Enzymatic Biocatalyst using enzymes from Pineapple (Ananas comosus) Peel Immobilized in Hydrogel Beads

Authors

DOI:

https://doi.org/10.5902/2236117038731

Keywords:

Enzymatic extract, Bromelain, Pineapple, Fatty acids, Transesterification

Abstract

The enzymatic extract from pineapple peels, considering the time factor, low cost and ease of preparation of the reaction system, makes the use of this plant material scrap an economical alternative for some reactions of synthetic interest. Therefore, this work aimed to prepare pineapple peel enzymatic extract containing bromelain, with and without mechanical grinding for a period of up to 9-days of extraction, and then immobilizing those extracts on hydrogel beads for their application as a biocatalyst to produce energy interest esters. The best protein content obtained was 1.95 mg mL-1 for 6-days with mechanical grinding, as for the hydrolysis of p-NPP (p-nitrophenyl palmitate), 0.0125 U.mL-1 for 1-day extraction with trituration. The best index esterification activity achieved for the lauric acid as a substrate was 1.8 U mL-1 at 1-day extraction without grinding. For the hydrogel beads immobilization, a maximum protein yield of 28.8% was obtained with the 1-day extract and mechanical grinding, and in terms of p-NPP activity, a yield of 40.6% for the immobilized with 9-day extract without mechanical grinding. The immobilized and dehydrated beads with 1-day extract without grinding took the best esterification activity, 7.2 U g-1 of biocatalyst. The best conversion performance in the biocatalysis of fatty esters was by esterification of the dodecanoate n-propyl, with 95.1% for a period of 48 hours of reaction. For the transesterification reaction, the methyl oleate yield reached 47.3% after 120 hours of reaction.

Downloads

Download data is not yet available.

Author Biographies

Aluísio Marques da Fonseca, University for International Integration of the Afro-Brazilian Lusophony (UNILAB), Redenção, CE

Associate professor of Sociobiodiversity and Sustainable Techologies at UNILAB

Regilany Paulo Colares, University for International Integration of the Afro-Brazilian Lusophony (UNILAB), Redenção, CE

Professor of Chemistry at UNILAB

Mauro Macedo de Oliveira, Faculdade Paraíso do Ceará (FAPCE), Juazeiro do Norte, CE

Professor at FAPCE and PhD student in Biological Chemistry at Regional University of Cariri

Maria Cristiane Martins de Souza, University for International Integration of the Afro-Brazilian Lusophony (UNILAB), Redenção, CE

Professor at UNILAB

Rodolpho Ramiton de Castro Monteiro, Federal University of Ceará, Fortaleza, CE

Masters student in Chemical Engineering at Federal University of Ceará

Rinaldo dos Santos Araújo, Instituto Federal de Educação, Ciência e Tecnologia do Ceará (IFCE), Fortaleza, CE

Professor of the Department of Chemistry and Environment of IFCE

Aiala Vieira Amorim, University for International Integration of the Afro-Brazilian Lusophony (UNILAB), Redenção, CE

Professor of the Institute of Rural Development of UNILAB

José Cleiton Sousa dos Santos, University for International Integration of the Afro-Brazilian Lusophony (UNILAB), Redenção, CE

Adjunct professor at UNILAB

Juan Carlos Alvarado Alcócer, University for International Integration of the Afro-Brazilian Lusophony (UNILAB), Redenção, CE

Professor of Energy Engineering at UNILAB

Olienaide Ribeiro de Oliveira Pinto, University for International Integration of the Afro-Brazilian Lusophony (UNILAB), Redenção, CE

Post-doc student at UNILAB

 

References

ASSUNÇÃO, J.C.; LEMOS, T.L.G.; MONTE, F.J.Q. Bioacetilação de álcoois catalisada por Saccharum officinarum. Quimica Nova. V.32, p.1549-1552, 2009.

ASSUNÇÃO, J.C.C.; MACHADO, L.L.; LEMOS, T.L.G.; CORDEL, G.A.; MONTE, F.J.Q. Sugar cane for the bioreduction of carbonyl compounds. Journal of Molecular Catalysis B: Enzymatic, v.52, p.194-198, 2008

BARBOSA, O.; ORTIZ, C.; BERENGUER-MURCIA, Á.; TORRES, R.; RODRIGUES, R.C.; FERNANDEZ-LAFUENTE, R. Strategies for the one-step immobilization–purification of enzymes as industrial biocatalysts. Biotechnology Advances, v.33, p.435-456, 2015.

BRADFORD, M.M. A Rapid and sensitive method for a quatitation of microgram quantities of proteins utilizing the principle of protein-dye binding. Analytical Biochemistry. v.72, p.248-254, 1976,

BIZERRA, A.M.C.; DE GONZALO GONZALO, I.; LAVANDERA, V. GOTOR-FERNANDES, M.C. MATTOS, M.C.F. OLIVEIRA, T.L.G. LEMOS, VICENTE GOTOR. Reduction processes biocatalyzed by Vigna unguiculata. Tetrahedron: Asymmetry, v.21, p.566-570, 2010.

CASTELLANOS, I.J.; FLORES, G.; GRIEBENOW, K. Effect of cyclodextrins on α-chymotrypsin stability and loading in PLGA microspheres upon S/O/W encapsulation. Journal of Pharmaceutical Sciences, v.95, p.849-858, 2006.

CHEN, L.Y.; REMONDETTO, G.E.; SUBIRADE, M. Food protein-based materials as nutraceutical delivery systems. Trends in Food Science & Technology, v.17, p.272-283, 2006.

DELGADO, C.H.O. Obtenção, caracterização e aplicação de lipases vegetais: Utilizando subprodutos do processamento de laranja e manga para suco. 2014. 88 f. Dissertação (Instituto de Biociências) - Universidade Estadual Paulista, Botucatu-SP. 2014.

DICOSIMO, R.; MCAULIFFE, J.; POULOSE, A.J.; BOHLMANN, G. Industrial use of immobilized enzymes. Chemical Society Reviews, v.42, p.6437–6474, -2013.

FEITOSA, R.K.; LIMA, D.R.; MOURA, L.F.W.G.; MAGALHÃES, E.A.; MOTA, J.G.S.M.; MAGALHÃES, F.E.A. Bioprospecção de atividade de lipases de Passiflora edulis Sims comercializados no município de Tauá-CE. Revista Biofar, v. 9, p.1-7, 2013.

GARCIA-GALAN, C.; BERENGUER-MURCIA, Á.; FERNANDEZ-LAFUENTE, R.; RODRIGUES, R.C. Potential of Different Enzyme Immobilization Strategies to Improve Enzyme Performance. Advanced Synthesis Catalysis, v.353, p.2885–2904, 2011.

JESIONOWSKI, T.; ZDARTA, J.; KRAJEWSKA, B. Enzyme immobilization by adsorption: A review. Adsorption, v.20, p.801–821, 2014.

JOYE, I.J.; MCCLEMENTS, D.J. Biopolymer-based nanoparticles and microparticles: Fabrication, characterization, and application. Current Opinion in Colloid & Interface Science, v.19, p.417-427, 2014.

KETNAWA, S.; CHAIWUT, P.; RAWDKUEN, S. Pineapple wastes: A potential source for bromelain extraction. Food and Bioproducts Processing, v.90, p.385-391, 2012.

KNIGHT, K.; PIMENTEL, M.D.C.B.; MORAIS, M.M.C.D.; LEDINGHAM, W. M.; LIMA FILHO, J.L.D.; MAIA, M.D.M.D. Immobilization of lipase from Fusarium solani FS1. Brazilian Journal of Microbiology, v.31, p.219-221, 2000.

LAEMMLI, U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, v.227, p.680-685, 1970.

LAUFENBERG, G.; KUNZ, B.; NYSTROEM, M. Transformation of vegetable waste into value added products: (A) the upgrading concept; (B) practical implementations. Bioresource Technology, v.87, p.167-198, 2003.

LIESE, A.; HILTERHAUS, L. Evaluation of immobilized enzymes for industrial applications. Chemical Society Reviews, v.42, p.6236–6249, 2013.

MATEO, C.; PALOMO, J.M.; FERNANDEZ-LORENTE, G.; GUISAN, J.M.; FERNANDEZ-LAFUENTE, R. Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzyme and Microbial Technology, v.40, p.1451–1463, 2007.

MACHADO, L.L.; GONZALO DE GONZALO; LEMOS, T.L.G.; MATTOS, M.C.; OLIVEIRA, M.C.F.; GOTOR-FERNANDES, V.; GOTOR, V. Enantioselective acetylation of racemic alcohols by Manihot esculenta and Passiflora edulis preparations. Journal of Molecular Catalysis B: Enzymatic, v.60, p.157-162, 2009.

MOUNGUENGUI, R.W.M.; BRUNSCHWING, C.; BARÉA, B.; VILLENEUVE, P.; BLIN, J. Are plant lipases a promising alternative to catalyze transesterification for biodiesel production? Progress in Energy and Combustion Science, v.39, p.441-456, 2013.

MARDER, F.; CELIN, M.M.; MAZUIM, M.S.; SCHNEIDER, R.C.S.; MACAGNAN, M.T.; CORBELLINI, V.A. Produção de biodiesel por biocatálise utilizando método alternativo de imobilização da lipase em hidrogel. Tecno-Lógica, v.12, p.56-64, 2008

RAMOS, L.P.; SILVA, F.R.; MANGRICH, A.S.; CORDEIRO, C.S. Tecnologias de Produção de Biodiesel. Revista Virtual Quimica, v.3, p.385-405, 2003.

PAQUES, F.W.; PIO, T.F.; CARVALHO, P.O.; MACEDO, G.A. Characterization of the lipase from Carica papaya residues. Brazilian Journal Food Technolgy, v.11, p.20-27. 2008.

PIEROZAN, M. K. Extração e Avaliação da Atividade de Hidrólise e Esterificação de Extrato Enzimático Lipásico de Semente de Trigo (triticum aestivum) Após Concentração Com Sulfato de Amônio. RAMVI, v.1, n.1, p.1-22, 2014.

PAQUES, F.W.; MACEDO, G.A. Lipases de Látex Vegetais: Propriedades e Aplicações Industriais. Química Nova, v.29, p.93-99, 2009.

SHIMADA, Y.; WATANABE, Y.; SAMUKAWA, T.; SUGIHARA, A.; NODA, H.; FUKUDA, H.; TOMINAGA, Y. Conversion of vegetable oil to biodiesel using immobilized Candida antarctica lipase. Journal of the American Oil Chemists' Society, v.76, p.789–793, 1999.

PENCREACH, G.; BARATTI, J.C. Hydrolysis of p-nitrophenyl palmitate in n-heptane by the Pseudomonas cepacia lipase: A simple test for the determination of lipase activity in organic media. Enzyme and Microbial Technology, v.18, p.417-422, 1996.

RODRIGUES, R.C.; ORTIZ, C.; BERENGUER-MURCIA, Á.; TORRES, R.; FERNÁNDEZ-LAFUENTE, R. Modifying enzyme activity and selectivity by immobilization. Chemical Society Reviews, v.42, p.6290–6307, 2013.

ROGÉRIO, M.C.P.; BORGES, I.; NEIVA, J.N.M.; RODRIGUEZ, N.M.; PIMENTEL, J.C.M.; MARTINS, G.A.; RIBEIRO, T.P.; COSTA, J.B.; SANTOS, S.F.; CARVALHO, F.C. Valor nutritivo do resíduo da indústria processadora de abacaxi (Ananas comosus L.) em dietas para ovinos. 1. Consumo, digestibilidade aparente e balanços energético e nitrogenado. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, v. 59, p.773-781, 2007.

SANTOS, J.C.S.; BONAZZA, H.L.; DE MATOS, L.J.B.L.; CARNEIRO, E.A.; BARBOSA, O.; FERNANDEZ-LAFUENTE, R.; GONÇALVEZ, L.R.B.; DE SANT’ANNA, H.B.; SANTIAGO-AGUIAR, R.S. Immobilization of CALB on activated chitosan: Application to enzymatic synthesis in supercritical and near-critical carbon dioxide. Biotechnology Reports, v.14, p.16-26, 2017.

SILVA, F.F.M.; FERREIRA, D.A.; MONTE, F.J.Q.; MATTOS, M.C.; LEMOS, T.L.G. The orange peel as biocatalyst for the hydrolysis of esters. Industrial Crops and Products, v.84, p.22-27, 2016.

SOARES, C.M.; CASTRO, H F.; MORAES, F.F.; ZANIN, G.M. Characterization and utilization of Candida rugosa lipase immobilized on controlled pore silica. Applied Biochemistry and Biotechnology, v.77, p.745, 1999.

SHELDON, R.A.; VAN PELT, S. Enzyme immobilisation in biocatalysis: Why, what and how. Chemical Society Reviews, v.42, p.6223–6235, 2013.

SRIVASTAVA, A.; PRASAD, R. Triglycerides-based diesel fuels. Renewable and Sustainable Energy Reviews, v.4, p.111-133, 2000.

SILVERSTEIN, R.M.; WEBSTER, F.X.; KIEMLE, D.J. Spectrometric identification of organic compounds. John Wiley & Sons, Inc.: Hoboken, NJ, EUA, 2005, p.502.

Downloads

Published

2019-06-01

How to Cite

Fonseca, A. M. da, Colares, R. P., Oliveira, M. M. de, Souza, M. C. M. de, Monteiro, R. R. de C., Araújo, R. dos S., Amorim, A. V., Santos, J. C. S. dos, Alcócer, J. C. A., & Pinto, O. R. de O. (2019). Enzymatic Biocatalyst using enzymes from Pineapple (Ananas comosus) Peel Immobilized in Hydrogel Beads. Revista Eletrônica Em Gestão, Educação E Tecnologia Ambiental, 23, e32. https://doi.org/10.5902/2236117038731

Issue

Section

ENVIRONMENTAL THECNOLOGY

Most read articles by the same author(s)

Similar Articles

You may also start an advanced similarity search for this article.