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Abstract 

Biodiesel can be produced through the transesterification reaction of a short-chain alcohol with a 
triacylglycerol, that can be obtained from vegetable oils or animal fats, in the presence of a catalyst. The use of 
ethanol as reactant is justified since its production is consolidated in Brazil. Among the heterogeneous catalysts, 
CaO shows potential in the transesterification reactions because it has a low cost, can be reused and is not 
corrosive. The recycling of frying oil for the production of biodiesel represents an alternative for the disposal 
of a waste and does not compete with the food industry. The residual oil and CaO were subjected to a pre-
treatment before the transesterification reactions. A Box-Behnken experimental design was applied with 3 
factors: temperature, ethanol:oil molar ratio and reaction time. The reactions were carried out in a batch reactor, 
in which oil, ethanol and the catalyst were added. The samples were vacuum filtered and conducted to a rotary 
evaporator, in order to remove excess ethanol. The resulting mixture was centrifuged and, subsequently, a 
sample was collected from the supernatant phase. The yield was determined by a mass balance based in the 
concentrations of acylglycerols, that were determined through an HPLC-UV methodology. A second-order 
linear regression model was built and validated through statistic tests with a 5% significance level. The 
optimized operational parameters are 15:1 ethanol:oil molar ratio, 81.2 ºC e 6 h of reaction. From the obtained 
results it can be inferred that it is feasible to use residual frying oil as raw material, ethanol as reactant and CaO 
as catalyst for the production of biodiesel. 

Keywords: Biodiesel; Residual oil; Calcium oxide. 

Resumo 

O biodiesel pode ser obtido através da reação de transesterificação de um álcool de cadeia curta com um 
triacilglicerol, que pode ser obtido a partir de óleos vegetais ou gorduras animais na presença de um 
catalisador. A utilização de etanol como reagente justifica-se porque este tem sua produção consolidada no 
Brasil. Dentre os catalisadores heterogêneos, o CaO mostra potencial nas reações de transesterificação, pois 
apresenta baixo custo, pode ser reutilizado e não é corrosivo. A reciclagem do óleo de fritura para a produção 
de biodiesel representa uma alternativa de destinação de um resíduo e não compete com o mercado 
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alimentício. O óleo residual e o CaO passaram por pré-tratamento antes das reações de transesterificação. Foi 
aplicado um delineamento experimental Box-Behnken de 3 fatores: temperatura, razão molar etanol:óleo e 
tempo de reação. As reações foram conduzidas em um reator batelada, em que foram adicionados óleo, etanol 
e catalisador. As amostras foram filtradas à vácuo e conduzidas a um evaporador rotativo, para remoção do 
etanol excedente. A mistura resultante foi centrifugada e posteriormente retirada uma amostra da fase 
sobrenadante. O rendimento foi determinado a partir de um balanço de massa, baseado nas concentrações 
de acilgliceróis, que foram determiadas através de uma metodologia em HPLC-UV. Um modelo de regressão 
linear de segunda ordem foi construído e validado através de testes estatísticos com nível de significância de 
5%. Os parâmetros operacionais otimizados são razão molar etanol:óleo 15:1, 81,2 ºC e 6 h de reação. A partir 
dos resultados obtidos infere-se que é viável a utilização do óleo residual de fritura como matéria-prima, etanol 
como reagente e CaO como catalisador para a produção de biodiesel. 

Palavras-Chave: Biodiesel; Óleo residual; Óxido de cálcio. 

1 Introduction 

Considering that the non-renewable energy resources, such as oil, are limited, the 

search for alternative energy sources has been intensified over the last few years. Within 

this context, the processing of oils and fats converted into mono-alkyl esters (biodiesel) 

becomes an alternative, that can be used in diesel engines, by replacing or being added to 

mineral diesel. 

The biodiesel is produced through the transesterification reaction of a short-chain 

alcohol with a triacylglycerol in the presence of a catalyst, and presents advantages when 

compared to mineral diesel, such as renewability, biodegradability, lower toxicity, higher 

combustion efficiency, higher cetane number, higher flash point, better lubrication, and 

reduced levels of particulates, carbon monoxide, total hydrocarbons and other toxic 

pollutants with local effects, that impact public health (CHEUNG et al, 2009; GUIMARÃES, 

2004; JAMIL et al., 2018; WANG et al., 2000; YU et al., 2014). 

The alcohol used in the transesterification reactions is usually methanol or ethanol 

(HAJÉK et al., 2012). Typically, methanol is used as reactant for the transesterification 

reactions, due to its greater reactivity and the lower temperatures and residence times 

demanded in the reactor. However, the use of ethanol has some advantages such as lower 

toxicity and production of a fuel with higher cetane number and better lubricity (LÔBO; 

FERREIRA; DA CRUZ, 2009). The use of ethanol as reactant is also justified because it has its 

production consolidated in Brazil, where the sugar cane products represent 16% of the 
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national energy supply, with a production of 750 million tons of sugar cane per year (SOUZA 

et al., 2018). 

Catalysts are essential to accelerate the conversion and can be homogeneous or 

heterogeneous, divided in three categories: basic, acidic and enzymatic (TALHA; SULAIMAN, 

2016). The most used catalysts are homogeneous, namely solutions of NaOH, KOH, HCl and 

H2SO4, however, due to environmental issues such as lower generation of effluents by the 

elimination of a washing step, these have been replaced by heterogeneous catalysts, which 

are more easily separated after the reaction and can be recovered for reuse (SOLTANI et al., 

2017). Furthermore, heterogeneous catalysts have less corrosivity and reduced process 

costs (KIRUBAKARAN; SELVAN, 2018). Among these catalysts, CaO shows potential in the 

transesterification, since it has a low cost, can be reused and is not corrosive (BOEY; 

MANIAM; HAMID, 2011). One of the main sources of CaO is limestone, but it can also be 

obtained from calcium carbonate residues, such as clam shells and eggshell (COLOMBO, 

2013). 

For a greater development in the renewable energy resources field, the existence of 

a government incentive is important, enabling an adequate transition from fossil resources 

to sustainable energy systems. In 2004, the Federal Government of Brazil launched the 

National Program of Production and Use of Biodiesel (PNPB), with the aim of introduce 

biodiesel in the Brazilian energy matrix. The main result of the first phase was the definition 

of a definition of a legal and regulatory framework (ANP, 2016). In Brazil, there is an 

expectation that the country becomes of the main producers and consumers of biodiesel, 

due to the agricultural cultivation of the several sources of raw materials that can be used 

for the production of these fuels. 

The most abundant and used raw material for the production of biodiesel in Brazil is 

soybean oil, but one of its limitations is the competition with the food industry. According 

to MOFIJUR et al. (2013), in the world, approximately 95% of the biodiesel is produced from 

edible oils, however, the competitiveness with the food industry ends up generating a global 

imbalance in the market demand and supply, causing a reduction of the sources and an 
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increase in the costs of these raw materials, thus, demanding investments in switching 

production to non-edible oils. 

The price reduction of the raw materials is studied through researches and 

development of projects with less noble raw materials that, even so, can present high 

biodiesel conversion efficiencies. According to DIB (2010), cheap raw materials like residual 

oils and fats have drawn attention of biodiesel producers due to its low cost. The recycling 

of frying oil for biodiesel production would not only remove an undesired material from the 

environment, but would also allow the generation of an alternative, renewable and cleaner 

energy source, thus, presenting a strong environmental appeal. The residual oils and fats 

may come from snack bars and industrial kitchens, enterprises where there is a frying 

process of food products and the generation of residues. As reported by CHRISTOFF (2006), 

most of these residues are incorrectly disposed in the sewer network. The low solubility of 

vegetable oils in water becomes a negative factor, impairing its degradation in sewage 

treatment plants by biological processes and causing problem in the public supply water 

treatment systems. Therefore, allocating this residue in the production of biodiesel would 

be an environmentally viable alternative. 

Several researchers have been investigating the production of biodiesel with residual 

oils. PIKER et al. (2016) achieved a yield of 97% using methanol as reactant (6:1 molar ration) 

and CaO obtained from chicken eggshell (5.8 wt%) in 11 h reaction time and environment 

temperature. JOSHI et al. (2017) reported a yield of 88% in 30 min at 50 °C, using methanol 

(10:1 molar ratio) and CaO (1 wt%), with the aid of a high speed homogenizer. CHEN, LIN 

and CHEN (2017) observed a yield of 95.8% in 1 h at 60 °C, using methanol (20:1 molar ratio) 

and Li2SO3 (2 wt%). CHRISTOFF (2006) achieved a yield of 84% in 1 h with temperature 

between 40 and 55 °C, using ethanol (12:1 molar ratio) and NaOH (0.5 wt%). The high yield 

values obtained using this raw material of lower added value enables a considerable 

economic and environmental advantage in face of the fuel produced with refined oils. 

The aim of this study was to assess the technical viability of biodiesel production 

through the transesterification reaction, using residual frying soybean oil as raw material, 

ethanol as reactant and CaO as catalyst, as well as to investigate the applicability of the 
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catalyst and the influence of the operational parameters (temperature, ethanol:oil molar 

ratio and reaction time) on the process. 

2 Material and Methods 

A residual frying soybean oil sample was collected from a household in Cerro Largo, 

RS, Brazil. Before the transesterification reactions, a pre-treatment was applied, in which the 

suspended particles where removed by vacuum filtration with a filter paper (4-7 μm particles 

retention) and the oil was heated at 120 °C for 90 min in a drying oven in order to remove 

the residual water. The pre-treated oil (Figure 1) was transferred to a glass container, 

covered with plastic film and aluminum foil and stored in the absence of light. 

Figure 1 – Residual frying soybean oil after pre-treatment 

 

The CaO (95% purity) used in the reactions was pre-treated to avoid contamination 

with CO2 and water. Initially, it was taken to a drying oven at 120 °C for 12h, then, transferred 

to a muffle furnace for calcination and activation at 550 °C for 5.5 h. 

The effects of the different operational parameters in the yield of the 

transesterification reaction were investigated using a 3-factor Box-Behnken experimental 

design (BOX; BEHNKEN, 1960), including temperature, ethanol:oil molar ratio and reaction 

time, as presented in Table 2. The experiments at the central point were performed in 

triplicate. 

Table 1 – Residual frying soybean oil after pre-treatment 

Parameters Design levels 
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-1 0 +1 

Temperature (X1) 60 °C 75 °C 90 °C 

Molar ratio (X2) 15:1 21:1 27:1 

Reaction time (X3) 2 h 4 h 6 h 

 
The transesterification reactions were carried out in a batch reactor, composed of a 

500-mL round-bottom volumetric flask equipped with a Graham condenser. This system 

was designed to form a water-cooled reflux system and avoid ethanol losses. 30 g of oil, a 

catalytic mixture (ethanol at the adequate molar ratio and 5% of the catalyst, in relation to 

the weight of oil) and a magnetic stir bar were added to the flask. The flask was immersed 

in and oil bath, with controlled temperature by a heating plate, under stirring. This process 

is showed in Figure 2. 

Figure 2 – Experimental procedure: (a) catalytic mixture and (b) batch reactor 

 
The samples obtained from the experimental runs were vacuum filtered for removal 

of the catalyst. The excess of ethanol was removed by rotary evaporation. The resulting 

mixture was stored in an Ambar flask under refrigeration until the chromatographic analysis. 

The concentrations of acylglycerols were determined through an adaptation the 

methodology described by DI NICOLA et al. (2008) for characterization of biodiesel in HPLC-

UV. The specifications of the applied method are presented in Table 2. 

Table 2 – Chromatographic method applied in the acylglycerols quantification 
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Specifications: 
Chromatographic column: NST C18, 250 mm x 4.6 mm x 5 µm 
Injection volume: 20 µL 
Eluent flow: 1 mL min-1 
Oven temperature: 45 °C 
Detector: UV-vis with photodiode array (PDA) 
Analyzed wavelength: 205 nm 

Gradient: 
Time (min) 

Mobile phase A Mobile phase B 

Acetonitrile:Methanol 4:1 (v/v) N-Hexane:Isopropanol 8:5 (v/v) 

0.01 100% 0% 

5.20 90% 10% 

16.00 34% 66% 

20.00 34% 66% 

22.00 100% 0% 

22.01 100% 0% 

 
A stock solution with 2000 mg L-1 of each component was prepared from a standard 

solution of acylglycerols (Supelco 1787-1AMP), containing 10 mg of monoolein, 10 mg of 

1,2-diolein, 10 mg of 1,3-diolein and 10 mg of triolein, and dissolved in the mobile phase B. 

Dilutions between 2 and 750 mg L-1 were prepared from the stock solution and injected in 

duplicate (an example of the obtained chromatogram is presented in Figure 3). The 

association between the retention time (tR) with the respective molecule was made from a 

characteristic of liquid chromatography in C18 column, where the elution order is directly 

related to the effective carbon number (ECN), thus, the tR presents the following order: 

monoolein < diolein < triolein (ANDRADE; MAZZEI; D'ÁVILA, 2011; DI NICOLA et al., 2008; 

HOLČAPEK et al., 1999). 

Figure 3 – Chromatogram obtained from the acylglycerol standard solution (750 mg L-1) 
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The tR for each component were determined by the chromatograms as follows: 4.4 

min for monoolein, 11.5 and 11.7 min for the dioleins and 16.6 min for the triolein. A 

calibration curve was determined for each component by associating the areas of the 

chromatographic signals with the previously known concentrations. 

The samples of the transesterification reactions were diluted in the mobile phase B, 

in order to obtain concentrations of 5000 mg L-1. A dilution of oil in the same concentration 

was prepared to represent the initial condition. The concentrations of acylglycerols were 

calculated from the areas of the chromatographic signals (Figure 4) and the calibration 

curves. The total concentration of diolein was considered as the sum of the concentrations 

of 1,2-diolein and 1,3-diolein. 
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Figure 4 – Examples of experimental run chromatograms: (a) residual frying soybean oil; 

and (b) experimental design central point 

 

The yield of the reaction was calculated from the molar concentrations of 

acylglycerols, according to a mass balance performed in a batch reactor, as presented in Eq. 

1. 

000 23

23
1

,,,

)(

MAGDAGTAG

MAGDAGTAGm

CCC

CCCF
Yield




  (1) 

Where Ci is the final concentration, Ci,0 is the initial concentration and Fm = 1.053 

represents the theoretical mass increase of the complete reaction. 
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A second-order linear regression model was fitted to the experimental results, using 

the software Matlab®, by the least squares method, allowing an analysis of both linear and 

quadratic effects, as shown in Eq. 2 (MONTGMOMERY, 2012). 






 


q

i
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ˆ  (2) 

Where 𝑦ො is the dependent variable (yield), β are the fittable parameters of the model, 

X are the independent variables and q is the number of factors (q = 3). 

The validation of the model was made by an analysis of variance (ANOVA) to verify 

the significance of the model, the significance of the regression and the lack of fit. All the 

statistical tests done with a 5% significance level. The coefficient of determination (R2) was 

calculated to evaluate the goodness-of-fit of the model to the experimental data, according 

to Eq. 3. 
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R  

(3) 

Where RSSmod is the residual sum of squares of the experimental data versus model 

prediction and SSexp is the sum of squares of the experimental mean deviations. 

3 Results and Discussion 

A second-order linear model was proposed based on the experimental results, 

according to Eq. 2. In order to assess the effects of the factors and their interactions, Table 

3 presents the results of the ANOVA, considering the coded values, maintaining only the 

parameters that are significant to the model. 
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Table 3 – Analysis of variance (ANOVA) of the factors and their interactions 

 Sum of squares Degrees of freedom F-value p-value Decision* 

X1 0.070 1 2.514 0.254 0 

X2 0.006 1 0.199 0.699 0 

X3 0.483 1 17.460 0.053 1 

X1 X2 0.101 1 3.649 0.196 1 

X1 X3 0.001 1 0.028 0.883 0 

X2 X3 0.007 1 0.239 0.673 0 

X12 1.168 1 42.197 0.023 1 

X22 1.226 1 44.291 0.022 1 

X32 1.499 1 54.181 0.018 1 

Experimental error 0.055 2 0 0 0 

*0 – Not incorporated in the model. 
*1 – Incorporated in the model. 

Firstly, the parameters that presented 𝑝 > 0.05 were considered non-significant and 

a F-test was performed do verify the significance of the regression. The regression could 

not be validated by removing these parameters, thus, other parameters were added, one by 

one, in ascending order in relation to the p-value, until a valid regression was obtained. The 

F-test applied to this regression resulted in the values of 𝐹଴ = 9.62 and 𝐹௧௔௕ = 3.87. Since 

𝐹଴ > 𝐹௧௔௕, the regression was considered significant. An equation for the yield was proposed 

from the parameters considered significant, as presented in Eq. 4, with R2 = 0.89. 

2

3

2

2

2

1213 060140160220250640 XXXXXXYield ......   (4) 

The experimental runs performed according to the experimental design, as well as 

the results obtained experimentally and the results predicted by the fitted model are 

presented in Table 4. 
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Table 4 – Experimental and predicted results 

N 
Uncoded variables Coded variables 

Experimental yield (%) Predicted yield (%) 
X1 X2 X3 X1 X2 X3 

1 60 15 4 -1 -1 0 6.6 11.6 

2 90 15 4 1 -1 0 66.8 56.5 

3 60 27 4 -1 1 0 46.3 56.5 

4 90 27 4 1 1 0 16.5 11.6 

5 60 21 2 -1 0 -1 8.9 17.8 

6 90 21 2 1 0 -1 27.1 17.8 

7 60 21 6 -1 0 1 53.7 66.9 

8 90 21 6 1 0 1 79.7 66.9 

9 75 15 2 0 -1 -1 27.8 19.6 

10 75 27 2 0 1 -1 11.1 19.6 

11 75 15 6 0 -1 1 65.8 68.8 

12 75 27 6 0 1 1 72.2 68.8 

13 75 21 4 0 0 0 63.9 63.4 

 
A lack of fit test, that compares the variance associated to the model with the 

experimental variance, was applied for validation of the model. The test resulted in values 

of 𝐹଴ = 0.20 and 𝐹௧௔௕ = 9.35. Since 𝐹଴ < 𝐹௧௔௕ , it was concluded that the model is significant 

for prediction of the reaction yield. 

Figure 5(a) visually represents the correlation between the yield values obtained 

experimentally and those predicted by the model. The closer the point of the drawn 

diagonal line, the better is the model's ability to predict the evaluated experimental 

conditions. Figure 5(b) represents the correlation between the residues and the results 

predicted by the model. It can be visually verified that the residues are randomly located 

Figure 5 – Graphical representation of the model goodness of fit. (a) experimental vs. 

predicted results; (b) residual plot 
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In order to graphically express the results, Figure 6 present response surfaces and 

contour plots, addressing the reaction yield as a function of the independent variables. 
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Figure 6 – Response surfaces and contour plots correlating reaction yield with (a) ethanol: 

oil molar ratio and temperature, with reaction time fixed at the central value; (b) reaction 

time and temperature, with ethanol: oil molar ratio fixed at the central value; (c) reaction 

time and ethanol: oil molar ratio, with temperature fixed at the central value 

 

Based on the model, the maximum predicted yield is 100%, with the following 

operational conditions: 15:1 ethanol:oil molar ratio, 81.2 °C for 6 h. 

The stoichiometry of the transesterification reaction indicates the necessity of 3 mol 

of alcohol for each mol of triacylglycerol, however, the application of excess alcohol 
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dislocates the reaction balance in the direction of biodiesel formation. The reduction in the 

yield from a certain point of excess alcohol was reported in several studies. One of the 

possibilities is that the yield decreases due to the dissolution of glycerol in the excess 

alcohol, which inhibits the reaction (HANH et al., 2007; LATCHUBUGATA et al., 2018; LIMA 

et al., 2010; MORAIS et al., 2013; ROOSTA; SABZPOOSHAN, 2016). 

The temperature is an influent parameter in the transesterification reaction yield, 

since an increase in the temperature increases the movement of the particles and the 

solubility of the reactants and, for homogeneous catalysts, the it also affects the catalytic 

activity (SOLTANI et al., 2017). The determined optimal temperature value was not the 

highest applied in the experimental design, but 81.2 °C, which is very close to the boiling 

point of ethanol (78.4 °C). According to LATCHUBUGATA et al. (2018), temperatures much 

higher than the boiling point of the alcohol represent larger portions of the alcohol in vapor 

form, which reduces its availability in the liquid form and results in lower yield values. 

4 Conclusion 

From the obtained results it can inferred that the use of residual frying oil as a raw 

material is viable, with the appropriate pre-treatment steps, for the production of biodiesel, 

considering that this material has low added value, since it is a residue. CaO showed to be 

an efficient and low-cost catalyst for the process. It is important to highlight that the steps 

of thermal pre-treatment of CaO are essential to the process, allowing the activation of the 

catalyst. The experimental results allowed to fit a second-order linear model, with a 

considerable prediction capacity (R2 = 0,89), within the interval used for the factors. The 

optimized operational conditions were estimated as 15:1 ethanol:oil molar ratio, 

temperature of 81.2 °C and 6 h of reaction. Researches in the renewable fuels field should 

be encouraged and acknowledged through public policies and government measures. This 

would result in a greater adaptation capacity of the energy matrix, since fossil fuels, besides 

being non-renewable, cause several environmental impacts. 
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