Abstract

The study of a complex phenomenon such as innovation, influences and effects of which are tangible in manifold contexts, traditionally requires the integration of different levels of analysis and the interaction among distant disciplines. The enterprise appears to be the fundamental agent of economic change; in this context, innovation, by intervening in the sphere of technology, constitutes a fundamental dimension also for social change. In addition, it interacts in the circle of a complex matrix of cultural, economic and institutional factors which are the base of social and economical evolution. In this context, the research questions (RQ) investigated by the authors are: "what is innovation?" [RQ 1] and "which are the main evolutions of innovation management models?" [RQ 2]. Literature on this matter has exponentially evolved in recent years. Nevertheless, innovation literature presents a large heterogeneity of results, while the innovation process concept itself is still poorly understood. In order to investigate the first research question, authors review forms and structures of innovation models developed throughout the years. At the end a discussion on the characteristics of literature evolution, through a strength-weakness analysis, is presented by the authors.

Keywords: innovation management, technology, models.
1 Introduction

The term innovation has been used in literature to describe both the process that uses new knowledge, technologies and the processes to generate new products as well as new or improved products themselves (PORTER, 1990). The difference from invention is that innovation also involves the factor of commercialization, determining the company success or failure. This appears to be the crucial point over the last few decades, as innovation has been identified by several nations or intra-nation organizations as the major factor of economic growth and wealth (EU, 1995; OECD, 1997a, b).

Organizations which operate in today markets, where global competition, rapid technological advances and resource insufficiency are pressing issues, must innovate in order to grow, to be effective and even to survive. Despite this need, after forty years of innovation studies, managerial best practices related to innovation are still very vague, as confirmed by Rothwell (1992) which highlights the lack of precise prescription for successful innovation. The innovation process is still poorly understood (COOMBS et al., 1996) and the current state of the literature contributes little to improve the understanding of the phenomenon (BECHEICH et al., 2006).

In this context, the RQ investigated by the authors are:

“What is innovation?” [RQ 1]

and

“Which are the main evolutions of innovation management models?” [RQ 2].

For achieving these results, the paper is structured as follows:
– the presentation of the research methodology;
– the description of innovation concept;
– the milestones’ description of innovation processes;
– the selection and justification of a classification criterion for grouping innovation models;
– the search of innovation models, which have been developed throughout decades, and their classification through the selected criterion, in order to analyze their structure, their meaning and their evolution;
– the analysis of the innovation models through a strength-weakness approach.

2 Research methodology

The research methodology adopted in this article is a systematic review of scientific papers. A systematic review provides information about the effectiveness of interventions by identifying, appraising, and summarizing the results of otherwise unmanageable quantities of research (LIGHT and PILLEMER, 1984; MULROW, 1994). The use of systematic review is justified since in the management field, the traditional narrative literature reviews have been widely criticized for the lack of relevance due to the use of personal and usually subjective as well as biased methodologies by authors (FINK, 1998; HART, 1998). To mitigate this gap, it was proposed to apply the specific principles of the systematic review methodology usually used in medical sciences (TRANSFIELD et al., 2003). The main difference between a systematic review and a traditional narrative review is that, contrary to the latter, the former uses a rigorous,
replicable, scientific and transparent process (COOK et al., 1997). Journals’ relevance for the literature review are evaluated through a search engine of an Italian database that contains over 4,500 journals and over 7.500 million articles covering the major research topics. Journals’ selection for the current study has been pursued evaluating results furnished by the research engine and sorted by relevance from the keywords selected from the authors. Keywords investigated for journals’ evaluation have been “Innovation in Product”, “Innovation in Process”, “New Product Development” and “New Product Design”. Search engine furnished relevance sorted articles and the authors calculated the average journals’ weights for each keyword results. Following the explained selection criterion the chosen journals have been “Journal of Operations Management”, “Journal of Product Innovation Management” and “Technovation”, since it represents the major founts in the debated theme of the Innovation Management, as depicted in Figure 1.

![Average weight of each journal for various keywords](chart1)

![Journal relevance score](chart2)

Figure 1 – Journal Selection Methodology.

Once the most important sources for conducting the review have been identified, it is important to define the research criteria. The authors adopted the methodology suggested by Becheich et al. (2006), and therefore considered only empirical articles published in scholarly journals and excluded non-empirical studies (conceptual works, qualitative studies, etc.) as well as those disseminated using a number of different mediums (book, internet, etc.). This choice allowed the authors to have a better comparable body of research, which enhances the quality of the systematic review results. Finally, it is important to mention that the literature review covers only the manufacturing sector.

Innovation in the service sector has in fact particular characteristics, as mentioned in the Oslo Manual and confirmed by several recent studies (BECHEICH et al., 2006), which require dedicated analysis. The authors extended the literature review by covering a period of five years, from January 2002 to June 2007, which guaranteed a sufficient amount of articles for validating the research. During this period, 1310 papers have been published within the selected journals. The authors read the titles and abstracts of these articles, so as to firstly exclude 1,158 of them, which were irrelevant to the research goals. The 152 remaining articles have been entirely read by 2 of the 3 authors to exclude other 55 articles which were evaluated as not inherent the purpose of the research. Therefore, the total number of articles included in the literature review has been 97. The entire review process is presented in Figure 2.

![Figure 2 – Research Methodology.](image)

Particularly, among the 97 articles found:
- 33 thoroughly discuss the innovation concept and represent the background for the research;
- 40 examine milestones of the innovation process;
- 24 present one or more innovation models.

The article deepens each of the point in the next sections.
3 Innovation concept

Porter (1990) identifies innovation as: ‘a new way of doing things (termed an invention by some authors) that is commercialized’. Freeman and Soete (1997) state that:

an innovation in the economic sense is accomplished only with the first commercial transaction involving the new product, process system or device, although the word is used also to describe the whole process. Of course, further inventions often take place during the innovation process and still more inventions and innovations may be made during the diffusion process.

Edquist (1997) quotes Schumpeter’s definition for innovation identifying it as one of the broadest definitions in the literature. Nelson and Rosenberg (1993) argue that often an invention is successfully marketed by a different firm from the inventor and it may happen a long time after the invention first appeared. Thus, the successful diffusion of the new product or process is required in order to be characterized as an innovation.

These definitions regard the economic results of innovation. But its manifestation and its essence are still not fully understood: the heterogeneity in innovation concepts and definitions presented in literature does not help to comprehend this complex phenomenon (COOMBS et al., 1996; BECHEICH et al., 2006). To address the problem of inconsistent results, innovation researchers have developed contingency theories of innovation types. With the aim to clarify the theory surrounding the innovation concept, the classification proposed by Rosanna and Roger (2001) is seen as very appealing; the latter tries to investigate and classify different typologies of innovation, based on its manifestation. For example, Utterback (1994) defined four different innovation typologies according to the object (product/service or process) and to its impact on the market (new one or improvement of an existing one).

The traditional distinction between incremental and radical innovations is not suitable for describing the manifold and variegated cases of innovation manifestations that can be found in the reality of the entrepreneurial world. Researchers have enriched such classification by adding other distinctions of innovation based for example on modular innovation and architectural innovation (BALDWIN and CLARK, 2000; SCHILLING, 2000). A further distinction is between competence enhancing innovations (which is based on an evolution of existing knowledge) and competence destroying innovations (TUSHMAN and ANDERSON, 1986). On the bases of the technological evolution observed in the recent years, especially in the Information and Communication Technology (ICT) sector, a new innovation category has been conceptualized: disruptive innovation or killer application (CHRISTENSEN, 1997).

Although there are many definitions and typologies on the innovation topic, there are two of them that are widely recognized due to their important yet common characteristics at the base of the innovation concept: the “novelty” and the possibility to manage it. The first, the newness, is a property presented in all definitions of innovation and it is a relative concept. An innovation can be considered new to the individual adopter, to most people in the unit of adoption, to the organization as a whole, to most organizations in an organizational population, or to the entire world (ANGLE and VAN de VEN, 2000).

The second characteristic, embedded in the innovation definitions, is the notion that innovation can be managed. For example, Drucker (1994) argues that innovation is a core process for a firm; he suggests that: “in...a period of rapid change the best perhaps the only-way a business can hope to prosper, if not survive, is to innovate. This is the only way to convert
change into opportunities. This, however, requires innovation itself be organized as a systematic activity”. In this latest definition innovation management appears as a fundamental task to be introduced in today’s companies. Based on the features highlighted, authors give their vision of innovation, answering therefore the first research question [RQ 1]:

[RQ 1 - ANSWER]:

Innovation is a match between a market need and a technology or a business model that creates value both for the producer and the consumer. Innovation is today the most important source of rejuvenation and growth for organizations.

4 Milestones of Innovation Processes: what the literature offers

The definition of successful innovation relates to the discussion of various models of innovation which break down the innovation process into various stages (PALMBERG, 2006). Through the literature review carried out, the authors realized that the innovation process has some common basic activities which guarantee the generation of ideas for new product and process development and the management of the entire innovation process. These fundamental activities are substantially represented by the generation of ideas [1], which potentially could become new products or processes after implementation, by the acquisition of full knowledge [2] on the generated ideas and by the complete implementation and market monitoring [3] in order to verify customer satisfaction and after sales. Each of these three topics has been more deeply investigated in literature by the various authors, in order to better understand their features and identify the basis for a step-by-step innovation model.

The literature review carried out remarked the availability of 40 papers discussing these milestones, in particular: 17 on “ideas generation”, 15 on “acquisition on full knowledge” and 8 on “complete product/process implementation and monitoring”, as shown in Table 1.
Table 1 – Resources for the Activities which Constitute the Milestones of Innovation Processes

<table>
<thead>
<tr>
<th>Ideas Generation and early R&D activity</th>
</tr>
</thead>
</table>
(cont. Table 1)

Applied R&D and Knowing Activity

Implementation and Controlling Activity

Debruyne, Moenaert, Griffin, Hart, Hultink, Robban, “The impact of new product launch strategies...
A literature review...

(continuation of Table 1)

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Title</th>
<th>Source</th>
</tr>
</thead>
</table>

Thanks to the accomplished literature review which gave the authors the comprehension of the innovation process characteristics and the analysis carried out on the relevant papers, the authors have been able to formalize the classification of innovation management models, presented in the next section.

5 The classification criterion of innovation management models

The development of the framework proposed in this paper is the result of action research conducted in an enterprise network. The study followed firstly a deductive approach analyzing the evolution of innovation models. In doing this we adopted the classification based on the innovation generation (ROTHWELL, 1992; PERUNOVIC, CHRISTIANSEN, 2005), through which it is possible to classify all the existing innovation models in five different groups, each with specific characteristics, as depicted in Figure 3.
The degree of completeness, complexity, effectiveness and efficiency of such models has been refined throughout the years, reaching good results to support innovation management. In particular:

1 – Technology push model.
It was developed in the 1950s by observing technology evolutions. Firms were able to evaluate technological opportunities and companies create innovative products based on available technologies (KAMEOKA, ITO and KOBAYASHI, 2001). The innovation process was perceived as sequential and starting by internal R&D activities.

2 – Market pull model.
It was developed from the mid-1960s to early 1970s: the ideas for an innovation started within the market, among customers and from their needs.

3 – Coupling model (ROTHWELL, 1994).
It was defined in the 1970s as a coupled model of previous push and pull concepts. It was still a sequential model, like the previous one, but with feedback loops. The coupling model recognized necessity of creating innovation by using both approaches, technological company readiness and true customers’ needs. New innovative capabilities, such as internal networking and share of information between various teams involved in a new product development (NPD) shly have started to emerge.

4 – Integrated model.
Innovation starts being considered as a fundamental process within firms. R&D activities, engineering and production processes are integrated within companies (HEIN and ANDREASEN, 1985) and horizontal collaboration are developed with the leading partners. In the fourth generation the collaboration and networking concept emerges and it appears an important task to pursue innovation.

5 – Functional integration innovation model.
This generation should enable companies to decrease both NPD time and cost by supporting the previous integrated model and networking with sophisticated computerised tools.

Through this classification criterion, authors can group innovation management models, found in the literature review, as presented in the next section.

7 Presentation of the Literature Review

In this section the models on innovation management found in the literature review by the authors are classified through the classification proposed by Rothwell. All the models are grouped in Table 2.
Table 2 – All models found in literature review

<table>
<thead>
<tr>
<th>Generation</th>
<th>Model</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>The first generation</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Factors for the decision making of NPD in the pharmaceutical industry</td>
<td>Takayama and Watanabe, 2002.</td>
</tr>
<tr>
<td></td>
<td>Dual innovation process</td>
<td>Linton, 2002.</td>
</tr>
<tr>
<td>The second generation</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Demand-Pull linear model</td>
<td>Cantisani, 2006.</td>
</tr>
<tr>
<td></td>
<td>The innovation process, adapted from Majaro</td>
<td>McAdam and McClelland, 2002.</td>
</tr>
<tr>
<td></td>
<td>The interface between marketing and manufacturing operations in the innovation process</td>
<td>Brown and Fai, 2006.</td>
</tr>
<tr>
<td></td>
<td>From research ideas to commercial results</td>
<td>Camarinha-Matos and AfSAManesh, 2007</td>
</tr>
<tr>
<td>The third generation</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stages in the third generation of the innovation process</td>
<td>Edwards, Delbridge and Munday, 2005</td>
</tr>
<tr>
<td></td>
<td>Front End of the Innovation Process</td>
<td>Borjesson, Dahlsten and Willander, 2006</td>
</tr>
<tr>
<td></td>
<td>New Concept Development Model</td>
<td>Borjesson, Dahlsten and Willander, 2006</td>
</tr>
<tr>
<td></td>
<td>The innovation and diffusion interactive processes</td>
<td>Uddin, 2006.</td>
</tr>
<tr>
<td></td>
<td>Innovation plan diagram in BDG</td>
<td>Kumar and Snively, 2004.</td>
</tr>
<tr>
<td></td>
<td>Candidate factors in each phases of NPD</td>
<td>Sun and Wing, 2005.</td>
</tr>
<tr>
<td></td>
<td>Evolved Coupling Model</td>
<td>Bernstein and Singh, 2006.</td>
</tr>
<tr>
<td></td>
<td>Chain-linked model of innovation</td>
<td>Cantisani, 2006.</td>
</tr>
<tr>
<td>The fourth generation</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>An operational model for NPD in toy companies</td>
<td>Sun and Wing, 2005.</td>
</tr>
<tr>
<td></td>
<td>Theorising Innovation in SMEs</td>
<td>Edwards, Delbridge and Munday, 2005</td>
</tr>
<tr>
<td></td>
<td>The role of incubator in the Innovation Process</td>
<td>Rothschild and Darr, 2005.</td>
</tr>
<tr>
<td></td>
<td>DPD starts from a ‘wish’ while IPD starts from a market ‘need’</td>
<td>Ottosson, 2004.</td>
</tr>
<tr>
<td></td>
<td>The innovation and supply chain diamond</td>
<td>Singhal and Singhal, 2002.</td>
</tr>
<tr>
<td></td>
<td>KNOWVATION modules and innovation process</td>
<td>Park, Kim, 2006.</td>
</tr>
<tr>
<td>The fifth generation</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5G innovation process; systems integration and networking (SIN)</td>
<td>Galanakis, 2006.</td>
</tr>
<tr>
<td></td>
<td>The creative factory concept</td>
<td>Galanakis, 2006.</td>
</tr>
</tbody>
</table>
8 Analysis of the innovation models

The degree of completeness, complexity, effectiveness and efficiency of innovation models have been refined throughout the years, reaching good results to support innovation management: the classification proposed by Rothwell et al. in fact starts from the simple “technology push” concept of innovation (the first generation), to the more complex and complete “functional integration innovation model” (the fifth generation of innovation), through the other three, ‘Market pull model’, ‘Coupling model’ and the ‘Integrated model’ (the second, the third and the fourth generation of innovation). The classification of all the models found with the systematic review through the five generations of innovation grouping is presented in Table 3.

The evolution, from the first to the fifth generation of innovation, is evident and the growing complexity and completeness are the most important changes between them, as underlined through the strength/weakness analysis

Table 3 – Generations of innovation

<table>
<thead>
<tr>
<th>Generation</th>
<th>Features</th>
<th>Strengths</th>
<th>Weaknesses</th>
</tr>
</thead>
</table>
| First Generation | - Linear
- Consecutive
- Technology push | - Simple
- Radical innovation | - Lack of feedbacks
- No market attention
- No networked interactions
- No technological instruments |
| Second Generation | - Linear
- Consecutive
- Market pull | - Simple
- Incremental Innovation | - Lack of feedbacks
- No technology research
- No networked interactions
- No technological instruments |
| Third Generation | - Linear
- Consecutive
- Fusion of market analysis and technology push | - Simple
- Radical and Incremental innovation
- Feedbacks between phases | - No networked interactions yet
- No technological instruments |
| Fourth Generation | - Consecutive
- Parallel sub-activities
- Social Interaction | - Actor networking
- Parallel phases | - Complexity increment of reliability
- No technological instruments |
| Fifth Generation | - Parallelism
- Social interactions
- Strong Technological means | - Persuasive innovation
- Use of sophisticated technological instruments
- Networking to pursue innovation | - Complexity increment of reliability |
Thanks to the analysis proposed, authors can answer to the second research question [RQ2]:

[RQ 2 - ANSWER]:

The main evolutions of the innovation management models are to be viewed under three different points of view: features, strengths and weaknesses.

The main progresses in the features regard the parallelism between phases in the models, the consideration of both market pull and technology push, the importance of social interactions to create new value and strong technological means.

The evolutions however imply from a side an increment of the models efficiency, the individuation of new sources to innovate, new methodologies and techniques, from the other side it surely implies the growth of complexity and difficulty in the applicability of the models.

9 Conclusions

Innovation concept is in continuous evolution today and it can take on different manifestations, depending on its dimensions, frequency, realization modality and outputs. Many studies on this topic have been developed in recent decades and, today, criteria to classify it and the environments to guarantee innovation development are increasingly clear. Linear innovation models have moved forward greatly, since efforts have been made by researchers as well as firms to include many feedback factors within the innovation models. However, the innovation process is thus still poorly understood as mentioned by Coombs et al. (1996) and the current state of the literature contributes little to improving an understanding of the phenomenon.

In such a scenario, this article contributes a better understand of the innovation concept and its evolutions and the ways to manage it.

References

A literature review...

