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Abstract 

Hydrodynamic cavitation has been extensively studied for its potential to remove emerging pollutants. Despite 
the advance of the experimental studies involving this phenomenon, computational studies that evaluate the 
influence of the geometry of the cavitation devices on the flow parameters are still necessary. The purpose of 
this article was to evaluate the influence of the change in the geometry of a Venturi device on the volume of 
cavities formed in its divergent section using Computational Fluid Dynamics (CFD). The geometric parameters 
modified in the Venturi were: the diffuser angle and the relation between the height and the width of the throat 
(h/w). The volume of cavities is an important parameter because it influences the cavitation intensity. A 
cavitational bench system was constructed in order to obtain input data for simulation. The results showed 
that the increase in the diffuser angle from 6.5° to 18.5° gradually reduced the volume of cavities from 93 mm3 
to 10 mm3. Between the relations h/w = 0.05 and h/w = 0.45 was observed the formation of cavities between 
106 mm3 and 77 mm3, however between h/w = 0.45 and h/w = 1.0 there was the formation of 213 mm3. 
Therefore, Venturi’s with diffuser angle less than 6.5º and relation h/w greater than 0.45 produce greater 
volume of cavities. The greater volume of cavities will not necessarily produce greater cavitational intensity, 
since cavitation clouds can be formed and reduce the implosion intensity of the cavitation bubbles. 

Keywords: Advanced oxidation process; Hydrodynamic cavitation; Orifice plate. 

Resumo 

A cavitação hidrodinâmica tem sido amplamente estudada por seu potencial em remover poluentes 
emergentes. Apesar do avanço dos estudos experimentais envolvendo este fenômeno, ainda são necessários 
estudos computacionais que avaliem a influência da geometria dos dispositivos de cavitação nos parâmetros 
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de escoamento. O objetivo deste artigo foi avaliar, por meio da Dinâmica de Fluidos Computacional (CFD), a 
influência da mudança da geometria de um dispositivo de Venturi sobre o volume de cavidades formadas em 
sua seção divergente. Os parâmetros geométricos modificados no Venturi foram: o ângulo divergente e a 
relação entre a altura e a largura da garganta (h/w). O volume das cavidades é um parâmetro importante 
porque influencia a intensidade da cavitação. Um sistema de bancada cavitacional foi construído a fim de obter 
dados de entrada para simulação. Os resultados mostraram que o aumento do ângulo divergente de 6,5° para 
18,5° reduziu gradativamente o volume das cavidades de 93 mm3 para 10 mm3. Entre as relações h/w = 0,05 e 
h/w = 0,45 observou-se a formação de cavidades entre 106 mm3 e 77 mm3, porém entre h/w = 0,45 e h/w = 
1,0 ocorreu a formação de 213 mm3. Portanto, Venturi's com ângulo divergente menor que 6,5º e relação h/w 
maior que 0,45 produzem maior volume de cavidades. O maior volume de cavidades não necessariamente 
produzirá maior intensidade cavitacional, uma vez que nuvens de cavitação podem se formar e reduzir a 
intensidade de implosão das bolhas de cavitação. 

Palavras-Chave: Processo de oxidação avançado; Cavitação hidrodinâmica; Placa de orifício. 
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1 Introduction 

The hydrodynamic cavitation (HC) is occurred when fluid is forced through a physical 

constriction, provided by the orifice plate, Venturi tube or partially closed valve devices. 

When the pressure in the constriction decays below the liquid's vapor pressure, bubbles 

(cavities) begin to form. Downstream the constriction, the pressure recovers and the bubbles 

collapse, releasing high concentration of energy (pressures between 100 and 400 MPa and 

local temperatures between 10,000 and 14,000 K) (PAWAR et al., 2017). 

The HC phenomenon has been applied in numerous applications of sanitary and 

environmental engineering (involving physical-chemical processes), from water treatment 

(DULAR et al., 2016; BAGAL; GOGATE, 2014), wastewater containing pesticides (PATIL et al., 

2014), drugs dissolved in water (THANEKAR et al., 2018; ZUPANC et al., 2013), effluent from 

tannery waste (SAXENA et al., 2018), effluent from soft drink industry (ALVES et al., 2019), to 

dye removal (RAJORIYA et al., 2017; RAJORIYA et al., 2018) and algae removal (BATISTA et 

al., 2017). In production processes there are reports over the use of HC ranging from the 

synthesis of biodiesel (MADDIKERI et al., 2014), pre-treatment of biomass (HILARES et al., 

2017) to the production of nanoemulsion (CARPENTER et al., 2017).  

Despite significant efforts in experimental research involving the cavitation dynamics, 

the characterization of parameters that are influenced by the geometry of the devices is still 

necessary. For this reason, the experimental studies are being developed together with the 

numerical studies due to the control of the boundary conditions and the manipulation of 

the geometry. 

Li et al. (2017) investigated the relationship between cavitation and Venturi tube 

geometry by experimentation and simulation. The simulations allowed the authors to 

establish the main design parameters that are influential in the cavitation behavior. After 

identifying the critical geometric parameters, energy consumption and cavitation behavior 

were investigated by testing six Venturi tubes with different variations in their geometries. 

Simpson and Ranade (2018b) used Computational Fluid Dynamics (CFD) to simulate 

cavitational flow through an orifice plate and correlate the results with other scientific 

studies. This work adopted the Eulerian–Eulerian approach with supplementary Lagrangian 



          Quantitative characterization of volume of cavities in hydrodynamic cavitation device using 
computational fluid dynamics                                           4 

 

REGET, Santa Maria, v. 24, Ed. Especial, e28 p. 1-25, 2020 

    

calculations in order to understand the individual bubbles trajectories. In addition, pressure 

gradients, velocity, turbulence, and volume fraction of the cavities were also analyzed and 

discussed. 

Kuldeep and Saharan (2016) studied the HC phenomenon in slit, circular and elliptic 

Venturi devices, orifice plate with multiple holes and single hole, by modifying geometric 

and operational parameters. CFD simulations were carried out to investigate which of these 

devices would have the best cavitational effect. 

Moholkar and Pandit (2001) present the bubble flow dynamics in HC considering the 

interactions between bubble-bubble and bubble-flow. The simulations were conducted to 

investigate the effect of outlet pressure (recovery) parameters, the relationship between the 

length and throat area, initial bubble fraction in the flow and initial bubble size. 

Kumar et al. (2012) coupled the continuous mixing model to the limited diffusion 

model to study the cavitation flow dynamic behavior downstream an orifice plate. This model 

considers the interactions between bubble-bubble and bubble-flow, in addition to heat 

transfer and solvent vapor transport through the cavities along radial motion. The results of 

this study are presented in flow regime maps that identify a variety types of bubble behavior, 

becoming helpful in the HC device optimization for a particular chemical or physical process. 

Pawar et al. (2017) compared cavitational intensity (sonochemistry effect) produced 

in Venturi devices and orifice plate. In addition to the experimental studies, the authors 

conducted CFD analysis with single-phase simulations applying the single bubble model to 

simulate bubble dynamics. According to the authors, most of the models describing the 

dynamics of cavitation bubbles were developed considering the radial motion of a single 

bubble, whereas real cavitation phenomena occurring in HC devices promote fields with 

millions of bubbles (clouds) interacting strongly. Therefore, that is one of the reasons why 

device's modeling and optimization become so challenging and this consideration can 

significantly modify cavitation's intensity predicted by models of single bubble. Furthermore, 

the cavitation bubbles interactions can lead to asymmetrical oscillations and collapse, 

altering the geometric sphericity of the bubbles.  
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In order to broaden understanding of the HC phenomenon, mainly on the formation 

of bubbles, this work proposes quantitative characterization of the volume of cavities in the 

slit Venturi device from changes in its geometry, using the multiphase CFD models for the 

simulations. Thus, the diffuser angle and the relation between the height and width of the 

throat (h/w) will be changed in the geometry of the device. 

2 Material and methods 

Experimental and computational studies were developed in this work. The 

experimental studies were conducted only to obtain physical parameters (pressures and 

mean flow), which were used as input data in the computational model. 

2.1 Experimental System 

The cavitational system (Figure 1) was composed of a 200 mm diameter tank 

with a volumetric capacity of approximately 0.009 m³, having pipes with a 

diameter of 25.4 and 38.1 mm. A KSB Hydrobloc P100 pump (745,7 W) was used 

for promoting flow. Four flow control valves (V1, V2, V3 and V4) were positioned 

in the tank, downstream of the pump, downstream of the cavitation chamber 

(Venturi tube) and in the bypass line, respectively. In addition, pressure meters 

(P1 and P2) were connected upstream and downstream of the Venturi. To measure 

the upstream pressure, a PCT-400Ri + Full Gauge digital controller with a 

measuring range of 0-3.440 kPa and 10 kPa resolution was used. To measure the 

downstream pressure, a piezometer was used, providing the unit in mH2O, with 

10-3m resolution. In order to control the temperature of the system, a heat 

exchanger was used in the tank. 
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Figure 1 – Scheme of the experimental system (without scale 

 
The HC device was made of transparent acrylic with slit Venturi tube structure. The 

Figure 2 shows the scheme of the device. The HC device consists mainly of three sections: 

the constriction, throat and diffusion sections. The device is 186.85 mm long, with 34.0 mm 

of constriction, 0.85 mm of throat and 152.0 mm of diffusion. The constriction angle is 22.5°, 

while the diffuser angle is 5.5°. The cross-sectional area of inlet and outlet is 900 mm2 (30.0 

x 30.0 mm), and the throat area is 6.97 mm2 (0.85 x 8.2 mm). 

Figure 2 – Dimensions of the Venturi device (in millimeters) 
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2.2 Cavitation Experiments 

The experimental study was developed to investigate the phenomenon of 

hydrodynamic cavitation, in addition to collecting the physical parameters (inlet pressure P1, 

outlet pressure P2 and average flow) for the application and validation of the numerical 

models adopted. Table 1 presents the data set of mean pressures and flows obtained in the 

experimental study. It should be noted that the tests were performed using tap water. In 

total, five experiments were developed varying the inlet pressure, outlet pressure and 

average flow. The flow rate was measured in a properly calibrated orifice plate (flow 

coefficient Cd = 0.70). 

Table 1 – Experimental data 

Pressure Average Flow 
Inlet P1 Outlet P2 Experimental 

(kPa) (kPa) (m3.s-1) 
200 5.9 0.00016 
270 6.1 0.00019 
350 6.2 0.00021 
420 6.3 0.00021 
540 6.6 0.00023 

2. 3 Governing Equations 

In order to comprehend the effects of Venturi's geometric characteristics on the 

formation of volume of cavities it was necessary to conduct a numerical treatment. The 

continuity and momentum equations are the flow governing equations.  

Since the flow has two phases, water liquid and water vapor, the mixture model for 

the simulations is used (Equation 1). 

 
∂

∂t
(ρ୫) + ∇ × ൫ρ୫ Vሬሬ⃗ ୫൯ = 0 

(1) 

 
In which Vሬሬ⃗ ୫ is the mean mass velocity: 

 

Vሬሬ⃗ ୫ =  
∑ α୩ρ୩Vሬሬ⃗ ୩

୬
୩ ୀ ଵ

ρ୫
 

         (2) 

 
And  ρ୫ is the density of the mixture: 
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ρ୫ =   α୩ρ୩

୬

୩ ୀ ଵ

 
           (3) 

 
 

In which n expresses the number of phases and α୩ expresses the volume fraction from 

the k phase. 

The sum of the momentum equations of each phase represents the global 

momentum equation expressed by: 

 

∂

∂t
൫ρ୫ Vሬሬ⃗ ୫൯ + ∇ × ൫ρ୫ Vሬሬ⃗ ୫ Vሬሬ⃗ ୫൯ = −∇P + ∇ × ቂ(μ୫ + μ୲) ቀ∇Vሬሬ⃗ ୫ + ∇Vሬሬ⃗ ୫


ቁቃ 

 

In which μ୫ is the viscosity of the mixture: 

 

μ୫ =   α୩μ୩

୬

୩ ୀ ଵ

 
                    (5) 

 

Using the Navier-Stokes equations with Reynolds averages it is possible to describe 

the turbulent flows. Realizable k-ε model was adopted for modelling turbulence effect. 

According to Ashrafizadeh and Ghassemi (2015), this model is suitable for high speed 

multiphase fluids containing circulation and separation. 

In cavitation, the mass transfer between the liquid and the vapor (condensation and 

evaporation) is controlled by the equation of vapor transport: 

 

∂

∂୲

(αρ୴) + ∇ × ൫αρ୴Vሬሬ⃗ ୴൯ = Rୣ − Rୡ 
 (6) 

 

(4) 



                                  Soeira, T. V. R., Junior, G. B. L., Poleto, C., Gonçalves, J. C. S. I                                     9 

 

REGET, Santa Maria, v. 24, Ed. Especial, e27, p. 1-25, 2020 

    

In which Vሬሬ⃗ ୴, ρ୴, α, and v are equivalent to the velocity of the vapor phase, the density 

of the vapor, the volume fraction of the vapor, and the phase of the vapor, respectively. Rୣ 

and Rୡ are the source terms of mass transfer linked to the vapor bubbles growth and collapse 

and are accountable for the liquid-vapor phase mass transfer in cavitation.  

The Schnerr-Sauer model is employed to calculate the mass transfer from liquid phase 

to vapor phase. The source terms are: 

When P୴ ≥ P୪ 

 

Rୣ =
ρ୴ρ୪

ρ
α(1 − α)

3

ℜ

ඨ
2

3

(P୴ − P)

P୪
 

(7) 

 
When P୴ ≤ P୪ 

 

Rୡ =
ρ୴ρ୪

ρ
α(1 − α)

3

ℜ

ඨ
2

3

(P − P୴)

P୪
 

(8) 

In which ρ୪, P, and P୴ are the density of the liquid, local far-field pressure and vapor 

pressure, respectively. The Rayleigh-Plesset equation is used and depict the growth of a 

single vapor bubble in a liquid of radius ℜ (ASHRAFIZADEH; GHASSEMI, 2015). 

2. 4 Computational Modeling 

Since cavitation has unstable behavior, this phenomenon can only be well captured 

by simulations in three-dimensional models. In these types of models, the convergence and 

accuracy of numerical solutions can be improved compared to two- or one-dimensional 

models for a given device. (BRINKHORST et al., 2015).  

Thus, a three-dimensional geometry of the Venturi device and a hexahedral mesh 

were built in the ANSYS DesignModeler and Meshing softwares, respectively, as shown in 

Figure 3. In order to minimize the influence of the numerical instability upstream and 

downstream of the device, the tube length at both ends was set equal to DN 30. 

To guarantee mesh independence, the geometry was meshed with different mesh 

sizes and the test was validated as a function of the continuity equation (conservation of 

mass). The mesh independence was identified from 1.3 elements/mm³ (≈ 154,000 elements). 
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Since the studies of this work promote geometric changes, and such changes cause 

small variations in the volume of the device, it was chosen to work with a density range of 

elements above the independent (between 1.7 and 7 elements/mm³). In addition, the mesh 

quality was improved by applying the face sizing method with hard behavior to the entire 

structure. In the throat faces the size of the element was established 0.1 mm and, in the 

constriction, and diffusion faces it was 0.4 mm. 

 

Figure 3 – Zoom of the computational mesh in constriction, throat and diffusion regions 

 

The ANSYS FLUENT software was chosen to promote the CFD simulations considering 

a 3D pressure-based solver and calculating the equations in steady-state conditions. The 

multiphase mixing model was adopted, with no slip velocity and no implicit body force. The 

Realizable k-ε turbulence model with Enhanced Wall Treatment was used. 

The density and viscosity of the liquid water were fixed constant at 998.2 kg/m³ and 

0.001003 kg/ms, respectively. Furthermore, the density and viscosity of water vapor were 

spotted on 0.5542 kg/m³ and 0.0000134 kg/ms, respectively. 

The Schnerr-Sauer cavitation model was adopted for the simulations, with 

vaporization pressure set constant at 3540 Pa. The bubble number density was set at 1013. 
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The control volume scheme was adopted to solve the equations of continuity and 

momentum. The SIMPLEC algorithm was applied to solve the pressure-velocity coupling. 

Spatial discretization for the gradient was the least squares cell based. For the pressure, the 

interpolation scheme PRESTO! was used. The second order upwind scheme was used to 

solve the momentum, turbulent kinetic energy and turbulent dissipation rate (scalar 

equations). Whereas for the volume fraction, the first order upwind scheme was applied. The 

Under-Relaxation Factors were kept in software default. 

The simulations were operated with different pairs of inlet and outlet pressures (Table 

1). In order to guarantee convergence and well accuracy of the simulated results, the 

following procedures were adopted:  

1. Checking inlet and outlet flow rates at each iteration to ensure that both are equal 

(Principle of Mass Conservation). 

2. The volume of water vapor formed was checked, at each iteration, to make sure they 

converge. 

3. The iterations were developed until each of the residuals remained close to a constant 

value. For example, the continuity equation residual was set at 10-6. 

4. In cases which residuals fluctuated significantly (in h/w < 0.01, for example), the mesh 

was improved by the face sizing method, reducing the magnitude of the elements 

face for better convergence. 

2.5 Development of Scenarios 

Two sets of scenarios were designed to quantitatively investigate the volume of 

cavities formed in the slit Venturi considering the highest operating pressure.  

In the first scenario, only the diffuser angle was changed, so that all other geometric 

parameters (the length of the constriction, throat and diffusion, the angle of the constriction, 

the height and width of the throat, and the inlet dimensions) of the device have remained 

unchanged. The physical quantities (outlet pressure and flow) remained constant in all 

simulations. In total, seventeen simulations were performed, changing the diffuser angle 

between 4.5° and 30.5°. Figure 4 illustrates the influence of this angle on the device. 
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Figure 4 – Slit Venturi with different diffuser angles (without scale 

In the second scenario, the relation between the height and width of the throat was 

changed, so that all other geometric parameters (the length of the constriction, throat and 

diffusion, the constriction and diffusion angles, and the inlet dimensions) of the device have 

remained unchanged. As in the first scenario, the physical quantities remained constant in 

all simulations. Thirteen simulations were performed with h/w ratio changes between 1 and 

0.05. Figure 5 illustrates the influence of h/w ratio on the device. 

Figure 5 – Slit Venturi with different relations of the height and width of the throat 

(without scale) 
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3 Results and discussion 

3.1 Effect of the pressure gradient 

The inlet pressure applied to cavitation chambers is a very important parameter that 

affects the cavitational condition, since cavity formation and cavitation intensity (magnitude 

of bubble collapse) depend essentially on the pressure difference across the reactor. The 

importance of the pressure gradient is demonstrated in several experimental studies, which 

confirm its influence on cavitational yield for the degradation of a variety of compounds 

(THANEKAR et al., 2018a), (THANEKAR et al., 2018b), (SAXENA et al., 2018), (BARIK; GOGATE, 

2018), (BAGAL; GOGATE, 2014), (PATIL et al., 2014), (SAHARAN et al., 2013), (WANG; ZHANG, 

2009). 

In this work, the pressure values (P1 and P2) (Table 1) were adopted as input data for 

the simulations, while the flow rate was adopted as output data (response). For each set of 

inlet and outlet pressures, the flow rate, which was obtained computationally, was compared 

with the average flow from the experiments (Table 2). The flows had a deviation of 4% to 

14%. The largest variation was identified at the pressure of 350 kPa and the lowest occurred 

at the pressure of 540 kPa. 

The low inlet pressure in the device produces a small volume of cavities and this 

condition can lead to numerical errors, making it difficult to the convergence of the 

simulations, since in this work the multiphase model is adopted. This inconsistency can also 

be related both with experimental method errors and regarding the uncertainties of the 

measurements performed. According to Ashrafizadeh and Ghassemi (2015), the main 

sources of error in the numerical methods are related to models of turbulence and wall 

functions simplifications The wall functions are applied to avoid extreme mesh corrections; 

however, these models can cause failures, especially in flows that are limited by the walls, 

which may have occurred in the Venturi's throat of this study. 
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Table 2 – Experimental and computational physical quantities 

Pressure Flow rate 
Flow rate Deviation 

Pin Pout Experimental Computational 
(kPa) (kPa) (m3.s-1) (m3.s-1) (%) 
200 5.9 0.00016 0.00015 6 
270 6.1 0.00019 0.00017 11 
350 6.2 0.00021 0.00018 14 
420 6.3 0.00021 0.00020 5 
540 6.6 0.00023 0.00022 4 

Nevertheless, the numerical results showed reliability compared to the experimental 

results and the simulations exhibited satisfactory prognosis of quantitative characterization 

of the phenomenon. 

Figure 6 shows the pressure gradient effects along the front view of the device. The 

effect of the pressure gradient was analyzed for the operating pressures of 200 kPa to 540 

kPa and outlet pressures of 5.9 kPa to 6.6 kPa, as indicated in Table 2. 

It is observed in Figure 6 that the pressure gradient expands with an increase in inlet 

pressure, extending the effective low-pressure zone. It is known that an increase in the 

pressure gradient may intensify bubble collapse due to higher turbulence tensions. 

Therefore, the pressure difference across the Venturi device is a crucial factor in cavitational 

intensity. It is also observed the decay of the pressure near the throat, giving rise to the 

formation of cavities. Then, after the effective low-pressure zone the pressure recovery 

occurs. The speed at which the pressure is recovered (recovery rate) is a fundamental 

parameter that influences the cavitational intensity. When cavity grows to an ideal size, its 

residence time in the low-pressure zone must be optimal before its collapse. In Venturi cases, 

the pressure recovery rate is influenced by the diffuser angle (as discussed in the next 

section). In cases which this rate is high, there will be boundary layer separation in the 

divergent section. The boundary layer separation may reduce the pressure recovered and 

increase the system's head loss. These observations are in agreement with the observations 

found in the literature (LI et al., 2017), (PAWAR et al., 2017), (KULDEEP; SAHARAN, 2016), 

(ASHRAFIZADEH; GHASSEMI, 2015). 

 



                                  Soeira, T. V. R., Junior, G. B. L., Poleto, C., Gonçalves, J. C. S. I                                     15 

 

REGET, Santa Maria, v. 24, Ed. Especial, e27, p. 1-25, 2020 

    

Figure 6 – Front view of the pressure contour for different operating pressures. The 

increase in operating pressure increases the pressure gradient in the device, extending the 

effective low-pressure zone. 

 

 

3.2 Effect of the diffuser angle 

The diffusive angle of Venturis devices is a geometric parameter that influences 

cavitational activity. Therefore, it was studied and is illustrated in Figure 7. 

 

Figure 7a shows three distinct regions. In the first region, composed by the smallest 

angles (4.5° and 6.5°), a volume of cavities in the range of 93 mm³ is observed. In the second 

region, from the angle of 6.5° to 18.5°, it is possible to notice a gradual decay of the volume 

of cavities, from approximately 93 mm³ to 10 mm³. In the third region, that is, from the angle 

of 18.5° to 30.5°, the volume of cavities remains close to 10 mm³. This latter observation is 

also evidenced in the studies of Li et al. (2019), which report low volume of cavities formed 

in Venturi devices with diffuser angles above 19°. Therefore, it can be concluded that the 

increase in the Venturi's diffuser angle promotes the reduction of volume of cavities. 
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Figure 7b shows the fraction of volume of cavities of points I, II and III, located in 

regions 1, 2 and 3 of Figure 7a, respectively. From these illustrations, it is seen that the 

cavities are anchored near the throat section, growing and shrinking in the extent 

downstream of this point. Studies in this sense were also conducted by Ashrafizadeh and 

Ghassemi (2015), who concluded that increasing the diffuser angle the cavitation region 

becomes smaller. According to Simpson and Ranade (2018) and Xu et al. (2002), this 

phenomenon is not favorable, since this increase impairs the gradual recovery of pressure 

promoted by Venturi devices. When a Venturi has a larger diffuser angle, the recovery occurs 

abruptly with the separation of the flow from the walls and the appearance of a secondary 

rotational flow in the divergent section of the Venturi, resembling the flow behavior of the 

orifice plate. 

 

According to Ashrafizadeh and Ghassemi (2015), the use of the 7° diffuser angle in 

Venturi devices is recommended because of its minimal head loss. In works of Kuldeep and 

Saharan (2016) the diffuser angle between 5.5° and 7.5° promoted greater cavitational area 

for the slit, circular and elliptical Venturi devices. In addition, these authors state that small 

diffuser angles provide a slow recovery of pressure, allowing the cavities to reach the 

required maximum size before its collapse. It can be observed that these recommendations 

fall within region 1 of Figure 7a, reinforcing that smaller diffuser angles promote lower rates 

of pressure recovery and allow the formation of a greater cavitational region. 

 

 

 

 

 

 

 

Continue… 
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Figure 7 – Diffuser angle influence on the volume of cavities formed in slit Venturi and 

evidence of three distinct regions, region 1, with approximately 93 mm3, region 2, with 

decay of 93 mm3 to 10 mm3 and region 3, with approximately 10 mm3 (a); the fraction of 

volume of cavities of points I, II and III, located in regions 1, 2 and 3, respectively (b). 

 

3.3 Effect of the throat height and width 

The effect of geometric changes in throat height and width on cavity formation was 

also studied. Kuldeep and Saharan (2016) and Bashir et al. (2011) point out experimental 

studies by Moholkar, Kumar and Pandit (1999), who observed that the increase in the relation 

between the perimeter and the area of the throat increases the cavitational intensity. The 

relation (α) is given as: 
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The Equation 9 is used to aid in understanding the effects of throat height/width 

changes on cavity formation. As previously mentioned, this study promoted changes in the 

h/w ratios so that the total flow area remained constant at 6,97 mm2 (0,85 mm x 8,2 mm) 

(Figure 2). Thus, it is evident that the smaller the h/w ratio, the greater the perimeter of the 

throat and, consequently, the greater the value of α. 

Figure 8 shows the studied h/w ratios with their respective values of α. Due to the 

logarithmic behavior of α, Figure 8 can be divided into two distinct regions (regions 1 and 

2). Between the relations h/w = 0.05 and h/w = 0.45 in region 1, small modifications in h/w 

provide large variations in the magnitude of α, whereas in region 2, between the relations 

h/w = 0.45 and h/w = 1.0 there is no evidence of large variations in the magnitude of α. In 

this sense, it is possible to conclude that smaller h/w ratios promote higher cavitational 

intensities 

Figure 8 – Cavity intensity curve as a function of h/w ratios. Region 1, between h/w = 0.05 

and h/w = 0.45, large variations in the magnitude of α. Region 2, between h/w = 0.45 and 

h/w = 1.0, small variations in the magnitude of α. 

 

Figure 9 shows the influence of the relation between the height and width of the 

throat on the formation of volume of cavities. Figure 9a shows the curve of the volume of 

cavities formed from the h/w changes and identifies the same regions of Figure 8. In region 

∝=
Throatᇱs total perimeter

Throat′s total flow area
     (9)   
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1, the volume of cavities oscillated between 106 e 77 mm³, approximately. In region 2, the 

volume of cavities is close to 213 mm³. Therefore, there was a large increase in volume of 

cavities at ratios greater than h/w = 0.45 (region 2). Comparing the two regions it is observed 

that the first region has approximately half the volume of cavities compared to the second 

one. 

Moreover, Figure 9b shows the fraction of volume of cavities of points I and II, located 

in regions 1 and 2 of Figure 9a, respectively. From these illustrations, it is seen that the 

cavities are better distributed in point II than in point I by virtue of the changes in h/w. 

Considering the analysis of Figures 8 and 9, it is possible to notice that the region of 

greater cavitational intensity (region I) allowed the formation of smaller volume of cavities, 

which is a possible indication that lower h/w ratios may hinder the formation of large cavity 

volumes (clouds). In addition, it is evident that the volume of cavities is not directly related 

to the cavitational intensity. In other words, the formation of large volume of cavities does 

not imply in high cavitational intensity. 

Figure 9 – Influence of the throat height/width on the volume of cavities formed in 

Venturi and evidence of two distinct regions, region 1, with oscillation between 106 e 77 

mm³, approximately, and region 2, with formation of approximately 213 mm3 (a); the 

fraction of volume of cavities of points I and II, located in regions 1 and 2, respectively (b). 
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Pawar et al. (2017) also observed this result which indicate that the large amount of 

cavitation bubbles (clouds) can lead to a strong interaction and coalescence between them. 

This strong interaction causes the cavitation bubbles to lose their sphericity and reduce the 

intensity of their collapse, revealing an adverse effect on the formation of large volume of 

cavities (clouds). In terms of cavitational yield, lower numerical density of bubbles is desired 

for less interaction and coalescence between them, increasing the transient and symmetrical 

collapse intensity of the individual bubbles. The radical’s recombination that could occur due 

to the vicinity of the bubbles would also tend to decrease, resulting in a more effective use 

of HC for oxidation and degradation of the compounds that are employed in this process. 

4 Conclusion 

This study characterized the presence of volume of cavities in the Venturi 

hydrodynamic cavitation device from changes in its geometry. Experimental studies were 

conducted for the collection of physical parameters and subsequent numerical validation of 

the results. Thus, the results of the simulations were in accordance with the experimental 

results, presenting a flow deviation of 4% to 14%. The effect of the pressure gradient was 

evaluated and this was shown to be crucial for the cavitational yield, since its increase 

extends the low-pressure zone, intensifying the collapse of the bubbles due to greater 

turbulence tensions. 

With the highest operating pressure two scenarios were studied: the first involving 

the diffuser angle and the second the throat height/width ratio. Some relevant conclusions 

are presented below: 1. A larger volume of cavities is produced when the diffuser angle of 

the diverging section is less than 6.5°; From 18.5° the Venturi behaves as an orifice plate, i.e., 

the walls of the diverging section do not further influence the formation of cavities; 2. Ratios 

h/w smaller than 0.45 produce a smaller volume of cavities and, according to the relation 

between the perimeter and the area of the throat, the greater will be α and the cavitational 

intensity; 3. Large volumes of cavities can generate cavitation clouds, reducing the implosion 

intensity of the bubbles and, consequently, the cavitational intensity. 
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