http://dx.doi.org/10.5902/223613089158 Revista do Centro do Ciências Naturais e Exatas - UFSM, Santa Maria Revista Monografias Ambientais - REMOA e-ISSN 2236 1308 - v. 12 n. 12 ago. 2013, p. 2734 - 2748

Modelos para estimativa da radiação de onda longa atmosférica no cerrado Mato-Grossense

Models to the estimative of atmospheric long wave radiation in the cerrado of Mato Grosso

Flair José Carrilho Sobrinho'; Soilce Beatriz de Paula Carrilho²; José de Souza Nogueira³; Osvaldo Borges Pinto Junior⁴

¹Professor do Programa de Pós-Graduação em Física Ambiental, Linha de pesquisa: Análise e Modelagem de Processos Ecofisiológicos e Análise Microclimática de Sistemas Urbanos,

²Doutoranda do Programa de Pós-Graduação em Física Ambiental, Linha de pesquisa: Análise e Modelagem de Processos Ecofisiológicos, ³ Professor do Departamento de Física/ IF/ UFMT e Coordenador do Programa de Pós-Graduação em Física Ambiental,Professor da Universidade de Cuiabá/ UNIC,

⁴Professor do Programa de Pós-Graduação em Física Ambiental, Linha de pesquisa: Análise Microclimática de Sistemas Urbanos,

Resumo

Este trabalho teve por objetivo avaliar e parametrizar os modelos para a estimativa da radiação de onda longa atmosférica (Ld) no Cerrado Mato-grossense, considerando a cobertura do céu nas condições de céu-claro, parcialmente nublado e nublado. Levando-se em conta que medidas da Ld são raras, e que este parâmetro quase sempre é obtido de forma indireta através de vários modelos disponíveis na literatura, optou-se neste trabalho por analisar 107 modelos para a estimativa da Ld. Os dados utilizados neste trabalho foram obtidos de instrumentos instalados em uma torre microclimatológica de 19 metros na fazenda Miranda no município de Santo Antônio de Leverger – MT, entre os meses de junho e julho; e outubro e novembro de 2009 totalizando 5856 medidas. Das estimativas da Ld obtidas a partir destas formulações, aquelas com melhores desempenhos foram as que apresentaram como critérios, os menores erros estatísticos e os maiores índices e coeficientes como os de determinação (R2), de correlação de Pearson (r), de concordância de Wilmott (1982) e o de desempenho de Camargo & Sentelhas (1997). Pode-se observar que, para as condições de céu claro, parcialmente nublado e nublado, os modelos de estimativa da irradiância de ondas longas, em sua formulação original, que apresentaram os melhores índices estatísticos e, portanto, aqueles que melhor se adaptaram ao Cerrado Mato-grossense, para o período estudado foram, respectivamente, Viswanadham & Ramanadham (1970), Idso & Jackson (1969) e Bignami et al. (1995) e após a parametrização os modelos de: Bárbaro et al. (2010); Aubinet (1994)) e Andreas & Ackley (1982).

Palavras Chave: Índice de claridade; irradiância de ondas longas; equações empíricas; índices estatísticos, modelagem de ecossistemas.

Abstract

This study aimed to evaluate and parameterize models to estimating the atmospheric long wave radiation (*Ld*) in the Cerrado Mato-grossense, considering the sky coverage in terms of clear-sky, partly cloudy and overcast. Taking into account that measurements of *Ld* are rare, and that this parameter is usually obtained indirectly through various models available in the literature we decided in this study, analyze 107 models for the estimation of *Ld*. The data used in this study were obtained of equipment installed in a micrometeorological tower 19 meters at Miranda farm in Santo Antônio de Leverger - MT, between the months of june and july, and october and november 2009 totalizing 5856 measures. Estimates of *Ld* obtained from these formulations, the best performing ones were the ones with the smallest statistical errors and the highest index and coefficients as of determination (R^2), the Pearson correlation (*r*), the Wilmott index of "agreement" (1982) (*d*) and the Camargo & Sentelhas index of "performance" (1997) (*c*). It can be observed that for conditions clear skies, partly cloudy and overcast, the models to estimate the long-wave irradiance, in its original formulation, which showed the best statistical indices and, therefore, those best adapted for the "Cerrado Mato-grossense" (Brazilian savanna in the Mato Grosso state), in the period studied were, respectively, *Ramanadham & Viswanadham (1970), Idso and Jackson (1969)* and *Bignami et al. (1995)* and after parameterization of models: *Bárbaro et al. (2010); Aubinet (1994)* and *Andreas & Ackley (1982)*.

Keywords: Index of clarity, long-wave irradiance, empirical equations, statistical indices, ecosystem modeling.

INTRODUÇÃO

O Cerrado é considerado a savana tropical mais diversa do mundo, sendo o segundo bioma em extensão no Brasil e representando cerca de 23% do território nacional, com uma área de 204,7 milhões de hectares.

A partir da década de 60, foi iniciado um processo de antropização da região devido à mudança da capital federal para a região Centro-Oeste e a concessão de incentivos fiscais para a implantação de projetos agropecuários. Com isso, a ocupação da região dos Cerrados tem levado a problemas ambientais devido a não utilização de tecnologias adequadas e a grande extensão territorial das ocupações.

A sociedade, nos últimos anos, tem manifestado grande preocupação com os problemas ambientais, decorrentes da intensificação no uso de recursos e ambientes naturais associados ao processo produtivo com inapropriadas práticas de uso e manejo.

Em consequência, o ambiente físico (componentes climático, hidrológico e solo), biótico (fauna e flora) e socioeconômico vem sendo, constantemente, submetido a crescente pressão antropogênica, com efeitos que se traduzem em alterações de propriedades, estruturas, funções, inter-relações e sinergismos.

Neste sentido, conhecer a quantidade de radiação solar que chega à superfície terrestre é de grande importância para as diversas atividades humanas, principalmente aquelas referentes ao aproveitamento dos recursos naturais, visto que a radiação solar é a principal fonte de energia disponível a todos os processos físicos, químicos e biológicos que ocorrem no sistema terra-atmosfera, além de interferir em outros elementos meteorológicos como evaporação, evapotranspiração, temperatura, umidade relativa e outros.

A radiação solar ao penetrar na atmosfera sofre uma série de processos, provocando várias modificações, pois uma grande parte da radiação incidente é refletida pelas nuvens e difusamente espalhada pela atmosfera.

Quando ela interage com a atmosfera uma parte é absorvida pelas nuvens, aerossóis e moléculas que reemitem esta energia na forma de calor, sendo denominada radiação de ondas longas atmosféricas.

Assim como na Floresta Amazônica e no Pantanal, no Cerrado Mato-grossense praticamente não existem medidas regulares de radiação de onda longa da atmosfera, mesmo sendo uma variável importante no cálculo do balanço de radiação à superfície, pois representa a contribuição da atmosfera e engloba informações de nebulosidade e concentração de vapor d'água. Portanto, a utilização de equações analíticas e/ou empíricas para estimativa da irradiância de ondas longas tornou-se um modo alternativo largamente utilizado.

Neste contexto, o objetivo geral deste trabalho foi avaliar modelos analíticos e empíricos que consideram a cobertura do céu nas condições de *céu-claro, parcialmente nublado e nublado* para estimar a radiação solar de ondas longas proveniente da atmosfera em uma área representativa do Cerrado Mato-Grossense, chamado "Cerrado *Sensu Stricto*".

METODOLOGIA

A pesquisa foi realizada na Fazenda Miranda (15° 43' 53,65" Sul e 56° 4' 18,88" Oeste), no município de Santo Antônio de Leverger situado na Baixada Cuiabana, Mato Grosso, Brasil, distante aproximadamente 15 km da cidade de Cuiabá e com altitude média de 157 m.

Segundo a classificação de Köppen, o clima de Santo Antônio do Leverger é do tipo AW, também denominado Tropical semiúmido, possui quatro a cinco meses secos e duas estações bem definidas, uma seca (outono-inverno) e uma chuvosa (primavera-verão).

A formação vegetal predominante é o Cerrado (desde campo limpo até cerradão), apresentando floresta decídua na encosta dos morros e floresta de galeria ao longo dos rios, além de, em alguns trechos, vegetação típica de áreas alagadas.

O solo da área em que a pesquisa foi desenvolvida é caracterizado por ser pouco espesso, imperfeitamente drenado, concessionário e com superfície cascalhenta (Plintossolo Pétrico), podendo haver locais com solos Litólicos Distróficos (EMBRAPA, 1999).

Na área de estudo, numa torre em estrutura metálica de 19 m de altura com equipamentos de medições micrometeorológicas, permitiram-se a coleta e registros de dados, durante 24 horas por dia (Figura 2). Para realização deste trabalho, foram utilizados os dados micrometeorológicos coletados nos meses de junho, julho, outubro e novembro de 2009 por representar as duas estações definidas para o local de estudo: seca (junho e julho) e úmida (outubro e novembro).

As medidas de saldo de radiação (Rn) sobre a vegetação foram obtidas por meio de um saldo radiômetro NR LITE (Kipp e Zonen Delft, Inc., The Netherlands) instalado a 4 m de altura. A radiação global incidente (Rgi) e a radiação global refletida (Rgr) foram medidas por meio de pira-

Figura1: Mapa do Brasil, Mato Grosso com a localização da área de estudo. Fonte: Adaptado de "http://www.ibge.gov.br/cidadesat/ acessado em 24/11/2011"

Figura 2: Torre micrometeorológica instalada na Fazenda Miranda, em Santo Antônio de Leverger, MT. Fonte: Acervo próprio.

nômetros LI-200X-L (Campbell Scientific, Inc., USA) instalados a 4 metros de altura, um com a face voltada para cima (Rgi) e o outro para baixo (Rgr), assim como a radiação fotossinteticamente ativa incidente (PARi) e a refletida (PARr), medidas através de sensores quantum LI-190SB-L (Campbell Scientific, Inc., USA), um com a face voltada para cima (PARi) e o outro para baixo (PARr). Os equipamentos da torre micrometeorológica foram alimentados com tensão de 12 V por uma bateria de 150 A, carregada por meio de um painel solar de 65 W e com regulador de tensão.

Os dados micrometeorológicos foram coletados por meio de sensores de aquisição de dados, ligados a dois dataloggers CR 1000 (Campbell Scientific, Inc., USA), com intervalo de leitura de 30 segundos e registro das médias a cada 30 minutos.

Para aumentar o número de canais de entrada do registrador foi utilizada uma placa multiplexadora AM16/32^a-ST-SW (Campbell Scientific, Inc., USA).

A cada 15 dias, os dados armazenados nos dataloggers eram transferidos para um disco rígido de um laptop. Verificações do funcionamento e o estado de conservação dos sensores também eram realizadas a cada visita no local.

Levando-se em conta que medidas de Ld são raras, este parâmetro quase sempre é obtido de forma indireta, através de vários modelos disponíveis na literatura, alguns dos quais têm validade somente para dias de céu claro. Para dias com nuvens devem ser efetuados ajustes para incluir os seus efeitos (BRUTSAERT, 1982). No presente trabalho Ld foi estimada por 107 modelos diferentes sendo 80 modelos para condições de céu claro (Ld_{cs}) e 27 para condições de céu nublado (Ld_{cld}) com os seus coeficientes originais, ou seja, foram preservados os valores originais propostos para os locais de estudo de cada modelo em condições de céu claro, parcialmente nublado e nublado segundo a classificação proposta por DALLACORT (2004).

Após as estimativas de Ld, os 107 modelos originais foram avaliados e classificados de acordo com os resultados obtidos dos índices estatísticos aplicados. Os modelos que obtiveram desempenho "Ótimo" e "Muito bom" (Camargo e Sentelhas, 1997), ou seja, aqueles cujos valores estimados se aproximaram mais dos valores experimentais, tiveram os seus coeficientes ajustados nas condições do local de estudo e, novamente, avaliados e classificados buscando, assim, o modelo que melhor se adapta as condições no Cerrado Mato-grossense sob céu claro, parcialmente nublado e nublado.

Os 107 modelos utilizados para o cálculo da irradiância de ondas longas em condições de céu claro, parcialmente nublado e nublado foram categorizados de acordo com os seus parâmetros e se enquadraram em uma das oito categorias (Cat) na tabela 1.

Diversas estatísticas e técnicas citadas na literatura (Fox, 1980; Willmott et al., 1985; Yapo et al., 1998; Legates e Mccabe Jr., 1999; Tang et al., 2006; Duan et al., 2006) foram utilizadas para determinar o erro entre os dados simulados por um modelo (P) e os dados observados (O). Dentre elas destacam-se o coeficiente de correlação de Pearson (r), o coeficiente de determinação (R^2), o erro médio absoluto (*EMA*), o erro quadrático médio (*EQM*); o erro relativo médio (*ERM*); o índice de concordância de Willmott (1982) - (d); o índice de confiança ou de desempenho de Camargo & Sentelhas (1997) - (c); e a equação da reta de regressão dos dados simulados versus observados.

Além destas estatísticas para a avaliação dos modelos foram feitos, também, testes de normalidade e análise dos resíduos para um nível de significância de 5 %. O Teste de normalidade é utilizado para observar o comportamento da série de dados em estudo, ou seja, determina se os

Categorias	Parâmetros dos modelos em diferentes formas: linear, exponencial etc.
(CAT 1)	Tar - temperatura do ar próximo à superfície
(CAT 2)	ea - pressão de vapor d'água no ar próximo a superfície.
(CAT 3)	Tar e ea - temperatura do ar e pressão de vapor d'água no ar próximo a superfície.
(CAT 4)	TDP - temperatura do ponto de orvalho; Tar e/ou ea.
(CAT 5)	<i>RH</i> - umidade relativa do ar; <i>z</i> - altitude local; <i>Tar</i> e/ou <i>ea</i>
(CAT 6)	w - conteúdo d'água precipitável da atmosfera; Tar e/ou ea
(CAT 7)	m - época do ano", mês do ano ($m = 1, 2, 3,, 12$); Tar e/ou ea
(CAT 8)	q - umidade específica; P0 - pressão atmosférica local; Tar e/ou ea

Tabela 1: Categorias propostas de acordo com os parâmetros de cada modelo.

dados seguem uma distribuição normal. Para isso existem diversos testes, sendo que para esse estudo utilizou-se os testes de Shapiro-Wilk, Anderson-Darling, Lilliefors, e Jarque-Bera para um nível de significância de 5%.

RESULTADOS E DISCUSSÕES

Durante o período de estudo, entre os meses de junho e julho; e outubro e novembro de 2009, as condições meteorológicas em que as observações foram realizadas, caracterizam-se por apresentar variações semelhantes às observadas de acordo com as normais climatológicas da região (INMET 2009).

A radiação solar global incidente (Rgi) no

período de estudo, variou de 3,63 MJ.m⁻².dia⁻¹ (valor mínimo) a 26,42 MJ.m⁻².dia⁻¹ (valor máximo) e valor médio de 16,49 MJ.m⁻².dia⁻¹.

A tabela 2 ilustra as características meteorológicas do período estudado.

Os testes de normalidade Shapiro-Wilk, Anderson-Darling, Lilliefors, e Jarque-Bera, foram aplicados a todos os modelos e, para o nível de significância de 5 %, o p-valor obtido foi menor que 0,01 %, logo, como o p-valor calculado é menor que o nível de significância $\alpha = 5$ %, deve-se rejeitar a hipótese nula H0 em favor da hipótese alternativa Ha, ou seja, todos os modelos analisados seguem uma distribuição normal. A tabela 3 mostra os resultados dos testes de normalidade para todos os modelos.

Tabela 2: Evolução da Cobertura do céu (% dos dias estudados), da Temperatura média mensal (°C), da R_{gi} (MJ.m⁻².mês⁻¹) e da Precipitação mensal acumulada (mm) em cada mês do período de estudo

Mês	Céu Claro	Céu Parcialmente Nublado	Céu Nublado	Temperatura média mensal	Radiação solar global incidente	Precipitação mensal acumulada
Junho	43%	37%	20%	22,22	411,58	57,15
Julho	39%	51%	10%	23,50	484,47	12,99
Outubro	7%	87%	6%	27,83	572,44	96,52
Novembro	3%	83%	14%	27,64	543,49	183,20

Tabela 3: Resultados dos testes de normalidade para $\alpha = 5\%$: H0 \rightarrow A amostra segue uma distribuição Normal quando p-valor < α ; Ha \rightarrow A amostra não segue uma distribuição Normal quando p-valor > α .

Modelo	Shapiro-Wilk	Anderson-Darling	Lilliefors	Jarque-Bera
Ångström (1918)	p-valor<0,01%	p-valor<0,01%	p-valor<0,01%	p-valor<0,01%
Kimball (1918)	p-valor<0,01%	p-valor<0,01%	p-valor<0,01%	p-valor<0,01%
Robitsch (1926)	p-valor<0,01%	p-valor<0,01%	p-valor<0,01%	p-valor<0,01%
Dines & Dines (1927)	p-valor<0,01%	p-valor<0,01%	p-valor<0,01%	p-valor<0,01%
Asklef (1928)	p-valor<0,01%	p-valor<0,01%	p-valor<0,01%	p-valor<0,01%
Boutario (1932)	p-valor<0,01%	p-valor<0,01%	p-valor<0,01%	p-valor<0,01%
Brunt (1932)	p-valor<0,01%	p-valor<0,01%	p-valor<0,01%	p-valor<0,01%
Ramanathan & Desai (1932)	p-valor<0,01%	p-valor<0,01%	p-valor<0,01%	p-valor<0,01%
Eckel (1934)	p-valor<0,01%	p-valor<0,01%	p-valor<0,01%	p-valor<0,01%
Raman (1935)	p-valor<0,01%	p-valor<0,01%	p-valor<0,01%	p-valor<0,01%
Elsasser (1942)	p-valor<0,01%	p-valor<0,01%	p-valor<0,01%	p-valor<0,01%
Lutherstein & Chednovsky (1946)	p-valor<0,01%	p-valor<0,01%	p-valor<0,01%	p-valor<0,01%
Chumanova (1947)	p-valor<0,01%	p-valor<0,01%	p-valor<0,01%	p-valor<0,01%
Berland & Berland (1952)	p-valor<0,01%	p-valor<0,01%	p-valor<0,01%	p-valor<0,01%
Anderson (1954)	p-valor<0,01%	p-valor<0,01%	p-valor<0,01%	p-valor<0,01%
De Coster & Shuepp (1957)	p-valor<0,01%	p-valor<0,01%	p-valor<0,01%	p-valor<0,01%
Gross & Brooks (1957)	p-valor<0,01%	p-valor<0,01%	p-valor<0,01%	p-valor<0,01%
Bliss (1961)	p-valor<0,01%	p-valor<0,01%	p-valor<0,01%	p-valor<0,01%

Tabela 3: continuação...

Modelo	Shapiro-Wilk	Anderson-Darling	Lilliefors	Jarque-Bera
Efimova (1961)	p-valor<0,01%	p-valor<0,01%	p-valor<0,01%	p-valor<0,01%
Harshunova (1961) mod1	p-valor<0,01%	p-valor<0,01%	p-valor<0,01%	p-valor<0,01%
Harshunova (1961) mod2	p-valor<0,01%	p-valor<0,01%	p-valor<0,01%	p-valor<0,01%
Monteith (1961)	p-valor<0,01%	p-valor<0,01%	p-valor<0,01%	p-valor<0,01%
Swinbank (1963) - modelo 1	p-valor<0,01%	p-valor<0,01%	p-valor<0,01%	p-valor<0,01%
Swinbank (1963) - modelo 2	p-valor<0,01%	p-valor<0,01%	p-valor<0,01%	p-valor<0,01%
Swinbank (1963) - modelo 3	p-valor<0,01%	p-valor<0,01%	p-valor<0,01%	p-valor<0,01%
Martin & Palmer (1964)	p-valor<0,01%	p-valor<0,01%	p-valor<0,01%	p-valor<0,01%
Sellers (1965)	p-valor<0,01%	p-valor<0,01%	p-valor<0,01%	p-valor<0,01%
Marshunova (1966)	p-valor<0,01%	p-valor<0,01%	p-valor<0,01%	p-valor<0,01%
Idso & Jackson (1969)	p-valor<0,01%	p-valor<0,01%	p-valor<0,01%	p-valor<0,01%
Deacon (1970)	p-valor<0,01%	p-valor<0,01%	p-valor<0,01%	p-valor<0,01%
Viswanadham & R. (1970) Madras	p-valor<0,01%	p-valor<0,01%	p-valor<0,01%	p-valor<0,01%
Viswanadham & R. (1970) Nagpur	p-valor<0,01%	p-valor<0,01%	p-valor<0,01%	p-valor<0,01%
Viswanadham & R. (1970) Waltair	p-valor<0,01%	p-valor<0,01%	p-valor<0,01%	p-valor<0,01%
Zillman (1972)	p-valor<0,01%	p-valor<0,01%	p-valor<0,01%	p-valor<0,01%
Maykut & Church (1973)	p-valor<0,01%	p-valor<0,01%	p-valor<0,01%	p-valor<0,01%
Brutsaert (1975)	p-valor<0,01%	p-valor<0,01%	p-valor<0,01%	p-valor<0,01%
Clark & Allen (1978)	p-valor<0,01%	p-valor<0,01%	p-valor<0,01%	p-valor<0,01%
Marks & Dozier (1979)	p-valor<0,01%	p-valor<0,01%	p-valor<0,01%	p-valor<0,01%
Satterlund (1979)	p-valor<0,01%	p-valor<0,01%	p-valor<0,01%	p-valor<0,01%
Idso (1981)	p-valor<0,01%	p-valor<0,01%	p-valor<0,01%	p-valor<0,01%
Ohmura (1981)	p-valor<0,01%	p-valor<0,01%	p-valor<0,01%	p-valor<0,01%
Andreas & Ackley (1982)	p-valor<0,01%	p-valor<0,01%	p-valor<0,01%	p-valor<0,01%
Berdhal & Fromberg (1982) mod1	p-valor<0,01%	p-valor<0,01%	p-valor<0,01%	p-valor<0,01%
Berdhal & Fromberg (1982) mod2	p-valor<0,01%	p-valor<0,01%	p-valor<0,01%	p-valor<0,01%
Centeno (1982)	p-valor<0,01%	p-valor<0,01%	p-valor<0,01%	p-valor<0,01%
Sugita e Brutsaert (1983)	p-valor<0,01%	p-valor<0,01%	p-valor<0,01%	p-valor<0,01%
Berdhal & Martin (1984)	p-valor<0,01%	p-valor<0,01%	p-valor<0,01%	p-valor<0,01%
Berger et al. (1984) mod1	p-valor<0,01%	p-valor<0,01%	p-valor<0,01%	p-valor<0,01%
Berger et al. (1984) mod2	p-valor<0,01%	p-valor<0,01%	p-valor<0,01%	p-valor<0,01%
Keding (1989)	p-valor<0,01%	p-valor<0,01%	p-valor<0,01%	p-valor<0,01%
FAO (1990)	p-valor<0,01%	p-valor<0,01%	p-valor<0,01%	p-valor<0,01%
Kondo et al. (1990)	p-valor<0,01%	p-valor<0,01%	p-valor<0,01%	p-valor<0,01%
Heitor et al. (1991)	p-valor<0,01%	p-valor<0,01%	p-valor<0,01%	p-valor<0,01%
Korsgaard et al. (1991)	p-valor<0,01%	p-valor<0,01%	p-valor<0,01%	p-valor<0,01%
Garratt (1992)	p-valor<0,01%	p-valor<0,01%	p-valor<0,01%	p-valor<0,01%
König-Langlo & Augstein (1994)	p-valor<0,01%	p-valor<0,01%	p-valor<0,01%	p-valor<0,01%
Konzelmann et al (1994)	p-valor<0,01%	p-valor<0,01%	p-valor<0,01%	p-valor<0,01%
Prata (1996)	p-valor<0,01%	p-valor<0,01%	p-valor<0,01%	p-valor<0,01%
Greuell et al. (1997)	p-valor<0,01%	p-valor<0,01%	p-valor<0,01%	p-valor<0,01%
Dilley & O'Brien (1998)	p-valor<0,01%	p-valor<0,01%	p-valor<0,01%	p-valor<0,01%
Crawford & Duchon (1999)	p-valor<0,01%	p-valor<0,01%	p-valor<0,01%	p-valor<0,01%
Niemelä et al. (2001)	p-valor<0,01%	p-valor<0,01%	p-valor<0,01%	p-valor<0,01%
Zapadka et al (2001) - modelo 1	p-valor<0,01%	p-valor<0,01%	p-valor<0,01%	p-valor<0,01%
Zapadka et al (2007) - modelo 2	p-valor<0,01%	p-valor<0,01%	p-valor<0,01%	p-valor<0,01%
Klok & Oerlemans (2002)	p-valor<0,01%	p-valor<0,01%	p-valor<0,01%	p-valor<0,01%
Sridhar et al. (2002)	p-valor<0,01%	p-valor<0,01%	p-valor<0,01%	p-valor<0,01%
Iziomon et al (2003) mod 1	p-valor<0,01%	p-valor<0,01%	p-valor<0,01%	p-valor<0,01%

Modelo	Shapiro-Wilk	Anderson-Darling	Lilliefors	Jarque-Bera
Iziomon et al. (2003) mod2	p-valor<0,01%	p-valor<0,01%	p-valor<0,01%	p-valor<0,01%
Iziomon et al. (2003) mod3	p-valor<0,01%	p-valor<0,01%	p-valor<0,01%	p-valor<0,01%
Golaka & Excell (2004) mod1	p-valor<0,01%	p-valor<0,01%	p-valor<0,01%	p-valor<0,01%
Golaka & Excell (2004) mod2	p-valor<0,01%	p-valor<0,01%	p-valor<0,01%	p-valor<0,01%
Golaka & Excell (2004) mod3	p-valor<0,01%	p-valor<0,01%	p-valor<0,01%	p-valor<0,01%
Golaka & Excell (2004) mod4	p-valor<0,01%	p-valor<0,01%	p-valor<0,01%	p-valor<0,01%
Duarte et al. (2006)	p-valor<0,01%	p-valor<0,01%	p-valor<0,01%	p-valor<0,01%
Jin et al. (2006)	p-valor<0,01%	p-valor<0,01%	p-valor<0,01%	p-valor<0,01%
Silva et al. (2006) 1999	p-valor<0,01%	p-valor<0,01%	p-valor<0,01%	p-valor<0,01%
Silva et al. (2006) 2000	p-valor<0,01%	p-valor<0,01%	p-valor<0,01%	p-valor<0,01%
Lhomme et al. (2007)	p-valor<0,01%	p-valor<0,01%	p-valor<0,01%	p-valor<0,01%
Kruk et al. (2009)	p-valor<0,01%	p-valor<0,01%	p-valor<0,01%	p-valor<0,01%
Bárbaro et al. (2010)	p-valor<0,01%	p-valor<0,01%	p-valor<0,01%	p-valor<0,01%

Tabela 3: continuação...

Mesmo utilizando os 107 modelos com seus parâmetros originais pode-se observar que os resultados obtidos não foram comprometidos visto que a maioria dos modelos tiveram um ótimo desempenho.

Os modelos utilizados para o cálculo da irradiância de ondas longas em condições de céu claro, parcialmente nublado e nublado foram categorizados e se enquadraram em uma das oito categorias propostas de acordo com os seus parâmetros. A tabela 4 mostra a avaliação dos oitenta (80) modelos propostos para as condições de céu claro, categorizados e classificados em ordem decrescente em função de suas respectivas estatísticas c, d, $r \in R^2$ e crescente em termos de ERM, EMA e EMQ.

Tabela 4 Avaliação dos modelos de estimativa da irradiância de ondas longas para condições de céu claro (Ldcs)

Modelo	Ano	R ²	r	d	EMQ %	EMA W.m ⁻²	ERM %	с	Interpretação	Categoria
Viswanadham & R. (1970) Madras	1970	0,9724	0,9861	0,9937	1,3619	3,5096	0,0011	0,9799	ÓTIMO	3
Satterlund (1979)	1979	0,9705	0,9851	0,9925	1,4924	4,1351	0,6309	0,9778	ÓTIMO	3
Marshunova (1966)	1966	0,9712	0,9855	0,9916	1,5612	4,3461	0,5841	0,9772	ÓTIMO	3
Viswanadham & R. (1970) Waltair	1970	0,9688	0,9843	0,9927	1,4845	4,2613	0,3405	0,9771	ÓTIMO	3
Berger et al. (1984) mod1	1984	0,9723	0,9861	0,9904	1,6722	4,7368	0,8254	0,9766	ÓTIMO	3
FAO (1990)	1990	0,9721	0,9860	0,9886	1,8292	5,3170	1,0668	0,9747	ÓTIMO	3
Konzelmann et al (1994)	1994	0,9628	0,9812	0,9911	1,5853	4,3312	0,2676	0,9725	ÓTIMO	3
Gross & Brooks (1957)	1957	0,9722	0,9860	0,9858	2,0336	6,2685	1,3557	0,9720	ÓTIMO	3
Viswanadham & R. (1970) Nagpur	1970	0,9709	0,9853	0,9854	2,1095	6,9894	1,7028	0,9710	ÓTIMO	3
Kondo et al. (1990)	1990	0,9596	0,9796	0,9903	1,6819	5,2421	0,6293	0,9701	ÓTIMO	6
Prata (1996)	1996	0,9607	0,9802	0,9887	1,8060	4,4849	0,6810	0,9691	ÓTIMO	6
Berger et al. (1984) mod2	1984	0,9640	0,9818	0,9854	2,0379	6,2337	1,1814	0,9675	ÓTIMO	4
Brutsaert (1975)	1975	0,9553	0,9774	0,9889	1,7929	4,5384	0,3701	0,9665	ÓTIMO	3
Lutherstein & Chednovsky (1946)	1946	0,9552	0,9773	0,9863	2,0433	5,3959	0,8561	0,9640	ÓTIMO	3
Greuell et al. (1997)	1997	0,9628	0,9812	0,9802	2,3696	7,3363	1,6169	0,9617	ÓTIMO	3
Berdhal & Fromberg (1982) mod2	1982	0,9623	0,9810	0,9803	2,4408	7,2263	1,7028	0,9616	ÓTIMO	4
Clark & Allen (1978)	1978	0,9514	0,9754	0,9799	2,3800	7,3872	1,4282	0,9558	ÓTIMO	4

Tabela 4 continuação...

Modelo	Ano	R ²	r	d	EMQ %	EMA W.m ⁻²	ERM %	c	Interpretação	Categoria
Berland & Berland (1952)	1952	0,9650	0,9823	0,9692	3,1372	10,7389	2,8135	0,9521	ÓTIMO	3
Korsgaard et al. (1991)	1991	0,9684	0,9841	0,9660	3,2932	11,4500	3,0548	0,9506	ÓTIMO	3
Berdhal & Fromberg (1982) mod1	1982	0,9307	0,9647	0,9836	2,1202	5,7310	0,4519	0,9489	ÓTIMO	4
Berdhal & Martin (1984)	1984	0,9605	0,9801	0,9674	3,1529	10,1089	2,5626	0,9481	ÓTIMO	3
Sellers (1965)	1965	0,9702	0,9850	0,9587	3,5213	11,9919	3,0801	0,9443	ÓTIMO	3
Kruk et al. (2009)	2009	0,9171	0,9577	0,9801	2,4542	7,0403	0,0435	0,9386	ÓTIMO	3
Iziomon et al (2003) mod 1	2003	0,9556	0,9775	0,9580	3,5130	11,4473	2,9059	0,9365	ÓTIMO	3
Iziomon et al. (2003) mod2	2003	0,9556	0,9775	0,9580	3,5130	11,4473	2,9059	0,9365	ÓTIMO	3
Chumanova (1947)	1947	0,9721	0,9860	0,9494	3,8905	13,5019	3,4871	0,9361	ÓTIMO	3
Dines & Dines (1927)	1927	0,9516	0,9755	0,9593	3,5513	11,3905	2,9246	0,9358	ÓTIMO	3
Monteith (1961)	1961	0,9516	0,9755	0,9593	3,5513	11,3905	2,9246	0,9358	ÓTIMO	3
Efimova (1961)	1961	0,9650	0,9823	0,9473	4,1883	14,8031	3,9721	0,9305	ÓTIMO	3
Jin et al. (2006)	2006	0,9606	0,9801	0,9476	4,7685	15,1172	3,8357	0,9287	ÓTIMO	3
Swinbank (1963) - modelo 1	1963	0,9042	0,9509	0,9625	3,9399	13,3200	2,1677	0,9152	ÓTIMO	3
Harshunova (1961) mod2	1961	0,9042	0,9509	0,9625	3,9399	13,3188	2,1677	0,9152	ÓTIMO	3
Swinbank (1963) - modelo 3	1963	0,9042	0,9509	0,9621	3,9626	13,3922	2,2200	0,9148	ÓTIMO	1
Idso & Jackson (1969)	1969	0,8965	0,9468	0,9645	3,8856	13,0425	1,4111	0,9132	ÓTIMO	1
Deacon (1970)	1970	0,9034	0,9505	0,9549	4,3320	14,6032	2,9194	0,9076	ÓTIMO	5
De Coster & Shuepp (1957)	1957	0,9686	0,9842	0,9148	5,4533	19,9100	5,3570	0,9003	ÓTIMO	3
Niemelä et al. (2001)	2001	0,9345	0,9667	0,9276	5,0746	17,2502	4,5383	0,8967	ÓTIMO	3
Ångström (1918)	1918	0,9028	0,9502	0,9385	4,1658	13,5060	3,1674	0,8917	ÓТІМО	3
Brunt (1932)	1932	0,9479	0,9736	0,9155	5,2209	18,1162	4,7568	0,8913	О́ТІМО	3
Swinbank (1963) - modelo 2	1963	0,9116	0,9548	0,9307	5,3537	17,9867	4,5943	0,8886	ÓTIMO	1
Robitsch (1926)	1926	0,8497	0,9218	0,9522	4,0547	11,0960	1,5056	0,8777	ÓТІМО	3
Golaka & Excell (2004) mod1	2004	0,8701	0,9328	0,9410	4,0803	13,3044	3,4202	0,8777	ÓTIMO	1
Lhomme et al. (2007)	2007	0,9553	0,9774	0,8976	5,6279	19,8980	5,1909	0,8773	ÓTIMO	3
Iziomon et al. (2003) mod3	2003	0,9281	0,9634	0,8935	5,8254	20,0699	5,2532	0,8608	ÓTIMO	3
Bárbaro et al. (2010)	2010	0,9439	0,9715	0,8820	6,2392	22,0800	5,7777	0,8569	ÓTIMO	3
Asklef (1928)	1928	0,9126	0,9553	0,8842	6,3245	21,6616	5,7223	0,8447	MUITO BOM	3
Elsasser (1942)	1942	0,9527	0,9761	0,8654	6,4922	23,2249	6,0470	0,8447	MUITO BOM	3
Boutario (1932)	1932	0,9720	0,9859	0,8468	7,1475	26,1087	6,8524	0,8348	MUITO BOM	3
Heitor et al. (1991)	1991	0,9713	0,9855	0,8431	7,2645	26,5500	6,9731	0,8309	MUITO BOM	3
Sridhar et al. (2002)	2002	0,9625	0,9811	0,8384	7,2419	26,2719	6,8643	0,8225	MUITO BOM	3
Harshunova (1961) mod1	1961	0,9723	0,9861	0,8296	7,6133	27,8869	7,3224	0,8181	MUITO BOM	3
Dilley & O'Brien (1998)	1998	0,8206	0,9059	0,8772	5,7032	18,0457	4,5700	0,7946	MUITO BOM	6
Idso (1981)	1981	0,7847	0,8858	0,8895	5,7582	19,4301	4,9459	0,7880	MUITO BOM	3
Zapadka et al (2001) - modelo 2	2001	0,9725	0,9862	0,7979	8,5051	31,2912	8,2288	0,7869	MUITO BOM	3
Klok & Oerlemans (2002)	2002	0,9624	0,9810	0,8007	8,2734	30,2180	7,9138	0,7855	MUITO BOM	3
Ohmura (1981)	. 1981	0,9403	0,9697	0,8092	8,5995	31,3038	8,2928	0,7847	MUITO BOM	1
Keding (1989)	1989	0,9000	0,9487	0,8020	8,8019	32,0902	8,6758	0,7609	MUITO BOM	3
Centeno (1982)	1982	0,9619	0,9808	0,7567	9,5239	34,9881	9,1848	0,7422	BOM	5
Garratt (1992)	1992	0,9595	0,9795	0,7337	10,1955	37,5139	9,8540	0,7187	BOM	3
Eckel (1934)	1934	0,9453	0,9723	0,7143	11,3453	41,8687	11,0727	0,6945	BOM	3

Modelo	Ano	R ²	r	d	EMQ %	EMA W.m ⁻²	ERM %	с	Interpretação	Categoria
König-Langlo & Augstein (1994)	1994	0,9000	0,9487	0,7231	10,2897	37,2609	9,7519	0,6860	BOM	1
Andreas & Ackley (1982)	1982	0,7342	0,8569	0,7989	7,9838	26,1419	6,7486	0,6845	BOM	3
Raman (1935)	1935	0,9692	0,9845	0,6914	11,6720	43,2291	11,3836	0,6806	BOM	3
Bliss (1961)	1961	0,9559	0,9777	0,6729	13,6691	51,3040	13,7456	0,6579	BOM	4
Ramanathan & Desai (1932)	1932	0,9721	0,9860	0,6055	15,1256	56,3347	14,8799	0,5970	SOFRÍVEL	3
Kimball (1918)	1918	0,9426	0,9709	0,5948	15,9133	59,2057	15,6771	0,5775	SOFRÍVEL	3
Maykut & Church (1973)	1973	0,9000	0,9487	0,5993	14,8358	54,6757	14,3824	0,5685	SOFRÍVEL	1
Zapadka et al (2001) - modelo 1	2001	0,9341	0,9665	0,4895	20,8429	77,6147	20,4891	0,4731	MAU	3
Sugita e Brutsaert (1983)	1983	0,9567	0,9781	0,3752	30,2451	113,1210	29,9333	0,3670	PÉSSIMO	3
Marks & Dozier (1979)	1979	0,9553	0,9774	0,3659	35,4324	133,1830	35,4649	0,3576	PÉSSIMO	8
Zillman (1972)	1972	0,2901	0,5386	0,6489	13,5422	42,8473	7,4462	0,3495	PÉSSIMO	1
Martin & Palmer (1964)	1964	0,9002	0,9488	0,3548	32,1697	120,2150	31,7994	0,3366	PÉSSIMO	3
Anderson (1954)	1954	0,9259	0,9622	0,3298	40,9160	153,2119	40,6946	0,3173	PÉSSIMO	3
Crawford & Duchon (1999)	1999	0,8619	0,9284	0,2983	45,5468	171,1499	45,6611	0,2770	PÉSSIMO	7
Duarte et al. (2006)	2006	0,9595	0,9795	0,2547	48,4576	181,6486	48,1525	0,2495	PÉSSIMO	3
Silva et al. (2006) 1999	2006	0,9700	0,9849	0,2532	56,2386	211,4870	56,2718	0,2494	PÉSSIMO	3
Silva et al. (2006) 2000	2006	0,9720	0,9859	0,1416	108,1560	406,4310	108,0180	0,1396	PÉSSIMO	3
Golaka & Excell (2004) mod4	2004	-1,3680	∄	0,7276	6,7361	22,0658	1,2970	0,0000	PÉSSIMO	3
Golaka & Excell (2004) mod2	2004	-2,6320	∄	0,0032	8,7642	27,2504	0,2275	0,0000	PÉSSIMO	2
Golaka & Excell (2004) mod3	2004	-2,1210	∄	0,5179	9,3046	29,1618	0,0682	0,0000	PÉSSIMO	3

Tabela 4 continuação...

Nesta análise, podemos observar que o modelo (original) de estimativa da irradiância de ondas longas para *condições de céu claro* que apresentou os melhores índices estatísticos e, portanto, aquele que melhor se adapta às condições no cerrado Mato-grossense, para o período estudado, foi o modelo de *Viswanadham & Ramanadham* (1970) com os seus coeficientes ajustados para

Madras na Índia.

A tabela 5 mostra a avaliação dos vinte e sete (27) modelos propostos para as condições de céu parcialmente nublado, categorizados e classificados em ordem decrescente em função de suas respectivas estatísticas c, d, $r \in R^2$ e crescente em termos de ERM, EMA e EMQ.

Tabela 5: Avaliação dos modelos de estimativa da irradiância de ondas longas para condições de céu
parcialmente nublado (Ld_{dd})

Modelo	Ano	R ²	r	d	EMQ %	EMA W.m ⁻²	ERM %	с	Interpretação	Categoria
Idso & Jackson (1969)	1969	0,9263	0,9624	0,9749	2,9614	8,6486	0,9713	0,9383	ÓTIMO	1
Crawford and Duchon (1999)	1999	0,8497	0,9218	0,9647	2,9402	9,5366	0,7749	0,8893	ÓTIMO	7
Lhomme et al. (2007)	2007	0,8773	0,9366	0,9488	3,6680	12,4226	2,3301	0,8887	ÓTIMO	3
Bignami et al. (1995)	1995	0,9251	0,9618	0,9037	5,2692	19,3207	4,6435	0,8692	ÓTIMO	3
Staley and Jurica (1972)	1972	0,8735	0,9346	0,9226	4,5486	15,9322	4,1373	0,8623	ÓTIMO	8
Bilbao & de Miguel (2007) mod1	2007	0,8559	0,9251	0,9168	5,0599	17,5002	4,0904	0,8481	MUITO BOM	3
Aubinet (1994) - mod 01	1994	0,7775	0,8818	0,9497	3,5892	11,8223	0,0914	0,8374	MUITO BOM	1

Modelo	Ano	R ²	r	d	EMQ %	EMA W.m ⁻²	ERM %	с	Interpretação	Categoria
Parkinson & Washington (1979)	1979	0,9041	0,9508	0,8704	7,2622	25,8323	6,3297	0,8277	MUITO BOM	1
Zapadka et al. (2007)	2007	0,8886	0,9427	0,8419	6,9379	26,0741	6,2473	0,7936	MUITO BOM	3
Aubinet (1994) - mod 04	1994	0,7098	0,8425	0,9384	3,8601	13,0006	0,8362	0,7906	MUITO BOM	3
Bilbao & de Miguel (2007) mod4	2007	0,8928	0,9449	0,7968	0,2486	0,0290	0,0087	0,7529	MUITO BOM	1
Croley (1989)	1989	0,8028	0,8960	0,8202	7,9525	28,6995	7,1714	0,7349	BOM	3
Kimball et al. (1982)	1982	0,7968	0,8926	0,8159	7,5440	28,2569	7,2204	0,7283	BOM	3
Bilbao & de Miguel (2007) mod2	2007	0,8571	0,9258	0,7865	8,7684	33,6627	8,5011	0,7281	BOM	3
Andreas & Ackley (1982)	1982	0,6729	0,8203	0,8229	7,1173	23,9028	5,5397	0,6751	BOM	3
Marschunova (1961)	1961	0,8645	0,9298	0,6614	12,7391	50,3114	12,6288	0,6150	MEDIANO	3
Augstein (1994)	1994	0,8052	0,8973	0,6796	11,4340	44,0808	10,7045	0,6098	MEDIANO	1
König – Langlo & Augstein (1994)	1994	0,8052	0,8973	0,6796	11,4340	44,0808	10,7045	0,6098	MEDIANO	1

Tabela 5: continuação...

Nesta análise, podemos observar que o modelo original de estimativa da irradiância de ondas longas para condições de *céu parcialmente nublado* que apresentou os melhores índices estatísticos e, portanto, aquele que melhor se adapta às condições no cerrado Mato-grossense, para o período estudado, foi o modelo de *Idso & Jackson* (1969).

A tabela 6 mostra a avaliação dos vinte e sete (27) modelos propostos para as condições de céu nublado, categorizados e classificados em ordem decrescente em função de suas respectivas estatísticas *c*, *d*, *r e* R^2 e crescente em termos de ERM, EMA e EMQ.

Nesta análise, podemos observar que o modelo original de estimativa da irradiância de ondas longas para condições de *céu nublado* que apresentou os melhores índices estatísticos e, portanto, aquele que melhor se adapta às condições no cerrado Mato-grossense, para o período estudado, foi o modelo de *Bignami et al. (1995)*.

As tabelas (7), (8) e (9) mostram os resultados estatísticos obtidos após a parametrização dos modelos que tiveram desempenho "ÓTIMO" e "MUITO BOM" nas condições de *céu claro, céu parcialmente nublado* e *nublado* no cerrado Mato--grossense.

Tabela 6: Avaliação dos modelos de estimativa da irradiância de ondas longas para condições de céu nublado $(Ld_{_{cld}})$

Modelo	Ano	R ²	r	d	EMQ %	EMA W.m ⁻²	ERM %	с	Interpretação	Categoria
Bignami et al. (1995)	1995	0,9439	0,9715	0,9862	1,7950	3,9330	0,0059	0,9581	ÓTIMO	3
Idso & Jackson (1969)	1969	0,9142	0,9561	0,9391	4,2130	12,3342	3,1595	0,8979	ÓTIMO	1
Zapadka et al. (2007)	2007	0,8027	0,8959	0,9324	3,9456	11,0071	2,4180	0,8354	MUITO BOM	3
Lhomme et al. (2007)	2007	0,7912	0,8895	0,9373	3,9056	8,8181	1,3973	0,8337	MUITO BOM	3
Andreas & Ackley (1982)	1982	0,7794	0,8828	0,9045	4,8046	15,4632	3,3435	0,7985	MUITO BOM	3
Crawford and Duchon (1999)	1999	0,8540	0,9241	0,8246	6,7107	24,1106	6,5066	0,7620	MUITO BOM	7
Bilbao & de Miguel (2007) mod4	2007	0,9359	0,9674	0,7749	9,2969	33,8417	8,8713	0,7497	BOM	1
Staley and Jurica (1972)	1972	0,8705	0,9330	0,7291	9,2509	34,4116	9,2302	0,6802	BOM	8
Aubinet (1994) - mod 04	1994	0,8895	0,9431	0,7191	9,5693	35,7728	9,5793	0,6782	BOM	3
Parkinson & Washington (1979)	1979	0,9241	0,9613	0,7007	11,6801	42,8102	11,2250	0,6736	BOM	1

Modelo	Ano	R ²	r	d	EMQ %	EMA W.m ⁻²	ERM %	с	Interpretação	Categoria
Bilbao & de Miguel (2007) mod1	2007	0,9384	0,9687	0,6535	12,8307	47,8040	12,5833	0,6330	MEDIANO	3
Kimball et al. (1982)	1982	0,9261	0,9623	0,6495	11,9418	45,0915	12,0123	0,6251	MEDIANO	3
Aubinet (1994) - mod 01	1994	0,8178	0,9043	0,6881	10,3905	38,3719	10,2807	0,6223	MEDIANO	1
Augstein (1994)	1994	0,5603	0,7485	0,7517	7,7413	26,9815	6,4084	0,5627	SOFRÍVEL	1
König – Langlo & Augstein (1994)	1994	0,5603	0,7485	0,7517	7,7413	26,9815	6,4084	0,5627	SOFRÍVEL	1
Bilbao & de Miguel (2007) mod2	2007	0,9492	0,9743	0,5519	16,4228	61,9648	16,3799	0,5377	SOFRÍVEL	3
Croley (1989)	1989	0,8872	0,9419	0,4840	20,1170	75,3249	19,8701	0,4558	MAU	3
Marschunova (1961)	1961	0,9264	0,9625	0,4463	22,1278	83,5576	22,0874	0,4295	MAU	3
Bilbao & de Miguel (2007) mod3	2007	0,8545	0,9244	0,4175	23,6382	88,9220	23,5171	0,3859	PÉSSIMO	3
Aubinet (1994) - mod 02	1994	0,3578	0,5982	0,6391	10,4975	37,9300	10,1631	0,3823	PÉSSIMO	3
Cho et al. (2008)	2008	0,4627	0,6802	0,4119	27,4821	98,9897	26,3957	0,2802	PÉSSIMO	8
Brutsaert (1975)	1975	0,9093	0,9536	0,2389	44,8153	169,4151	44,5906	0,2278	PÉSSIMO	3
Konzelmann et al. (1994)	1994	0,2504	0,5004	0,3700	25,1374	93,8886	24,2114	0,1852	PÉSSIMO	1
Centeno (1982)	1982	0,1297	0,3601	0,2144	48,3641	181,8206	47,5267	0,0772	PÉSSIMO	5
Aubinet (1994) - mod 03	1994	-0,6470	∄	0,6430	8,5180	29,3019	6,7054	0,0000	PÉSSIMO	2
Gabathuler et al. (2001)	2001	-0,4610	∄	0,4633	17,1026	62,6250	16,9071	0,0000	PÉSSIMO	5
Krężel et al. (2008)	2008	-0,6730	∄	0,1689	32,1398	107,7680	26,3575	0,0000	PÉSSIMO	3

Tabela 6: continuação...

Tabela 7: Avaliação dos modelos parametrizados para a estimativa da irradiância de ondas longas no cerradoMato-grossense nas condições de céu claro (L_{cs}^*).

Modelo	Ano	R ²	r	d	EMQ %	EMA W.m ⁻²	ERM %	с	Interpretação	Categoria
Bárbaro et al. (2010)	2010	0,9906	0,9953	0,9976	0,8742	2,2269	0,0079	0,9929	ÓTIMO	3
Jin et al. (2006)	2006	0,9898	0,9949	0,9975	0,9063	2,4160	0,0095	0,9924	ÓTIMO	3
Dilley & O'Brien (1998)	1998	0,9890	0,9890 0,9945 0,9973 0,9428 2,3886 0,0062 0,99					0,9918	ÓTIMO	6
Satterlund (1979)	1979	0,9767	0,9883	0,9946	1,2707	3,2806	0,1247	0,9830	ÓTIMO	3
Efimova (1961)	1961	0,9726	0,9862	0,9938	1,3464	3,5594	0,1566	0,9801	ÓTIMO	3
Keding (1989)	1989	0,9726	0,9862	0,9938	1,3464	3,5591	0,1562	0,9801	ÓTIMO	3
Ångström (1918)	1918	0,9726	0,9862	0,9938	1,3464	3,5590	0,1561	0,9801	ÓTIMO	3
Niemelä et al. (2001)	2001	0,9726	0,9862	0,9938	1,3464	3,5590	0,1561	0,9801	ÓTIMO	3
Zapadka et al (2001) - modelo 2	2001	0,9726	0,9862	0,9938	1,3464	3,5590	0,1561	0,9801	ότιμο	3
Berdhal & Fromberg (1982) mod2	1982	0,9725	0,9862	0,9938	1,3467	3,5609	0,1571	0,9801	ότιμο	4
Asklef (1928)	1928	0,9723	0,9861	0,9938	1,3505	3,5805	0,1584	0,9799	ÓTIMO	3
Berdhal & Martin (1984)	1984	0,9723	0,9861	0,9938	1,3505	3,5805	0,1584	0,9799	ÓTIMO	3
Berger et al. (1984) mod1	1984	0,9723	0,9861	0,9938	1,3505	3,5805	0,1584	0,9799	ÓTIMO	3
Berland & Berland (1952)	1952	0,9723	0,9861	0,9938	1,3505	3,5805	0,1584	0,9799	ÓTIMO	3
Boutario (1932)	1932	0,9723	0,9861	0,9938	1,3505	3,5805	0,1584	0,9799	ÓTIMO	3
Brunt (1932)	1932	0,9723	0,9861	0,9938	1,3505	3,5805	0,1584	0,9799	ÓTIMO	3

Tabela 7: continuação...

Modelo	Ano	R ²	r	d	EMQ %	EMA W.m ⁻²	ERM %	с	Interpretação	Categoria
Chumanova (1947)	1947	0,9723	0,9861	0,9938	1,3505	3,5805	0,1584	0,9799	ÓTIMO	3
De Coster & Shuepp (1957)	1957	0,9723	0,9861	0,9938	1,3505	3,5805	0,1584	0,9799	ότιμο	3
Dines & Dines (1927)	1927	0,9723	0,9861	0,9938	1,3505	3,5805	0,1584	0,9799	ÓTIMO	3
FAO (1990)	1990	0,9723	0,9861	0,9938	1,3505	3,5805	0,1584	0,9799	ÓTIMO	3
Gross & Brooks (1957)	1957	0,9723	0,9861	0,9938	1,3505	3,5805	0,1584	0,9799	ÓTIMO	3
Harshunova (1961) mod1	1961	0,9723	0,9861	0,9938	1,3505	3,5805	0,1584	0,9799	ÓTIMO	3
Heitor et al. (1991)	1991	0,9723	0,9861	0,9938	1,3505	3,5805	0,1584	0,9799	ÓTIMO	3
Iziomon et al (2003) mod 1	2003	0,9723	0,9861	0,9938	1,3505	3,5805	0,1584	0,9799	ÓTIMO	3
Korsgaard et al. (1991)	1991	0,9723	0,9861	0,9938	1,3505	3,5805	0,1584	0,9799	ÓTIMO	3
Lutherstein & Chednovsky (1946)	1946	0,9723	0,9861	0,9938	1,3505	3,5805	0,1584	0,9799	ότιμο	3
Marshunova (1966)	1966	0,9723	0,9861	0,9938	1,3505	3,5805	0,1584	0,9799	ÓTIMO	3
Monteith (1961)	1961	0,9723	0,9861	0,9938	1,3505	3,5805	0,1584	0,9799	ÓTIMO	3
Robitsch (1926)	1926	0,9723	0,9861	0,9938	1,3505	3,5805	0,1584	0,9799	ÓTIMO	3
Sellers (1965)	1965	0,9723	0,9861	0,9938	1,3505	3,5805	0,1584	0,9799	ÓTIMO	3
Swinbank (1963) - modelo 1	1963	0,9723	0,9861	0,9938	1,3505	3,5805	0,1584	0,9799	ότιμο	3
Viswanadham & R. (1970)	1970	0,9723	0,9861	0,9938	1,3505	3,5805	0,1584	0,9799	ÓTIMO	3
Berdhal & Fromberg (1982) mod1	1982	0,9717	0,9857	0,9937	1,3620	3,6486	0,1600	0,9795	ότιμο	4
Berger et al. (1984) mod2	1984	0,9717	0,9857	0,9937	1,3620	3,6486	0,1600	0,9795	ÓTIMO	4
Clark & Allen (1978)	1978	0,9716	0,9857	0,9936	1,3643	3,6609	0,1602	0,9794	ÓTIMO	4
Elsasser (1942)	1942	0,9715	0,9856	0,9936	1,3674	3,6769	0,1606	0,9794	ÓTIMO	3
Greuell et al. (1997)	1997	0,9652	0,9824	0,9924	1,4801	4,0587	0,1886	0,9750	ÓTIMO	3
Konzelmann et al (1994)	1994	0,9652	0,9824	0,9924	1,4801	4,0587	0,1886	0,9750	ÓTIMO	3
Sridhar et al. (2002)	2002	0,9652	0,9824	0,9924	1,4801	4,0587	0,1886	0,9750	ÓTIMO	3
Kondo et al. (1990)	1990	0,9651	0,9824	0,9924	1,4813	4,0633	0,1891	0,9749	ÓTIMO	6
Prata (1996)	1996	0,9644	0,9820	0,9922	1,4908	4,1272	0,1907	0,9744	ÓTIMO	6
Iziomon et al. (2003) mod 2e3	2003	0,9643	0,9820	0,9922	1,4928	4,1398	0,1919	0,9743	ÓTIMO	3
Klok & Oerlemans (2002)	2002	0,9639	0,9818	0,9921	1,4999	4,1748	0,1942	0,9741	ÓTIMO	3
Brutsaert (1975)	1975	0,9636	0,9816	0,9921	1,5055	4,2041	0,1950	0,9738	ÓΤΙΜΟ	3
Kruk et al. (2009)	2009	0,9636	0,9816	0,9921	1,5055	4,2041	0,1950	0,9738	ÓΤΙΜΟ	3
Lhomme et al. (2007)	2007	0,9636	0,9816	0,9921	1,5055	4,2041	0,1950	0,9738	ÓTIMO	3
Golaka & Excell (2004) mod1	2004	0,9414	0,9703	0,9856	2,1286	6,1480	0,0467	0,9562	о́тімо	1
Swinbank (1963) - modelo 2	1963	0,9379	0,9685	0,9847	2,1871	6,4618	0,0518	0,9537	о́тімо	1
Ohmura (1981)	1981	0,9367	0,9678	0,9845	2,2009	6,5142	0,0581	0,9528	ÓTIMO	1
Deacon (1970)	1970	0,9363	0,9676	0,9844	2,2053	6,5314	0,0592	0,9525	ÓTIMO	5
Idso & Jackson (1969)	1969	0,9340	0,9664	0,9839	2,2323	6,6263	0,0701	0,9509	Ó ΤΙΜΟ	1
Idso (1981)	1981	0,9258	0,9622	0,9851	1,9896	5,7794	0,2864	0,9479	ÓTIMO	3
Swinbank (1963) - modelo 3	1963	0,9042	0,9509	0,9695	3,5676	11,6018	0,5100	0,9219	о́тімо	1

CARRILHO SOBRINHO et al.

Modelo	Ano	R ²	r	d	EMQ %	EMA W.m ⁻²	ERM %	c	Interpretação Camargo & Sentelhas (1997)	Categoria	
Aubinet (1994) - mod 04	1994	0,9446	0,9719	0,9881	1,7688	5,4495	0,2085	0,9603	ÓTIMO	3	
Bilbao & de Miguel (2007) mod2	2007	0,9438	0,9715	0,9880	1,7741	5,4896	0,2136	0,9598	ÓTIMO	Categoria 3 3 3 1 1 1 3 1 1 3 1 7	
Zapadka et al. (2007)	2007	0,9436	0,9714	0,9879	1,7795	5,4451	0,2128	0,9597	0,9597 ÓTIMO 3		
Bignami et al. (1995)	1995	0,9430	0,9711	0,9878	1,7830	5,4964	0,2162	0,9593	ÓTIMO	3	
Aubinet (1994) - mod 01	1994	0,9412	0,9702	0,9853	2,0849	6,8166	0,0280	0,9559	ÓTIMO	1	
Parkinson & Washington (1979)	1979	0,9367	0,9678	0,9845	2,1297	6,9866	0,0664	0,9528	ÓTIMO	1	
Idso & Jackson (1969)	1969	0,9367	0,9678	0,9845	2,1301	6,9889	0,0663	0,9528	ÓTIMO	1	
Lhomme et al. (2007)	2007	0,9322	0,9655	0,9859	1,9002	6,0287	0,2428	0,9519	ÓTIMO	3	
Bilbao & de Miguel (2007) mod3	2007	0,9332	0,9660	0,9809	2,5518	8,3132	0,2114	0,9476	ÓTIMO	1	
Crawford and Duchon (1999)	1999	0,8866	0,9416	0,9747	2,5903	7,8986	0,4142	0,9177	ÓTIMO	7	
Staley and Jurica (1972)	1972	0,8811	0,9387	0,9748	2,5302	8,1192	0,4569	0,9150	о́тімо	8	

Tabela 8: Avaliação dos modelos parametrizados para a estimativa da irradiância de ondas longas no cerradoMato-grossense nas condições de céu parcialmente nublado L_{dd}^{*}

Tabela 9: Avaliação dos modelos parametrizados para a estimativa da irradiância de ondas longas no cerradoMato-grossense nas condições de céu nublado L_{cld}^{*}

Modelo	Ano	R ²	r	d	EMQ %	EMA W.m ⁻²	ERM %	с	Interpretação	Categoria
Andreas & Ackley (1982)	1982	0,9957	0,9978	0,9989	0,5074	1,2462	0,0106	0,9968	ÓTIMO	3
Bignami et al. (1995)	1995	0,9904	0,9952	0,9977	0,7267	1,8422	0,0597	0,9929	ÓΤΙΜΟ	3
Zapadka et al. (2007)	2007	0,9904	0,9952	0,9977	0,7267	1,8422	0,0597	0,9929	ÓTIMO	3
Lhomme et al. (2007)	2007	0,9878	0,9939	0,9971	0,8096	2,0831	0,0729	0,9910	ÓTIMO	3
Idso & Jackson (1969)	1969	0,9668	0,9833	0,9917	1,4119	4,0220	0,0212	0,9751	ÓTIMO	1
Crawford and Duchon (1999)	1999	0,8083	0,8991	0,9551	3,1018	7,3021	0,6589	0,8587	ÓΤΙΜΟ	7

Tabela 10: Comparação dos resultados estatísticos dos modelos originais com os modelos parametrizados
na estimativa da irradiância de ondas longas no Cerrado Mato-grossense nas condições de céu claro, céu
parcialmente nublado e céu nublado.

Condiç	:ões	Modelo	Ano	Equação	R ²	r	d	EMQ %	EMA W.m ⁻²	ERM %	с	Interpretação Camargo & Sentelhas (1997)	Categoria
Q	Original	Viswanadham & Ramanadham	1970	$LWD_{cs} = (A + B.\sqrt{e_a}).\sigma.T_{ar}^4 - Madras$ A = 0,658 B = 0,042	0,9724	0,9861	0,9937	1,3619	3,5096	0,0011	0,9799	ÓTIMO	3
Céu Clai	Parametrizado	Bárbaro et al.	2010	$\begin{split} LWD_{cs}^* &= A + B.T_{ar} - C.e_a - \\ D.\ln(T_{ar}) - E.T_{ar}^{-1} + F.\left(\sqrt{e_a}\right) + G.e_a^{-1} \\ A &= 720,2495; B = 15,7733; C = 11,8786; \\ D &= 368,5424; E = 2901,637; F = \\ 162,4603; \\ G &= 1520,873 \end{split}$	0,9906	0,9953	0,9976	0,8742	2,2269	0,0079	0,9929	ÓΤΙΜΟ	3
ie Nublado	Original	Idso & Jackson	1969	$LWD_{cld} = (1 + A. c_f^{2}). \{1 - B. exp[-C. (T_{ar} - 273, 15)]\}. \sigma. T_{ar}^{4}$ A = 0,22; B = 0,261; C = 7,77. 10 ⁻⁴	0,9263	0,9624	0,9749	2,9614	8,6486	0,9713	0,9383	ÓTIMO	1
Céu Parcialment	Parametrizado	Aubinet	1994	$LWD_{cld} = [A + B.ln(1000.e_a) + C.ln(1 - k_t)].\sigma.T_{ar}^4$ A = 0,1592; B = 0,0909; C = 0,0056	0,9446	0,9719	0,9881	1,7688	5,4495	0,2085	0,9603	<i>ÓTIMO</i>	3
blado	Original	Bignami et al.	1995	$LWD_{cld} = (1 + A.c_f^2).(B + C.e_a).\sigma.T_{ar}^4$ A = 0,1762; B = 0,684; C = 0,0056	0,9439	0,9715	0,9862	1,7950	3,9330	0,0059	0,9581	ÓTIMO	3
Céu Nul	Parametrizado	Andreas & Ackley	1982	$LWD_{cld} = \left\{ \left[A + B. e_a. exp\left(\frac{c}{\tau_{ar}}\right) \right]. (1 + D. c_f^2) \right\}. \sigma. T_{ar}^4$ A = 0,7721; B = 0,3613; C = -1361,243; D = 0,0086	0,9957	0,9978	0,9989	0,5074	1,2462	0,0106	0,9968	ÓΤΙΜΟ	3

A tabela 10 mostra o resultado final após a avaliação dos 107 modelos e suas respectivas estatísticas c, d, $r \in R^2$ e em termos de ERM, EMA e EMQ.e a comparação destes resultados dos modelos originais de estimativa da irradiância de ondas longas para céu claro, parcialmente nublado e nublado que obtiveram o melhor desempenho nas condições do cerrado Mato-grossense com os modelos de melhor desempenho obtidos após a parametrização.

CONCLUSÃO

Dos cento e sete modelos analisados e parametrizados para as condições de céu claro, parcialmente nublado e nublado nas condições climatológicas do Cerrado Mato-grossense, seis modelos apresentaram os menores erros estatísticos e os maiores coeficientes como os de determinação (R^2), de correlação de Pearson (r) indicando uma correlação muito forte entre os valores estimados e os medidos, os melhores índices de concordância e, consequentemente, os melhores índices de desempenho.

Mesmo com seus parâmetros originais

pode-se observar que os resultados obtidos não foram comprometidos visto que a maioria dos modelos teve um ótimo desempenho.

A maioria dos modelos propostos para as condições de céu claro $(0,65 \le kT \le 1)$ apresentaram em sua formulação os parâmetros "pressão de vapor d'água no ar próximo a superfície" (*ea*) e a "temperatura do ar próximo à superfície" (*Tar*) e, para os modelos em que a presença de nuvens era considerado apresentou resultados satisfatórios visto que os modelos que a contemplava obtiveram alta correlação e desempenho em relação aos valores de *Ld* experimentais.

Nesta análise, podemos observar que os modelos de estimativa da irradiância de ondas longas, em sua formulação original, que apresentaram os melhores índices estatísticos e, portanto, aqueles que melhor se adaptaram ao Cerrado Mato-grossense, para o período estudado e para as condições de céu claro, parcialmente nublado e nublado foram, respectivamente, os modelos de *Viswanadham & Ramanadham (1970), Idso & Jackson* (1969) e Bignami et al. (1995) e, após a parametrização, os modelos de Bárbaro et al. (2010) (céu claro); *Aubinet (1994)* (céu parcialmente nublado) e Andreas & Ackley (1982) (céu nublado).

REFERÊNCIAS BIBLIOGRÁFICAS

AGUIAR, L. J. G. **Balanço de radiação em áreas de floresta e de pastagem em Rondônia.** 2007. 70f, Dissertação (Mestrado em Meteorologia Agricola) – Universidade de Viçosa, Viçosa, 2007.

BERDAHL, P., MARTIN, M. Emissivity of clear skies. **Solar Energy**, v. 32, p. 663–664, 1984.

CAMARGO, A. P., SENTELHAS, P. C. Avaliação do desempenho de diferentes métodos de estimativa da evapotranspiração potencial no estado de São Paulo, Brasil. **Revista Brasileira de Agrometeorologia**, v.5, n.1, p.89-97, 1997.

BRUTSAERT, W. H. Evaporation Into the Atmosphere: Theory, history, and applications, **Kluwer Acad. Norwell**, Mass., 1982.

CAMARGO, A. P., SENTELHAS, P. C. Avaliação do desempenho de diferentes

métodos de estimativa da evapotranspiração potencial no estado de São Paulo, Brasil.

Revista Brasileira de Agrometeorologia, v.5, n.1, p.89-97, 1997.

DALLACORT, R.; FREITAS, P. S. L.; GONÇAL-VES, A. C. A.; REZENDE, R.; BERTONHA, A. **Equações de estimativa da irradiação solar global, compartição mensal, para a região noroeste do Estado do Paraná**. In: CONGRESSO NACIONAL DE IRRIGAÇÃO E DRENAGEM, 14., 2004, Porto Alegre, RS. 1 CD-ROM. Anais... Porto Alegre: ABID, 2004.

DUAN, Q., SCHAAKE, J., ANDR'EASSIAN, V., FRANKS, S., GOTETI, G., GUPTA, H. V., GUSEV, Y. M., HABETS, F., HALL, A., HAY, L., HOGUE, T., HUANG, M., LEAVESLEY, G., LIANG, X., NASONOVA, O. N., NOILHAN, J., OUDIN, L., SOROOSHIAN, S., WAGENER, T., WOOD, E. E. F. Model parameter estimation experiment (mopex): An overview of science strategy and major results from the second and third workshops, **Journal of Hydrology**, v. 320, p. 3–17.

EMBRAPA. Sistema brasileiro de classificação de solos. Brasília: Embrapa, p. 412, 1999.

FEITOSA, J. R. P., FERREIRA DA COSTA, R., FISCH, G.; SOUZA, S. S., NOBRE, C. A. Radiação solar global em áreas de floresta e pastagem na Amazônia. Aceito para publicação na **Revista Brasileira de Agrometeorologia**, 1998.

FOX, D. G. Judging air quality model performance, **Bulletin of American Meteorological Society**, v. 62, p. 599–609, 1980.

INMET, Observações meteorológicas, **Instituto Nacional de Meteorologia**, Cuiabá, INMET 1999.

LEGATES, D. R., MCCABE JR, E. G. J. Evaluating the use of "goodness-offit" measures in hydrologic and hydroclimatic model validation, **Water Resources Research**, v. 35 (1), p. 233–241. 1999.

MANTOVANI, J.E., PEREIRA, A. Estimativa da integridade da cobertura vegetal do Cerrado através de dados TM/Landsat. In: SIMPÓSIO BRASI-LEIRO DE SENSORIAMENTO REMOTO, Santos, SP. 9, 11-18/setembro/1998.

MANZI, A. O., VISWANADAM, Y., SÁ, L. D. A., ANDRÉ, R. G. B. **Um estudo sobre o balanço de radiação da floresta Amazônica**. São José dos Campos: INPE, 1986. (INPE-3956-PRE/974).

OKE, T. R. **Boundary Layer Climates**. London: Routledge, 1987. 435p.

STEWART, J. B.; THOM, A. S. Energy budgets in pine forest. Quarterly Journal of the Royal Meteorological Society, v. 99, n. 419, p. 154-170, 1973.

TANG, Y.; REED, P.; WAGENER, E. T. How effective and efficient are multiobjective evolutionary algorithms at hydrologic model calibration**?**, Hydrology and Earth System Sciences, v. 10, p. 289–307. 2006.

WILLMOTT C.J. Some comments on the evaluation of model performance. **Bulletin of the American Meteorological Society**, v. 63, p. 1309-1313, 1982.

WILLMOTT, C. J.; ACKLESON, S. G.; DAVIS, R. E.; FEDDEMA, H. J.; KLINK, K. M.; LEGATES, D.; O'DONNELL, R. J.; ROWE, E. C. M. Statistics for the evaluation and comparison of models. **Journal of Geophysical Research**, v. 90 (C5), p. 8995–9005. 1985.

YAPO, P. O.; GUPTA, H. V.; SOROOSHIAN, E S. Multi-objective global optimization for hydrologic models. **Journal of Hydrology**, v. 204, p. 83–97. 1998.