadas. Nesse sentido, devido a pressões governamentais, as empresas estão direcionando esforços para o cumprimento de legislações ambientais, assim como adotar práticas verdes que o mercado competitivo também exige. A adoção de inciativas verdes possibilita o surgimento de vantagens competitivas para as empresas, no entanto, para alcançar a estabilidade no mercado, os fornecedores necessitariam de treinamentos para adequarem seus processos e produções a este novo conceito de mercado quanto à adoção de práticas verdes na gestão da cadeia de suprimentos.

Esta pesquisa propôs como objetivo avaliar o desempenho ambiental de três potenciais fornecedores por meio do método de tomada de decisão multicritério *fuzzy* TOPSIS e selecionar a melhor alternativa. Os critérios selecionados para o estudo, foram propostos de acordo com a literatura pesquisada em GSCM. A lacuna de pesquisa fundamentou-se na incerteza e na falta de respostas quantitativas a respeito da avaliação do desempenho ambiental de fornecedores de uma empresa Metalmecânica do Sul brasileiro.

Em virtude da relação da adoção de inciativas verdes com o nível de desempenho, como resultado, o estudo evidencia que as empresas estão em amadurecimento na adoção de práticas verdes na cadeia de suprimentos, evidenciando que, embora o fornecedor A_3 tenha apresentado o melhor desempenho global, os fornecedores A_1 e A_2 também estão adotando, gradativamente, ações sustentáveis em suas cadeias de suprimentos. No entanto, quanto à relação entre a GSCM e o desempenho operacional dos processos, o estudo não é conclusivo para comprovação.

O estudo apresenta três limitações constatadas. primeira remete-se desenvolvimento da pesquisa em uma única empresa do setor metal mecânico. A segunda, por não expressar a cultura ambiental dos fornecedores em relação à cadeia de suprimentos, e a terceira, por tratar-se de fatores linguísticos através de escalas, possibilitando o aparecimento de subjetividade nas respostas. Na busca do fortalecimento da pesquisa, sugere-se o refinamento do estudo levando em consideração a cultura ambiental dos fornecedores, assim como replicar o estudo em um número maior de empresas do mesmo setor. Além disso, o aprofundamento acerca das variáveis utilizadas e a replicação do modelo em outros segmentos industriais podem contribuir para mais robustez de trabalhos futuros. Ademais, outras técnicas como, metodologia do sistema cinza e Analysis Hierarchy Process, podem aumentar a precisão dos resultados.

Referências

- AGRAWAL, A. D.; DAS, M. Green Marketing: Sustainable marketing strategy. Indira Management Review, v. 17, 2013.
- AWASTHI A, CHAUHAN SS, GOYAL SK (2010) A fuzzy multicriteria approach for evaluating environmental performance of suppliers. International Journal of Production Economics. 126:. 370-378.
- BARBIERI, J. C. Organizações inovadoras sustentáveis. Caderno de Inovação, v. 3, p. 5-9, 2007.
- BINNEMANS, K. et al. Recycling of rare earths: a critical review. Journal of Cleaner Production, v. 51, p. 1-22, 2013.
- BRASIL. LEI Nº 12.305, de 2 de agosto de 2010. Institui a Política Nacional de Resíduos Sólidos; altera a Lei no 9.605, de 12 de fevereiro de 1998; e dá outras providências. 2010. Disponível: http://www.planalto.gov.br/ccivil_03/_ato2007-2010/2010/lei/112305.htm. Acesso em: 18 jun. 2017.
- CAI, L. X. et al. Sustainability analysis and resource management for wireless mesh networks with renewable energy supplies. IEEE Journal on Selected Areas in Communications, v. 32, n. 2, p. 345-355, 2014.
- CHEN, C. Extensions of the TOPSIS for group decision-making under fuzzy environment. Fuzzy sets and systems, v. 114, n. 1, p. 1-9, 2000.
- CHEN C.T.; LIN, C.T.; HUANG, S. F.; A fuzzy approach for supplier evaluation and selection in supply chain management. International Journal of Production Economics, 102:289–301, 2006.
- CHEN, C.C.; TSENG, Y.H; LIN, Z.S. Lin Implementation of green supply chain management in uncertainty. International Conference on IEEM, IEEE 7–10 Dec, p. 260–264. 2010.

- CHIOU, C.Y.; HSU, C.W.; HWANG, W.Y. Comparative investigation on green supplier Selection of the American, Japanese and Taiwanese electronics industry in China. International Conference on IE&EM, IEEE 8–11 Dec (2008), pp. 1909–1914.
- DATTA, S.; SAMANTRA, C.; MAHAPATRA, S. S.; BANERJEE, S.; BANDYOPADHYAY, A. Green supplier evaluation and selection using VIKOR method embedded in fuzzy expert system with interval-valued fuzzy numbers. International Journal of Procurement Management, v. 5, n. 5, p. 647-678, 2012.
- CARVALHO, A. P. de; BARBIERI, J. C.; Inovações socioambientais em cadeias de suprimento: um estudo de caso sobre o papel da empresa focal. RAI Revista de Administração e Inovação, v. 10, n. 1, p. 232-256, 2013.
- PACHECO, D. A. de J.; ANTUNES JÚNIOR, J. A.; JUNG, C. F.; LUZ, D. F. da; PERGHER, I. (2016). Práticas de sustentabilidade em cadeias de suprimentos. Interciencia, 41: 506-511
- DUBEY, R.; GUNASEKARAN, A.; PAPADOPOULOS, T.; CHILDE, S. J.; Green supply chain management enablers: Mixed methods research. Sustainable Production and Consumption, v. 4, p. 72-88, 2015.
- EL HOUR S.; AOUANE M.; CHAOUCH A.; Perception of Industrial Enterprise about the Management of Environmental Impacts towards to Standards ISO 14001: 2015: The Case of the Industrial Companies of Casablanca-Settat Region Morocco. Environmental Science: An Indian Journal, 12 11. 2016.
- FORD, J. K. Improving training effectiveness in work organizations. Psychology Press, 2014.
- GANGA, G. M. D. et al. Métodos quantitativos para seleção de fornecedores sustentáveis: uma revisão sistemática da literatura. Revista Produção Online, v. 16, n. 4, p. 1434-1457, 2016.

GIL, A. C. Como elaborar projetos de pesquisa. – 5. ed. – São Paulo: Atlas, 2010.

- GOVINDAN K.; KALIYAN M.; KANNAN D.; HAQ A.N. Barriers analysis for green supply chain management implementation in Indian industries using analytic hierarchy process. International Journal of Production Economics, v. 147, p. 555–568. 2014.
- GRISI, R.M.; GUERRA, L.; NAVIGLIO, G. Supplier performance evaluation for green supply chain management. Business Performance Measurement and Management, v. 4, pp. 149–163. 2010.
- GUPTA, H.; BARUA, M. K.; Supplier selection among SMEs on the basis of their green innovation ability using BWM and fuzzy TOPSIS. Journal of Cleaner Production, 2017
- HWANG C.L.; YOON K.; Multiple Attribute Decision Making. Berlin: Springer-Verlag; 1981.
- JABBOUR ABL, DE SOUZA AZEVEDO F, ARANTES AF, JABBOUR CJC. Greening the Supply Chain: Some Evidence from Companies Located in Brazil. Gestão & Produção. 20: 953-962. 2013.
- JEHANZEB, K.; BASHIR, N. A. Training and development program and its benefits to employee and organization: A conceptual study. Training and Development, v. 5, n. 2, 2013.
- JENNINGS, B.; STADLER, R. Resource management in clouds: Survey and research challenges. Journal of Network and Systems Management, v. 23, n. 3, p. 567-619, 2015.
- JUNIOR, F. R. L.; OSIRO, L.; CARPINETTI, L. C. R.; A comparison between Fuzzy AHP and Fuzzy TOPSIS methods to supplier selection. Applied Soft Computing, v. 21, p. 194-209, 2014.
- KHALILI, N. R.; DUECKER, S. Application of multi-criteria decision analysis in design of sustainable environmental management system framework. Journal of Cleaner Production, v. 47, p. 188-198, 2013.

- KUEI, C. H.; MADU, C. N.; CHOW, W. S.; CHEN, Y.; Determinants and associated performance improvement of green supply chain management in China. Journal of Cleaner Production, v. 95, p. 163-173, 2015
- LIANG GS (1999) Fuzzy MCDM based on ideal and anti-ideal concepts. European Journal of Operational Research. 112:682–691
- LIAO, CHIN-NUNG; FU, YAN-KAI; WU, LI-CHUN. Integrated FAHP, ARAS-F and MSGP methods for green supplier evaluation and selection. Technological and Economic Development of Economy, v. 22, n. 5, p. 651-669, 2016.
- LIMA JUNIOR, F. R.; CARPINETTI, L. C. R. Uma comparação entre os métodos TOPSIS e Fuzzy-TOPSIS no apoio à tomada de decisão multicritério para seleção de fornecedores. Gestão & Produção, v. 22, p. 17-34, 2015
- LUTHRA, S.; KUMAR, S.; GARG, D.; HALEEM, A.; Comparative evaluation of GSCM practices in automotive components manufacturing firms of India: a fuzzy TOPSIS approach. International Journal of Logistics Systems and Management, v. 25, n. 3, p. 358-390, 2016.
- MANGLA SK, KUMAR P, BARUA MK (2015)
 Prioritizing the responses to manage risks in green supply chain: An Indian plastic manufacturer perspective. Sustainable Production and Consumption. 1: 67-86
- MAZZI, A.; TONIOLO, S.; MASON, M.; AGUIARI, F.; SCIPIONI, A.; What are the benefits and difficulties in adopting an environmental management system? The opinion of Italian organizations. Journal of Cleaner Production. 139: 873-885(2016)
- MENDONÇA, J. C. A., et al. Logística reversa no brasil: um estudo sobre o mecanismo ambiental, a responsabilidade social corporativa e as legislações pertinentes. Revista Capital Científico-Eletrônica (RCCe)-ISSN 2177-4153, v. 15, n. 2, p. 130-147, 2017.

- MISHRA, P.; SHARMA, P. Green marketing: Challenges and opportunities for business. BVIMR Management Edge, v. 7, n. 1, 2014.
- OLIVEIRA, E. C. Influência da variável ambiental no processo de escolha dos fornecedores: Um Estudo em Agroindústrias da Microrregião de Assis-SP. Revista Produção e Desenvolvimento, v. 2, n. 2, p. 77-100, 2016.
- PAPADOPOULOS, I.; KARAGOUNI, G.; TRIGKAS, M.; BELTSIOU, Z.; Mainstreaming green product strategies: Why and how furniture companies integrate environmental sustainability? EuroMed Journal of Business. 9: 293-317 (2014)
- PEREIRA, B. M.; CHAVES, G. L. D. A implantação da política nacional de resíduos sólidos (PNRS) no estado do Espírito Eanto. Brazilian Journal of Production Engineering-BJPE, v. 1, n. 1, p. 1-3, 2015.
- SAHU, N. K.; DATTA, S.; SANKAR MAHAPATRA, S. Establishing green supplier appraisement platform using grey concepts. Grey Systems: Theory and Application, v. 2, n. 3, p. 395-418. 2012.
- SCUR, G.; BARBOSA, M. E. Green supply chain management practices: Multiple case studies in the Brazilian home appliance industry. Journal of Cleaner Production. 141: 1293-1302. 2017.
- SCUR, G.; BARBOSA, M. E.; Green supply chain management practices: Multiple case studies in the Brazilian home appliance industry. Journal of Cleaner Production, v. 141, p. 1293-1302, 2017
- SHARMA, V. K.; CHANDNA, P.; BHARDWAJ, A.; Green supply chain management related performance indicators in agro industry: A review. **Journal of Cleaner Production**, v. 141, p. 1194-1208, 2017. doi: 10.1016/j.jclepro.2016.09.103
- SHEN L, OLFAT L, GOVINDAN K, KHODAVERDI R, DIABAT A (2012) A fuzzy multi criteria approach for evaluating green supplier's performance in green supply chain

- with linguistic preferences. Resources, Conservation and Recycling. 74: 170-179
- SHEN, L.; OLFAT, L.; GOVINDAN, K.; KHODAVERDI, R.; DIABAT, A.; A fuzzy multi criteria approach for evaluating green supplier's performance in green supply chain with linguistic preferences. Resources, Conservation and Recycling, v. 74, p. 170-179, 2013.
- SHIBAO, F. Y.; SANTOS, M. R.; MOORI, R. G. Gestão da cadeia de suprimentos verde: uma comparação entre Brasil, China e Japão. Gestão Contemporânea, n. 16, 2015.
- SUSANTY, A.; SARI, D. P.; BUDIAWAN, W.; KURNIAWAN, H. Improving Green Supply Chain Management in Furniture Industry Through Internet Based Geographical Information System for Connecting the Producer of Wood Waste with Buyer. Procedia Computer Science, v. 83, p. 734-741, 2016.
- TSAI, S. B.; WEI, Y. M.; CHEN, K. Y.; XU, L.; DU, P.; LEE, H. C. Evaluating green suppliers from a green environmental perspective. Environment and Planning B: Planning and Design, v. 43, n. 5, p. 941-959, 2016.
- TYAGI M, KUMAR P, KUMAR D (2015)
 Parametric selection of alternatives to improve performance of green supply chain management system. Procedia-Social and Behavioral Sciences. 189: 449-457
- UYGUN, Ö.; DEDE, A. Performance evaluation of green supply chain management using integrated fuzzy multi-criteria decision making techniques. Computers & Industrial Engineering, v. 102, p. 502-511, 2016.
- VANALLE, R. M.; GANGA, G. M. D.; GODINHO FILHO, M.; LUCATO, W. C.; Green supply chain management: An investigation of pressures, practices, and performance within the Brazilian automotive supply chain. **Journal of Cleaner Production**, v. 151, p. 250-259, 2017. doi: 10.1016/j.jclepro.2017.03.066.

VIJAYVARGY, L.; THAKKAR, J.; AGARWAL, G. Green supply chain management practices and performance: the role of firm-size for emerging economies. Journal of Manufacturing Technology Management, v.28, n.3. 2017.

- ZADEH, L. A. Fuzzy sets. Information and Control; 8:338–53, 1965.
- ZAKERI, S.; KERAMATI, M. A. Systematic combination of fuzzy and grey numbers for supplier selection problem. Grey Systems: Theory and Application. 5: 313-343.2015

~ .~	1	1 .	1	• ,
Ciestao	สล	cadeia	de	suprimentos
Contac	uu	caacia	uc	Suprime incom.