
Rev. Adm. UFSM, Santa Maria, v. 7, número 3, p. 506-523, SET. 2014

- 506 -

ABSTRACT

 In this paper we study the unrelated parallel machine scheduling problem with sequence and
machine-dependent setup times. We consider the objective of minimizing the maximum completion time
of the latest job, usually referred to as makespan. We propose a new MIP-based heuristic combining
atomic moves such as insertion, ejection and closure, in order to generate sequences of such atomic
moves minimizing the makespan. This heuristic employs a commercial solver to search the neighborhood
in a multi-start algorithm. Our approach performed well in computational experiments targeting two
sets of benchmark instances previously used in the literature
 Keywords: MIP-based neighborhood, hybrid metaheuristics, unrelated parallel machine sched-
uling problem, makespan.

Recebido 28-03-2014
Aceito 20-01-2015

 DOI: 10.5902/1983465913305

MIP–BASed neIghBoRhood SeARCh
foR The unRelATed PARAllel MAChIne
SChedulIng PRoBleM wITh SequenCe
And MAChIne-dePendenT SeTuP TIMeS

heurística baseada em programação
matemática para o problema de programação de

tarefas em máquinas paralelas não relacionadas
com tempo de preparação dependente da

sequência e da máquina.

Felipe Martins Muller1

Olinto Bassi Araújo2

Fernando Stefanello3

Marcelo Zanetti4

1 Possui graduação em Engenharia Elétrica pela Universidade Federal de Santa Maria – UFSM, mestrado e doutorado em
Engenharia Elétrica pela Universidade Estadual de Campinas – UNICAMP. Atualmente é professor titular na Universidade Federal de Santa
Maria – UFSM. Santa Maria, Rio Grande do Sul, Brasil. Email: felipe@inf.ufsm.br

2 Possui graduação em Matemática pela Universidade Federal da Campanha – URCAMP, mestrado em Modelagem Matemática
pela Universidade Regional do Noroeste do Estado do Rio Grande do Sul – UNIJUI, doutorado em Engenharia Elétrica pela Universidade
Estadual de Campinas. Atualmente é professor no Colégio Técnico Industrial de Santa Maria – CTISM. Santa Maria, Rio Grande do Sul, Brasil.
Email: olinto@ctism.ufsm.br

3 Possui graduação em Matemática pela Universidade Federal de Santa Maria – UFSM. Atualmente é mestrando em Informática
pela Universidade Federal de Santa Maria – UFSM. Santa Maria, Rio Grande do Sul, Brasil. Email: stefanello@inf.ufsm.br

4 Possui graduação em Engenharia Elétrica pela Universidade Federal de Campinas – UNICAMP, mestrando em Ciência da
Computação e doutorado em Físicas de Sistemas Complexos e Engenharia de Software pelo Instituto Federal de Tecnologia de Zurique.
Atualmente é professor na Universidade Federal do Maranhão – UFMA. São Luís, Maranhão, Brasil. Email: mzanetti@ethz.ch.

Rev. Adm. UFSM, Santa Maria, v. 7, número 3, p. 506-523, SET. 2014

- 507 -

Felipe Martins Muller
Olinto Bassi Araújo

Fernando Stefanello
Marcelo Zanetti

ReSuMo

 Neste trabalho é estudado o problema de programação de tarefas em máquinas paralelas com
tempo de preparação dependente da sequência e da máquina. Como objetivo é considerado a minimização
da duração total da programação, usualmente referido como makespan. É proposta uma nova heuristica
MIP que combina movimentos atômicos, tais como inserção, ejeção e fecho, para gerar sequências destes
movimentos que minimizem o makespan. Esta heurística utiliza um resolvedor comercial para realizar a
busca na vizinhança em uma estrutura de algoritmo de múltiplos inícios. A abordagem apresenta um bom
desempenho computacional considerando dois conjuntos de instâncias testes previamente publicados na
literatura científica.

Palavras-chave: vizinhança MIP, metaheurísticas híbridas, programação de máquinas paralelas
não relacionadas, makespan.

1 InTRoduCTIon

In the unrelated parallel machine scheduling problem with sequence and machine-de-
pendent setup times, there is a set of n jobs that must be, one by one, processed without interrup-
tion by exactly one machine among m available. In the case where the machines are unrelated, the
processing time of a job depends on the machine where it is processed. The machine preparation
time (setup time) for this problem is machine and sequence dependent, i.e., the setup time com-
puted on the machine k between jobs i and j is different from the setup time computed on the same
machine between jobs j and i. Similarly, the setup time between jobs i and j on machine k is differ-
ent from the setup time between jobs i and j on machine k’. We considered the objective of mini-
mizing the maximum completion time of the latest job (makespan criteria). This problem is denoted
as R|Sijk|Cmax Pinedo (2008), following the standard three-fields classification scheme introduced by
Graham et al. (1979). Unrelated machines represent more adequately the problems found in the
real world and is a generalization of scheduling problems on identical and uniform machines. There
are several works in the literature addressing the unrelated parallel machine scheduling problem,
such as França et al. (1996), Weng et al. (2001), Kim et al. (2002), Low (2005), Chen (2006), Chen
and Wu (2006), Rabadi et al. (2006), de Paula et al. (2007), Logendran, McDonell and Smucker
(2007) and Armentano and de França Filho (2007). In the production chain, machines must be
reconfigured (setup) depending on the jobs to be executed and therefore the setup time might not
be the same for different sequences and machines. Therefore, when modeling this process math-
ematically, setup time involving distinct activities must be specified separately from the jobs pro-
cessing times. Allahverdi, Gupta and Aldowaisan (1999) present a review of scheduling problems
with setup times. For the problem at hand, Vallada and Ruiz (2011) present a genetic algorithm and
propose a set of instances with distinct characteristics.

 It is known that there must not be any algorithm able to fully handle the NP-hard class
of problems, however there are many instances of this class that can be solved efficiently, in-
cluding those of practical interest as emphasized by Nievergelt (2000). This scenario allows the
application of a hybridization strategy, by combining the use of exact methods on well defined
subproblems returned by a heuristic search. The exact method provides the optimal solution of
such subproblems while the heuristic search allows the exploration of the problem space at a
lower computational cost. In Talbi (2002), Dumitrescu and Stützle (2003), Puchinger and Raidl
(2005), Fernandes and Lourenço (2006) and Jourdan, Basseur and Talbi, (2009) are described dis-
tinct taxonomies for the hybrid methods and a survey of published studies using this technique,
including works on scheduling problem.

Here we proposed a new approach that hybridizes local search based metaheuristic and

Rev. Adm. UFSM, Santa Maria, v. 7, número 3, p. 506-523, SET. 2014

- 508 -

MIP–Based neighborhood search for the unrelated parallel machine scheduling
problem with sequence and machine-dependent setup times

exact algorithms to minimize the makespan for the unrelated parallel machine scheduling problem
with sequence and machine-dependent setup times. We propose a new MIP-based neighborhood
used to find a sequence of job movements in order to minimize the objective function. The level of
intensification of the search can be controlled by limiting computation time and the size of the MIP
subproblems. According to Dumitrescu and Stützle (2003) our approach can be classified as an ex-
act algorithm that explores large neighborhoods within local search. Furthermore, according to the
classification of Puchinger and Raidl (2005), our approach can be named as an integrative combina-
tion that incorporates exact algorithms to search neighborhoods in local search based metaheuris-
tics. Computational results show that the proposed approach outperforms the genetic algorithm
presented by Vallada and Ruiz (2011) on its respective benchmark instances.

This article is organized as follows: Section 2 describes the mathematical model pro-
posed by Vallada and Ruiz (2011) for the unrelated parallel machine scheduling problem with se-
quence and machine-dependent setup times. Section 4.1 describes two constructive heuristics.
Section 3 presents a MIP-based neighborhood and some important considerations are discussed.
Section 4 defines two constructive heuristics, a local search procedure, and a multi-start algo-
rithm. Computational results are discussed in Section 5, followed by conclusions and references.

2 PRoBleM foRMulATIon

In this section it is presented a mixed integer programming model for the unrelated
parallel machine scheduling problem with sequence and machine-dependent setup times as de-
scribed in Vallada and Ruiz (2011). In order to simplify the model description we introduce addi-
tional notation as described below:

n : number of jobs.
m : number of machines.
M: {1,...,m} machine set.
N: {1,...,n} job set.
V: sufficiently large number.
pij: processing time of job j∈N, on machine i∈M.
sijk: setup time on machine k∈M, in order to process job j∈N, immediately after job i∈N.
Each machine k is instantiated with a dummy job 0.
The model involves the following decision variables:

Cki ≥ 0: completion time of job i at machine k.
Cmax ≥ 0: maximum completion time.
The problem is to allocate n jobs in m machine to be processed such that the maximum

completion time or makespan is minimized. The mathematical model is defined as follows:





=
 otherwise. 0

, machinein job precedesy immediatel job if 1 kji
ukij

Rev. Adm. UFSM, Santa Maria, v. 7, número 3, p. 506-523, SET. 2014

- 509 -

Felipe Martins Muller
Olinto Bassi Araújo

Fernando Stefanello
Marcelo Zanetti

 Min Cmax (1)
Subject to:

1
}{}0{

=∑ ∑
∈

≠
∪∈Mk

ji
Ni

ijku Nj ∈∀ (2)

1≤∑∑
∈

≠
∈Mk

ji
Nj

kiju Ni ∈∀ (3)

10 ≤∑
∈Nj

jku Mk ∈∀ (4)

kij

jhih
Nh

khi uu ≥∑
≠≠
∪∈

,
}{}0{

 MkjiNji ∈∀≠∈∀ ,,, (5)

kjkijkikijkj psCuVC ++≥−+)1(MkjiNjNi ∈∀≠∈∀∪∈∀ ,,},{}0{ (6)

00 =kC Mk ∈∀ (7)

0≥kiC MkNi ∈∀∈∀ , (8)

kiCC ≥max MkNi ∈∀∈∀ , (9)

 MkjiNjNi ∈∀≠∈∀∪∈∀ ,,},{}0{ (10)

The objective function minimizes the maximum completion time or makespan (1). Con-
straint set (2) ensures that each job is assigned to exactly one machine and has exactly one predeces-
sor. Set (3) requires that each job can have only one successor. The constraint set (4) limits the number
of successors of the dummy job 0 to a maximum of one on each machine. Set (5) ensures that a job i
and its predecessor h are allocated to the same machine. Set (6) regulates the jobs completion times
at the machines (see Vallada and Ruiz, 2011). Constraint sets (7) and (8) define the completion time
as 0 for the dummy job and the operative completion time values for other jobs, respectively. Set (9)
defines the maximum completion time. Finally, set (10) defines the variable’s domain.

Computational experiments with this mathematical model using a mixed integer linear
solver and a computer described in Section 5, show that the performance is relatively poor, and
we are not able to prove the optimality or to find a good solution for most instances over 50 jobs.

3 MIP–BASed neIghBoRhood SeARCh

This section describes our proposed MIP-based neighborhood search. The neighbor-
hood is based on three atomic moves that change the job position to the same or to another
machine. The atomic moves for a job j are defined as follow:

• Atomic insertion move: inserts the job j as the successor of the job i.
• Atomic ejection move: replaces job i by job j, ejecting i of its original position.
• Atomic closure move: link the predecessor to successor of job j.
Observe that the definition of the atomic insertion and ejection moves does not specify

the origin of job j. In practice, the job j can be derived by one ejection move or by simply selecting

Rev. Adm. UFSM, Santa Maria, v. 7, número 3, p. 506-523, SET. 2014

- 510 -

MIP–Based neighborhood search for the unrelated parallel machine scheduling
problem with sequence and machine-dependent setup times

the job in its original position. Because of the second case, it is necessary to define the third atomic
move (closure) that links the predecessor to the successor of job j. Furthermore, in the definition
of atomic ejection move, the destination of job i is also not specified, but considering the overall
procedure the job will be linked with another atomic move (insertion or ejection). Therefore by us-
ing those atomic moves as building blocks, it is possible to construct two types of move sequences:
cycle and chain. The cycle move sequence is composed by a set of atomic ejection moves, while
the chain move sequence is composed by a set of one insertion, one closure and one atomic ejec-
tion moves. Figure 1 illustrates the atomic moves and the move sequences. In (a) two machines,
M1 and M2, are displayed having 7 jobs each. In (b), two atomic insertion moves are illustrated.
The first atomic insertion move, where i = 1 and j = 9, is a simple insertion move. Observe that an
atomic closure move is necessary to link the jobs 8 and 10. In the second insertion move (i = 11 and
j = 5), the origin of job 5 is given by an atomic ejection move. The same representation is used
in (c), where two atomic ejection moves are shown. Finally in (d), is presented an illustration of
a cycle move sequence involving jobs 2, 8, and 10 concomitantly with a chain move sequence
involving jobs 6 and 13. Note that jobs in gray can not belong to other moves. This constraint is
detailed in the next subsection.

Figure 1 – Representation of atomic moves: insertion (b), ejection (c) and cycle and chain (d).

The mathematical model described in subsection 3.1 is used to select the best combina-
tion of independent sequences of moves that lead to an improvement in the objective function.

3.1 Mathematical Model for the Neighborhood Search

Formally, the mathematical model applied to search the neighborhood is defined on the cur-
rent solution and the goal is to find sequences of atomic moves that lead to a reduction of the makespan.

Let pre(i) and suc(i) be the predecessor and successor of the job i in the current solu-
tion, respectively. Observe that the predecessor of the first job in the machine m is a dummy job
named 0. Furthermore, the successor of the last job in the machine is a dummy job as well, and
all costs associated to this dummy job are zero. Thus, the costs of movements are calculated as
follows. Let Qkij = pkj + skij be the cost of allocation of the job j as immediate successor of the job
i allocated on the machine k. Note that in the current solution, the machine k is the machine in
which job i is allocated. Therefore, the cost of removing job j is calculated by cOj = -Qk,pre(j),j -Qkj,suc(j).

Rev. Adm. UFSM, Santa Maria, v. 7, número 3, p. 506-523, SET. 2014

- 511 -

Felipe Martins Muller
Olinto Bassi Araújo

Fernando Stefanello
Marcelo Zanetti

The cost to insert job j in the position i is calculated by cXij = Qk,pre(i),j + Qkj,suc(i), and the cost to insert
job j as immediate successor of job i is calculated by cYij = -Qki,suc(i) + Qkij + Qkj,suc(i). Finally, cWi =
Qk,pre(i),suc(i) is the cost of linking the predecessor and the successor of job i.

In the following, we present some additional notation to describe the model.
D: set of dummy jobs.
N* = ND ∪ : set of jobs including the dummy jobs.
Um: set of jobs assigned to machine m∈M.
cMm: current completion time on machine m.
W: a sufficiently large number.
The following variables are used in the model.

xij =

yij =

wi =

Cmax ≥ 0: maximum completion time (makespan).
Cm ≥ 0: completion time on machine m.

The MIP-based neighborhood search model can be formally described as follows:

 Min ∑
∈Mm

mC+WC max (11)
Subject to:

∑∑
∈∈

≤
Nj

iij
Nj

ij w+y+x 1 Ni ∈∀ (12)

1≤∑
∈Nj

ijy Di ∈∀ (13)

1≤∑∑
∗∈∈ Ni

ij
Ni

ij y+x Nj ∈∀ (14)

1),(

)(

),(≤++ ∑∑∑∑
∈∈

∉
∈∈ Ni

ijpre
Ni

ij

Djpre
Ni

ijpre
Ni

ij yyx+x Nj ∈∀ (15)

1
**

)(,)(, ≤++ ∑∑∑∑
∈∈∈∈ Ni

jsuci
Ni

ij
Ni

jsuci
Ni

ij yyx+x Nj ∈∀ (16)

∑∑∑
∗∈∈∈

≤
Nj

ji
Nj

ji
Nj

ij y+xx Ni ∈∀ (17)

i
Nj

ij
Nj

ji
Nj

ji wxxy +≤+ ∑∑∑
∈∈∈ *

 Ni ∈∀ (18)

Rev. Adm. UFSM, Santa Maria, v. 7, número 3, p. 506-523, SET. 2014

- 512 -

MIP–Based neighborhood search for the unrelated parallel machine scheduling
problem with sequence and machine-dependent setup times

1≤∑∑∑
∗∈∈∈ Nj

ji
Nj

ji
Nj

ij y+x+y Ni ∈∀ (19)

∑ ∑ ∑

∑ ∑∑ ∑∑ ∑

∪∈ ∈ ∈

∈ ∈∈ ∈∈ ∈

≤++

++

}0{

*

m m

mmm

Ui Nj
m

Ui
iiijij

Ni Uj
ijj

Ui Nj
ijij

Ni Uj
ijj

CcMwcWycY

ycOxcX+xcO

Mm∈∀

 (20)

maxCCm ≤

Mm∈∀ (21)

∑∑
∈∈

≥−
Nj

iji
Nj

ji wy+x 0 Ni ∈∀ (22)

0,≥maxC 0,≥mC Mm∈∀ , ∗∈∀∈∀ NkN,ji, (23)

The objective is to minimize the maximum completion time (makespan) and the sum
of the completion time of all jobs (flow time). The parameter W ensures that the makespan will
be the first to be minimized. Even when it is not possible to improve the makespan, a better flow
time configuration may improve the makespan in the next iteration (by default we use W = 106).
Constraint sets (12), (13) and (14) determine that a job can be involved in only one move. Sets
(15) and (16) state that the predecessor and successor of the job i remains the same when the
job is involved in a move. These constraints are necessary so that the current cost of the moves
may be accurately computed. Sets (17) and (18) determine that an ejected job must be involved
in another move. Specifically about the constraint set (18), if a job is removed from its original
position, another job should occupy that position or its predecessor and its successor must be
connected in sequence. This fact is represented by the variables denoted by x and w. Set (19) im-
plies that when a new successor is defined to a job, this job remains the same. In addition, it also
implies that if a job is moved, no other job can be inserted as its predecessor. Set (20) determines
the completion time of each machine (see the extended example in Appendix A for more details
of this constraint set). Set (21) determines the new makespan value. Set (22), strictly speaking,
can be dropped from the model, since it is used to prevent variables w to assume value 1 without
being part of an atomic move. The only drawback is the need to analyze which variables w with
value 1 do not compose the model solution. Finally, set (23) defines the variable’s domain.

The number of variables in the mathematical model for the neighborhood search is
highly dependent on the number of jobs. For the atomic insertion moves (yij), variables are cre-
ated for each job j ∈ N to insert its jobs as successors of i ∈ N* (with i ≠ j and i ≠ pre(j)). Thus, the
number of variables y is given by n2+ n(m - 2), where m and n represent respectively the number
of machines and jobs of the instance under analysis. Similarly, for the atomic ejection move, the
number of variables x is n2 - 3n + 2m and the number of the variables w is n−m for the atomic clo-
sure move. Considering the cost variables, the total number of variable is 2n2 + n(m - 4) + 2m + 1.

The costs of moving a job j is calculated based on its predecessor and its successor. This
creates constraints to forbid any further moves that would modify these two jobs adjacent to j,
since the computation of the cost of moving j depends on them. These constraints are defined
in (15), (16) and (19). Thus, in the best case, this neighborhood allows approximately 50% of
the jobs to be moved. This provides an idea of the size of the neighborhood explored by our ap-
proach. To mitigate such a time consuming search, we devise two techniques. First we abdicate of

Rev. Adm. UFSM, Santa Maria, v. 7, número 3, p. 506-523, SET. 2014

- 513 -

Felipe Martins Muller
Olinto Bassi Araújo

Fernando Stefanello
Marcelo Zanetti

proving the optimality of the model and stop the solver by adding an extra parameter that limits
the computation time (tmax). Second, we consider a technique to eliminate some variables with
less probability of belonging to good move sequences. This technique is explained in more details
on the next subsection.

3.2 Size-Reduction Method

Some of atomic moves have an associated cost (processing time) higher than others. In
these cases, if our objective is to minimize the cost on each machine, we expect that moves with
higher cost have little chance to be chosen and belong to the optimal solution of the neighborhood.
Thus, a pre-processing technique discards heuristically some variables improving the performance of
the solver. This process is called size-reduction, and is similar to the techniques applied to quadratic
assignment problem in Mautor and Michelon (1997), Mautor and Michelon (2001). Stefanello and
Müller (2009) applied a similar method to solve the capacitated p-median problem. Fanjul-Peyro and
Ruiz (2011) use this technique on the mathematical model of unrelated parallel machines problem.

In order to describe our technique to eliminate variables of the mathematical model of
the neighborhood, we define the parameters ωy and ωx given by the following formula:
















Ω= ∑

≠≠
∈∈

)(,
,*

isucjji
NjNi

ij
y

y CY
n

w and















Ω= ∑

≠≠
∈

)(,
,

isucjji
Nji

ij
x

x CX
n

w

,

where CYij = cYij + cWj and CXij = cXij is an associated cost, and ny and nx are respectively the
number of atomic insertion and ejection moves. The parameter Ω represents an expansion/decreasing
factor, which defines the number of variables to be eliminated. Parameters ωy and ωx represent an upper
bound in such a way that a variable xij is eliminated if CXi j> ωx and a variable yij is eliminated if CYij > ωy.

4 loCAl SeARCh And MulTI-START AlgoRIThM

This section describes a multi-start algorithm and a local search procedure that use the
MIP-based neighborhood search described in Section 3. We start from two constructive heuristic
to provide an initial solution from the local search and multi start-algorithm method.

4.1 Constructive Heuristic

We need to generate an initial solution for the local search algorithm as well as for the
multi-start algorithm described in subsection 4.2 and 4.3, respectively. We implemented two
constructive heuristics. In the first constructive heuristic, called greedy initial solution, the jobs
are assigned to the machines that produce the lowest total processing time increase. This con-
structive heuristic is divided into two steps. First step rank the jobs in an increasing order of cost

∑ ∑∈ ∈
=

Mm Ni mijj Qc * . The second step assigns each job j in the previous order to machine
, were Lm is the current processing time on machine m and Qmlj is the

cost of inserting the job j after the last job on machine m.
In the second constructive heuristic, called random initial solution, a non assigned job j

is randomly selected (by uniform distribution) and assigned to machine . This

Rev. Adm. UFSM, Santa Maria, v. 7, número 3, p. 506-523, SET. 2014

- 514 -

MIP–Based neighborhood search for the unrelated parallel machine scheduling
problem with sequence and machine-dependent setup times

constructive heuristic is very simple, with low complexity and when embedded in the multi-start
algorithm, allows starting from distinct points in the search space.

4.2 Local Search Algorithm

Local search is a general approach for finding and improving solutions to hard combinatorial
optimization problems. The most basic strategy of local search algorithms is to start from an initial solu-
tion and iteratively try to replace the current solution by a better neighbor solution, until no improve-
ment can be reached. In this subsection we describe a basic local search procedure that use the moves
returned by the mathematical model describe in the subsection 3.1 to obtain a neighbor solution.

Two parameters are defined for the local search procedure: the minimum time (tmin) and
the maximum time (tmax). These parameters are used to limit the computation time allocated for the
solver to explore the neighborhood. The parameter tmin determines the minimum time that the solver
works after having found a feasible solution and the parameter tmax is adopted to keep the computa-
tional time within reasonable limits.

Algorithm 4.1 illustrates the proposed local search algorithm. The main loop of the
algorithm is iterated as long as possible to update the incumbent solution S*. The procedure,
called Size_Reduction(S), pre-processes the solution S to eliminate some variables as describe in
subsection 3.2. The procedure Neighborhood_Search(S,R,tmax,tmin) uses the mathematical model
of the neighborhood (described in section 3.1), solved by a commercial solver to find moves
that improve the objective function. Yet, the set R of variables are eliminated from the model
and the parameters tmax and tmin bound the execution of the solver. In the next step (line 5 -7),
the solution is updated if the incumbent solution was improved. The solution S is evaluated by

 (as described in (11)). At the end, the solution S* is returned (line 9).

Algorithm 4.1: Local_Search(S,tmax,tmin)

1 Initialize(f(S*), ∞);
2 while f (S) <f (S*) do
3 R ←Size_Reduction(S);
4 Neigborhood_Search(S,R,tmax,tmin);
5 if f(S) <f(S*) then
6 S*←S;
7 end
8 end
9 return(S*);

4.2 Multi-Start Algorithm

Sometimes, the local search is not able to find the best known solution for small in-
stances. This is because a small number of jobs generate few possible moves for the local search,
which converges quickly to a local optimal in such a case. To handle this issue, we implemented a
multi-start algorithm to improve the coverage of our approach during the neighborhood search.

Algorithm 4.2 shows a pseudo-code for the proposed multi-start algorithm. In the first phase
(lines 1–3) a greedy initial solution is generated by the procedure Greedy_Constructive(S) followed
by a Local_Search(S,tmax,tmin) procedure, as described in the subsection 4.2. The incumbent solution
is initialized on line 3. The second phase (lines 5–9), is similar to the first phase, however this phase is

Rev. Adm. UFSM, Santa Maria, v. 7, número 3, p. 506-523, SET. 2014

- 515 -

Felipe Martins Muller
Olinto Bassi Araújo

Fernando Stefanello
Marcelo Zanetti

repeated by nKiter times, and each iteration start with a random initial solution (describe in subsection
4.1) represented by the procedure Random_Constructive(S). Finally, the best solution is returned.

Algorithm 4.2: Multi_Start_Alg(Kiter)

1 Greedy_Constructive(S);
2 Local_Search(S,tmax,tmin);
3 S*←S;
4 for iter← 1 to nKiter

5 Random_Constructive(S);
6 Local_Search(S,tmax,tmin);
7 if f(S) <f(S*) then
8 S*←S;
9 end
10 end
11 return(S*);

We observe that when nKiter = 0 the steps in lines 4 to 10 are not executed, thus referring
to the local search procedure in its original form.

5 CoMPuTATIonAl ReSulTS

The computational results presented were obtained using CPLEX 12.1 C++ API with de-
fault configuration on a Intel Quad-Core Xeon X3360 2.83 GHz. The set of test instances is the one
proposed by Vallada and Ruiz (2011), available at http://soa.iti.es, and is divided into two groups:
640 small instances and 1000 large instances. Each group is subdivided into 10 instances with
distinct numbers of machines and jobs and different ranges for the setup time values. We define
the average relative deviation parameter (ARD) to evaluate the quality of solutions in accordance
with the equation ARD = 100(Sh - Sg)/min(Sh,Sg), where Sh corresponds to the value of makespan
obtained by our approach and Sg is the value of objective function (makespan) found by the
genetic algorithm proposed by Vallada and Ruiz (2011), which uses a stopping criteria based on
computational time defined by n(m/2)t, where t assumes 50 milliseconds as its maximum value.
Thus, the CPU time limit for the genetic algorithm varies from 12.5 to 187.5 seconds on a comput-
er with an Intel Core 2 Duo, 2.4 GHz with 2 GB of RAM memory. Several tests were conducted to
evaluate the proposed neighborhood. First, we used the multi-start algorithm for small instances.
Since this approach provided good results, we concentrated on tests of large instances using local
search with size-reduction strategy.

5.1 Results for Small Size Instances

In this subsection are presented the results for the multi-start algorithm applied on
small instances.

In this set of instances, the solver is able to prove the optimality of the mathematical
model for the neighborhood in small computational time. Thus, in this set of experiments we
do not use the size-reduction procedure and the parameters tmin and tmax were set to zero and
to a sufficiently large value, respectively. The multi-start algorithm was applied to a maximum
number of iteration equal nKiter with Kiter = 3 starting from a random initial solution plus the first
iteration with the greedy initial solution, totalizing 3n + 1 iterations.

Rev. Adm. UFSM, Santa Maria, v. 7, número 3, p. 506-523, SET. 2014

- 516 -

MIP–Based neighborhood search for the unrelated parallel machine scheduling
problem with sequence and machine-dependent setup times

Table 1 presents the results relative to the first iteration that found the best known
solution and the total execution of multi-start algorithm. The first two columns represent the
number of jobs and machines, respectively. Note that each line represents a set of 40 instances
(four sets of ten instances with setup times belonging to the following intervals: [1 , 9], [1 , 49], [1
, 99] and [1 , 124]). The next three columns are the following: the average number of iterations
(avg), the maximum number of iterations (max) and the average running time in seconds for the
first iteration where the multi-start algorithm found the best known solution (time (s)). The last
two columns show the total number of iterations of each instance, and the average run time in
seconds of the multi-start algorithm, respectively.

Table 1: Results of multi-start algorithm to find the best known solution and total number of iterations and running
time for small instances

Best Total
n M Avg Max time (s) nKiter time (s)
6 2 1.45 6 0.05 19 0.55

3 1.85 13 0.05 19 0.56
4 1.20 3 0.03 19 0.58
5 1.15 3 0.02 19 0.50

8 2 2.43 15 0.15 25 1.56
3 1.85 11 0.14 25 1.89
4 2.08 9 0.14 25 1.77
5 1.38 6 0.07 25 1.52

10 2 4.88 29 0.46 31 3.03
3 2.50 13 0.31 31 4.07
4 3.25 18 0.48 31 4.40
5 2.20 13 0.24 31 3.78

12 2 6.10 31 1.00 37 6.58
3 4.78 26 0.89 37 7.24
4 5.18 33 1.33 37 8.96
5 4.73 31 0.96 37 7.70

Average 2.94 0.39 3.42

Table 1 shows that the best known solutions are found in a relative small number of itera-
tions and a low running time of the multi-start algorithm. In average, the algorithm need less than 3
iterations, and at most 2 seconds to find the optimal solution. For the worst case, it took 33 iterations.

Table 2 show the results for different values of Kiter indicated on the first column. The sec-
ond column indicates the number of jobs representing a set of 160 instances with different num-
bers of machines and range of setup time. The third column shows the average value of ARD and
the next column (best) shows the percentage of instances which the multi-start algorithm found
the best known solution. Finally, the last column shows the average computational time in seconds.

Table 2: Average results for small instances

Kiter Jobs ARD best (%) Time (s)
0 6 1.45 81.25 0.02

8 3.78 63.13 0.06

Rev. Adm. UFSM, Santa Maria, v. 7, número 3, p. 506-523, SET. 2014

- 517 -

Felipe Martins Muller
Olinto Bassi Araújo

Fernando Stefanello
Marcelo Zanetti

Kiter Jobs ARD best (%) Time (s)

10 2.87 55.00 0.12
12 3.44 40.00 0.22

Average 2.88 59.84 0.11
0.5 6 0.20 97.50 0.11

8 0.28 95.00 0.35
10 0.36 88.75 0.77
12 0.63 80.00 1.45

Average 0.37 90.31 0.67
1 6 0.02 99.38 0.21

8 0.04 98.75 0.64
10 0.12 93.75 1.38
12 0.24 90.00 2.68

Average 0.11 95.47 1.23
2 6 0.00 100.00 0.39

8 0.00 100.00 1.16
10 0.01 98.75 2.60
12 0.02 96.25 5.13

Average 0.01 98.75 2.32
3 6 0.00 100.00 0.55

8 0.00 100.00 1.68
10 0.00 100.00 3.82
12 -0.04 100.00 7.62

Average -0.01 100.00 3.42

Table 2 shows that by using only the local search procedure (Kiter = 0), our approach
obtains the best solution known for 59.84% of the cases. The multi-start algorithm provides an
improvement in ARD values and in the percentage of the best known solutions found without
requiring expressive extra computational time. When Kiter = 3 we were able to find the best known
solutions for all instances tested.

An interesting fact to be considered is a negative ARD value obtained for one instance
with 12 jobs and 5 machines. A value ARD < 0 implies that the solution found by us is better than
the global optimal reported by Vallada and Ruiz (2011). A reasonable explanation is that the
problem can be caused by a misconfiguration of the tolerance and accuracy values of the CPLEX
solver used by Vallada and Ruiz (2011).

5.2 Results for Large Size Instances

In this subsection, the computational results are reported for the large instances using
local search procedure and local search enhanced with size-reduction method. The first experi-
ment considers only the local search (with tmax = (n-m/2)0.5, tmin =0.01tmax and without the size-re-
duction method). The solutions obtained by local search overcame genetic algorithm solutions,
because we found 93.5% of the best known solutions so far, and 90.00% of them are strictly
better. The ARD for all sets of instances with the parameters mentioned above was -11.17%, with

Rev. Adm. UFSM, Santa Maria, v. 7, número 3, p. 506-523, SET. 2014

- 518 -

MIP–Based neighborhood search for the unrelated parallel machine scheduling
problem with sequence and machine-dependent setup times

reduction up to -38.10% for an instance with 250 jobs and 30 machines. The average time per
instance was 201.46 seconds.

The second experiment evaluates the local search procedure enhanced with the size-re-
duction method. For this case, we set tmax = (n-m/2)0.2, reduction factor Ω = 0.3 and the initial
solution was generated by the greedy constructive method. Table 3 shows the average results
obtained at each set of 40 instances, in which first and second columns correspond to the num-
ber of machines and jobs. The next column (best) shows the percentage of instances for which
the local search could match or improve the results of the genetic algorithm. Finally, the last
columns report the average time in seconds for the genetic algorithm and the proposed method,
respectively.

Table 3: Average results for local search procedure + size-reduction.

Jobs Machine ARD best (%) Time GA (s) Time LS (s)
10 3.92 30.00 13 4.40
15 -3.57 80.00 19 2.71

50 20 -7.30 95.00 25 2.05
25 -10.66 100.00 31 1.30
30 -12.23 97.50 38 1.18
10 0.52 50.00 25 16.40
15 -4.03 87.50 38 19.30

100 20 -7.22 95.00 50 17.65
25 -15.51 100.00 63 18.00
30 -21.11 100.00 75 15.72
10 -2.52 82.50 38 32.97
15 -5.19 90.00 56 32.86

150 20 -11.81 97.50 75 39.15
25 -15.82 100.00 94 33.83
30 -20.05 100.00 113 32.91
10 -5.40 100.00 50 51.19
15 -8.58 100.00 75 52.73

200 20 -12.93 100.00 100 56.00
25 -17.72 100.00 125 58.98
30 -21.24 100.00 150 54.86
10 -6.38 100.00 63 71.59
15 -10.98 100.00 94 71.17

250 20 -13.58 100.00 125 72.65
25 -20.12 100.00 156 82.18
30 -22.99 100.00 188 79.00

Average -10.90 92.20 75 36.83

Rev. Adm. UFSM, Santa Maria, v. 7, número 3, p. 506-523, SET. 2014

- 519 -

Felipe Martins Muller
Olinto Bassi Araújo

Fernando Stefanello
Marcelo Zanetti

The results reported in Table 3 show that the average computational time was approxi-
mately 2 times lower than those reported in Vallada and Ruiz (2011), which is representative even
considering the differences in hardware. We were able to match or improve 92.20% of the results,
with an average improvement of 10.90% in comparison with the genetic algorithm. As another
remark, the size-reduction method allows a significant reduction of computational time. With a
small number of variables the solver improves the solution in small time allowing the reduction of
parameter tmax and consequently the total running time. In comparison with the local search with-
out size-reduction method, the average running time was reduced from 201.46 to 36.83 seconds
without significantly reduction in the solution quality, which was 11.17% to 10.90%.

The local search reduces by 50% the initial solution value in approximately 17 iterations,
and it works this way even for low quality initial solutions.

6 ConCluSIonS And fuTuRe ReSeARCh

This work presented a hybridization of exact and heuristic methods to solve the unre-
lated parallel machine scheduling problem with sequence and machine-dependent setup times
in order to minimize the makespan criteria. As a strategy to solve this problem, we proposed a
MIP-based neighborhood that makes use of commercial solvers. This neighborhood was applied
with a local search and a multi-start algorithm. A size-reduction method was proposed too. The
experiments show that our approach is effective in obtaining good solutions for the considered
problem. Our strategy produced results which overcame those reported by Vallada and Ruiz
(2011), who applied a genetic algorithm on the same set of instances. For the small instances,
the multi-start algorithm obtained better or equal results in all cases with Kiter = 3. For large in-
stances it was possible to find better solutions in most of the cases. Our instances and solutions
are available on the web at www.inf.ufsm.br/~stefanello/instances/.

ACknowledgeMenTS

The first author was partially supported by CAPES (Coordenação de Aperfeiçoamento de
Pessoal de Nível Superior).

RefeRenCeS

ALLAHVERDI, A.; GUPTA, J. N. D.; ALDOWAISAN,
T. A review of scheduling research involving setup
considerations. Omega, v.27, n.2, p.219–239, 1999.

ARMENTANO, V. A.; DE FRANÇA FILHO, M. F.
Minimizing total tardiness in parallel machine
scheduling with setup times: An adaptive memory-
based GRASP approach. European Journal of
Operational Research, v.183, n.1, p.100–114, 2007.

CHEN, J.-F. Minimization of maximum tardiness
on unrelated parallel machines with process
restrictions and setups. The International
Journal of Advanced Manufacturing

Technology, v.29, n.5, p.557–563, 2006.

CHEN, J.-F.; WU, T.-H. Total tardiness
minimization on unrelated parallel machine
scheduling with auxiliary equipment
constraints. Omega, v.34, n.1, p.81–89, 2006.

DE PAULA, M. R.; RAVETTI, M. G.; MATEUS, G.
R.; PARDALOS, P. M. Solving parallel machines
scheduling problems with sequence-dependent
setup times using variable neighborhood search.
IMA Journal of Management Mathematics,
v.18, n.2, p.101–115, 2007.

DUMITRESCU, I.; STÜTZLE, T. Combinations
of Local Search and Exact Algorithms. In:

Rev. Adm. UFSM, Santa Maria, v. 7, número 3, p. 506-523, SET. 2014

- 520 -

MIP–Based neighborhood search for the unrelated parallel machine scheduling
problem with sequence and machine-dependent setup times

CAGNONI, S.; JOHNSON, C.; CARDALDA, J.;
MARCHIORI, E.; CORNE, D.; MEYER, J.-A.;
GOTTLIEB, J.; MIDDENDORF, M.; GUILLOT,
A.; RAIDL, G.; HART, E. (Eds.), Applications of
Evolutionary Computing, v.2611, Springer
Berlin Heidelberg, p.211–223, 2003.

FANJUL-PEYRO, L.; RUIZ, R. Size-reduction
heuristics for the unrelated parallel machines
scheduling problem. Computers & Operations
Research, v.38, n.1, p.301–309, 2011.

FERNANDES, S.; LOURENÇO, H. Optimised
Search Heuristics: A Mapping of procedures and
Combinatorial Optimisation Problems. Technical
Report, Universidade do Algarve, Faro, Portugal, 2006.

FRANÇA, P. M.; GENDREAU, M.; LAPORTE, G.;
MÜLLER, F. M. A tabu search heuristic for the
multiprocessor scheduling problem with sequence
dependent setup times. International Journal of
Production Economics, v.43, n.2–3, p.79–89, 1996.

GRAHAM, R. L.; LAWLER, E. L.; LENSTRA, J. K.;
KAN, A. Optimization and Approximation in
Deterministic Sequencing and Scheduling: a
Survey. Annals of discrete mathematics, v.5,
p287–326, 1979.

JOURDAN, L.; BASSEUR, M.; TALBI, E.-G.
Hybridizing exact methods and metaheuristics:
A taxonomy. European Journal of Operational
Research, v.199, n.3, p.620–629, 2009.

KIM, D.-W.; KIM, K.-H.; JANG, W.; CHEN, F.
F. Unrelated parallel machine scheduling
with setup times using simulated annealing.
Robotics and Computer-Integrated
Manufacturing, v.18, n.3–4, p.223–231, 2002.

LOGENDRAN, R.; MCDONELL, B.; SMUCKER, B.
Scheduling unrelated parallel machines with sequence
dependent setups. Computers & Operations
Research, v.34, n.11, p.3420–3438., 2007.

LOW, C. Simulated annealing heuristic for flow
shop scheduling problems with unrelated
parallel machines. Computers & Operations
Research, v.32, n.8, p.2013–2025, 2005.

MAUTOR, T.; MICHELON, P. MIMAUSA: A
new hybrid method combining exact solution
and local search. Proceedings of the 2nd
International Conference on Metaheuristics,
p.15, Sophia-Antipolis, France, 1997.

MAUTOR, T.; MICHELON, P. MIMAUSA: an
application of referent domain optimization.
Technical Report, 260, Laboratoire
d’Informatique, Université d’Avignon et des
Pays de Vaucluse, 2001.

NIEVERGELT, J. Exhaustive Search,
Combinatorial Optimization and Enumeration:
Exploring the Potential of Raw Computing
Power. SOFSEM 2000: Theory and Practice of
Informatics, LNCS, v.1963, p.18-35, 2000.

PINEDO, M. Scheduling: Theory, Algorithms,
and Systems. 3th ed, New Jersey: Prentice
Hall, 678 p, 2008.

PUCHINGER, J.; RAIDL, G.R. Combining
metaheuristics and exact algorithms in
combinatorial optimization: A survey and
classification. International Work-Conference
on the Interplay Between Natural and
Artificial Computation - IWINAC, Part II. LNCS
3562, p.41–53, 2005.

RABADI, G.; MORAGA, R.; SALEM, A. Heuristics
for the unrelated parallel machine scheduling
problem with setup times. Journal of Intelligent
Manufacturing, v.17, n.1, p.85–97, 2006

TALBI, E. G. A taxonomy of hybrid
metaheuristics. Journal of Heuristics, v. 8, n. 5,
p.541–564, 2002.

VALLADA, E.; RUIZ, R. Genetic algorithms for
the unrelated parallel machine scheduling
problem with sequence dependent setup
times. European Journal of Operational
Research, v.211, n.3, p.612–622, 2011.

WENG, M. X.; LU, J.; REN, H. Unrelated parallel
machine scheduling with setup consideration
and a total weighted completion time
objective. International Journal of Production
Economics, v.70, n.3, p.215–226, 2001.

Rev. Adm. UFSM, Santa Maria, v. 7, número 3, p. 506-523, SET. 2014

- 521 -

Felipe Martins Muller
Olinto Bassi Araújo

Fernando Stefanello
Marcelo Zanetti

APPendIx A. exTended exAMPle

In order to elucidate how the local search and the MIP-based neighborhood work, we
extend a small and simple example explaining all process and computation of the resolution.
First, we present the instance. The number of jobs is n = 4 and the number of machines m = 2.
For each job j such that j = {1,2,3,4}, the processing time in the first machine is p1j = {4,8,4,6} and
in the second machine is p2j = {2,6,7,7}. The setup time is presented in Table A.4, where s213 = 1 is
the setup time to process the job 3 immediately after processing the job 1 on machine 2.

Table A.4: Setup time of job on the machines 1 and 2

Machine 1 Machine 2
Job 1 2 3 4 1 2 3 4
1 - 1 8 1 - 5 1 6
2 4 - 7 3 6 - 7 7
3 7 3 - 2 7 6 - 4
4 3 8 3 - 3 7 3 -

We start from a solution m1: 1 → 2 and m2: 3 → 4; the cost of allocation each job is giv-
en by Qkij = skij + pkj. We represent jobs a and b as the dummy jobs of first and second machine,
respectively. Observe that the setup time to allocate the first job in the machine is zero. Thus, we
can calculate the cost:`

Job 1: Q1a1 = 0 + 4 = 4 Job 3: Q2b3 = 0 + 7 = 7
Job 2: Q112 = 1 + 8 = 9 Job 4: Q234 = 4 + 7 = 11

obtaining a cost of 15 and 18 for the first and second machine, respectively. The value of makespan
is max{15,18} = 18.

The next step is to build the mathematical model of neighborhood and we
start calculating the costs cOj, cWj, cXij, cYij on the current solution. Let pre(i) and suc(i)
be the predecessor and successor of the job i, respectively (as defined in subsection
3.1). The cost cOj is the cost of remove the job j from machine k, and is calculated by
cOj = -Qk,pre(j),j -Qk,j,suc(j). In our example we have:

cO1: -Q1a1 -Q112 = -4 + 9 = −13 cO3: - Q2b3 - Q234 = -7 - 11 = - 18
 cO2: -Q112 = -9 cO4: -Q234 = -11

The cost cWj is the cost of linking the predecessor and the successor of job j allocated on machine
k. This cost is calculated by cWj = Qk,pre(j),suc(j).

cW1: Q1a2 = 8
cW3: Q2b4 = 7
Specifically for the ejection move, the cost cXij = Qk,pre(i),j + Qk,j,suc(i) is the cost of inserting

job j in the position of job i. In this case we have 8 possibilities.
cX31: Q2b1 + Q214 = 2 + 13 = 15 cX41: Q231 = 9
cX32: Q2b2 + Q224 = 6 + 14 = 20 cX42: Q232 = 12
cX13: Q1a3 + Q132 = 4 + 11 = 15 cX23: Q113 = 12
cX14: Q1a4 + Q142 = 6 + 16 = 22 cX24: Q114 = 7

Associated with the atomic insertion move, cost of inserting job j as immediate succes-

Rev. Adm. UFSM, Santa Maria, v. 7, número 3, p. 506-523, SET. 2014

- 522 -

MIP–Based neighborhood search for the unrelated parallel machine scheduling
problem with sequence and machine-dependent setup times

sor of job i is calculated by cYij = − Qki,suc(i) + Qkij + Qkj,suc(i). In this case we have 16 possibilities.
 cY21: Q121 = 8 cYb1: -Q2b3 + Q2b1 + Q213 = 3

cY31: -Q234 + Q231 + Q214 = 11 cY41: Q241 = 5
cYa2: -Q1a1 + Q1a2 + Q121 = 12 cYb2: -Q2b3 + Q2b2 + Q223 = 13
cY32: -Q234 + Q232 + Q242 = 15 cY42: Q242 = 13
cYa3: -Q1a1 + Q1a3 + Q131 = 11 cY13: -Q112 + Q113 + Q132 = 14

cY23: Q123 = 11 cY43: Q243 = 10
cYa4: -Q1a1 + Q1a4 + Q141 = 9 cY14: -Q112 + Q114 + Q142 = 14

cY24: Q124 = 9 cYb4: -Q2b3 + Q2b4 + Q243 = 10
With the costs computed, we can construct the mathematical model of neighborhood.

The constraint (20) is responsible to evaluate the costs of the active atomic moves and we explain
that in details. In our example, we have:

Table A.5: Variables and costs of constraint set (20)

Variables relative m1 Variables relative m2

(a)
∑ ∑
∈ ∈Ni Uj

ijj
m

xcO -13x31- 13x41

-18x13 - 18x23

-11x14- 11x24

(b)
∑ ∑
∈ ∈

+
mUi Nj

ijij xcX -9x32 - 9x42

+ 15x31 + 20x32

+ 9x41 + 12x42

(c)
∑ ∑
∈ ∈

+
*Ni Uj

ijj
m

ycO + 15x13 + 22x14

+ 12x23 + 7x24

-18y13 - 18 y23 - 18y43

-11y14 - 11y24 - 18ya3

(d) {}
∑ ∑

∪∈ ∈

+
0mUi Nj

ijij xcY -13y21- 13y31- 13y41

-9ya2- 9y32- 9y
-13yb1- 9yb2

+ 3yb1 + 3yb2 + 10yb4

+ 11y31 + 15y32

+ 5y41 + 13y42 +10y43

(e)
∑
∈

+
mUi

iij wcW
+ 8w1 + 7w3

+ 13 ≤ C1 + 18 ≤ C2

On one hand, the parcels (a) and (c), indicate the cost to remove the job j on the ma-
chine m, if is made by one atomic ejection and insertion move, respectively. On the other hand,
the parcels (b) and (d), indicate the cost on the machine m to insert the job j on position i by the
atomic ejection move and the cost to insert the job j after the position i by the atomic insertion
move, respectively. In (e), is the cost of link the successor and predecessor of job j. The remain-
ing parcel indicates the current processing time on the machine m and the variable to store the
new value of processing time. With the other constraints and using a MIP–solver, we obtain the
following solution: w3 = 1, x13 = 1 and y41 = 1 (the values of the remaining variables is zero). This
means that the solver find one atomic ejection move (x13) that insert the job 3 in the position of
job 1, one atomic insertion move (y41) that insert the job 1 after the position of job 4 and finally,
one atomic closure move (w3) that link the job 4 to dummy job b. This set of atomic move is a
chain move sequence. With the variables and costs showing in Table A.5, the new values of pro-
cessing time on each machine can be calculated.

Rev. Adm. UFSM, Santa Maria, v. 7, número 3, p. 506-523, SET. 2014

- 523 -

Felipe Martins Muller
Olinto Bassi Araújo

Fernando Stefanello
Marcelo Zanetti

m1: +15-13 + 13 = 15
m2: -18 + 5 + 7 + 18 = 12
Performing the movements, we obtain a new solution with makespan of max{15,12}=15.

Starting from the previous solution, in next iteration of the local search we obtain a new chain move
sequence (w4 = 1, x24 = 1 and y12 = 1) obtaining the solution m1: 3 → 4 and m2: 1 → 2 with makespan
equal to 13. Then the procedure stops because there was no more makespan improvement.

