DETERMINAÇÃO DO PERCENTUAL DE GORDURA CORPORAL EM HANDEBOLISTAS FEMININAS.

BUUY FAT DETERMINATION OF FEMALE TEAM HANDBALL PLAYERS.

* Cândido Simões Pires Neto

RESUMO: Este estudo objetivou identificar os percentuais de gordura corporal entre equipes, posições atuantes e grupos etários de handebolistas femininas. Os dados foram coletados de 44 atletas participantes da 1ª Taça Brasil Juvenil de Handebol. A densidade corporal foi determinada através da equação de Jackson, Pollock e Ward (1980). O percentual de gordura foi calculado pela equação de Brozek (1963). Os dados foram tratados pela análise de variância (one way) e de Duncan. Entre equipes a mais jovem foi a de Novo Hamburgo/RS (p < 0.05). Nas posições: as armadoras e goleiras possuíam, nesta ordem, maior estatura que as extremas (p < 0.05). A dobra supra-ilíaca foi deferente (p < 0.05) entre as 4 equipes. O % de gordura corporal não variou significativamente (p > 0.05) entre equipes, posições atuantes e grupos etários. O percentual médio de gordura destas 44 handebolistas foi 19.91 ± 3.5%. Pode-se sugerir que este % seja o característico para handebolistas do sexo feminino. Esta sugestão fundamenta-se a partir das diferentes regiões de procedência destas atletas.

ABSTRACT: The objective of this study was to determine the percent body fat of female team handball players, field position and age groups. Data were collected from 44 players involved in the 1st Taça Brasil Juvenil de Handebol. Body density was determined from Jackson, Pollock and Ward equation (1980). Percent body fat calculated from Brozek equation (1963). ANOVA (one way) and Duncan's test were the statistical procedures used. Among teams, the youngest was N. Hamburgo/RS (p < 0.05). At field positions, goalkeepers and inside were higher than wings (p < 0.05). Supra-iliac skinfold was different (p < 0.05) among all players by teams. Percent body fat was not significant (p > 0.05) by field positions, age groups and teams. Mean % body fat for all 44 players was 19.91 ± 3.5%. It is suggested that this percentage is characteristic for female team handball players. This suggestion is based upon on different regions of Brazil where these team handball came from.

* Professor Adjunto do Departamento de Métodos e Técnicas Desportivas/CEFD/UFSM.
1. INTRODUÇÃO

A literatura brasileira sobre composição corporal de atletas do sexo feminino é bastante reduzida, sendo limitada, ao que sabemos, a especialidade esportiva (ARAÚJO, 1979; SOARES, 1984; MOUTINHO, 1984), sendo que as características inerentes aos diferentes grupos etários e posição são desconhecidas.

Em handebolistas do sexo feminino, as informações existentes sobre composição corporal limitam os estudos de SOARES et alii (1984). Neste estudo, o percentual de gordura (N=18; \(\bar{X} = 25.513.0\% \)) foi estimado a partir da equação de SLOAN, BURT e BLYTH (1962). A massa corporal magra (MCM) calculada foi de 42.514.0 kg e, o peso da gordura (kg), determinado pelos dados fornecidos, é de 14.56 kg. Assim, objetivando identificar os valores para composição corporal de mulheres handebolistas não somente entre equipes, como também entre posições atuantes e grupos etários, foi desenvolvido o presente estudo.

2. MATERIAL E MÉTODOS

Os dados foram coletados de quarenta e quatro handebolistas, sexo feminino, integrantes de quatro das cinco equipes participantes da 1ª Taça Brasil Juvenil de Handebol, realizada em Santa Maria, RS, no mês de novembro de 1984. As equipes avaliadas foram aquelas de Santa Maria e Novo Hamburgo, RS; Belo Horizonte, MG e Rio de Janeiro, RJ, não sendo obtida permissão para avaliar as atletas da equipe de Umuarama, PR.

Três medidas de dobras cutâneas (DC) foram obtidas em cada ponto anatômico, através de um espessímetro MITUTOYO (CECORFE) em ol-
to localizas ao lado direito do corpo, conforme o protocolo sugerido por BEHKKE E WILMORE (1974) e, calculou-se a média daquelas dobrás que não diferiam em mais de 0,05 mm. As dobras cutâneas mensuradas foram: tríceps, abdominal, supra-iliaca e coxa. A densidade corporal (D) foi determinada através da equação de regressão proposta por JACKSON, POLLOCK e WARD (1980):

\[D = 1.0960950 - 0.0006952 \cdot (X_3) + 0.0000611 \cdot (X_1)^2 - 0.0000714 \cdot (X_2) \]

onde, \(X_1 \) = Somatório das dobras cutâneas do tríceps, abdominal supra-iliaca e coxa;

\((X_1)^2 \) = Somatório das quatro dobras anteriores, \(X_1 \), elevadas ao quadrado; e

\((X_2) \) = Idade em anos.

O percentual de gordura corporal relativa (% G) foi calculado conforme a equação proposta por BROZEK (1963):

\[% \ G = \left(\frac{4.670}{D} - 4.142 \right) \times 100 \]

O peso da gordura corporal (G kg) foi determinado através da equação:

\[G = (\% \ G/100) \times \text{Peso corporal} \]

e o peso da massa corporal magra (NWM) = Peso corporal - Peso da gordura.

Uma balança antropométrica Arja com divisões de 100g bem como uma fita metálica Stanley com divisões em milímetros, foram empregadas para a obtenção do peso corporal e estatura, respectivamente.

Usos procedimentos estatísticos utilizados constaram da análise de variação (one way) com o objetivo de detectar possíveis diferenças entre grupos e do teste de Duncan com a finalidade de localizar estas diferenças, sendo estabelecido o nível de significância em 0,005.

RESULTADOS E DISCUSSÃO

Nas tabelas 1, 2 e 3 são encontrados os valores referentes ao peso corporal e estatura por equipes, posição atuante e grupos etários. Os valores de peso não foram estatisticamente diferentes em nenhuma das variáveis de estudo. Em estatura as variações dos valores não foram significativos entre equipes e grupos etários. Uma significativa diferença \((p < 0.05) \) foi observada entre as posições atuantes, sendo as armadoras e goleiras, nesta ordem, mais altas que
As médias das 44 handebolistas (Tabela 5) nas variáveis peso ($\bar{X} = 58.31 \pm 7.22$ kg) e estatura ($\bar{X} = 163.19 \pm 6.19$ cm) são maiores que aquelas encontradas por SOARES (1984) em handebolistas de alto nível (peso, $\bar{X} = 57.1 \pm 6.3$ kg; estatura, $\bar{X} = 162.4 \pm 4.6$ cm) e, menor em idade, 17.4 ± 1.42 anos.

Diferenças significativas ($p < 0.05$) foram observadas entre as equipes quanto à idade (Tabela 4). A equipe do novo hamburg, no, é mais jovem que as demais equipes. Quando a idade foi analisada em relação a posição atuante (Tabela 2), as goleiras e pivôs apresentaram maiores valores que extremas e armadoras, não ocorrendo, entretanto diferenças estatísticas entre estas variáveis.

A densidade corporal foi indiretamente determinada através da equação de KACKSON et alii (1980). As vantagens e limitações da densitometria indireta são conhecidas (KATCH, 1973, 1975 e 1980; POLLOCK, 1980; SINNING, 1980; McARDLE, 1981; WILMORE, 1983). Não ocorreram diferenças significativas ($p > 0.05$) em densidade, massa corporal magra e gordura absoluta quanto as equipes, posição atuante e grupos etários (Tabelas 1, 2 e 3).

O percentual de gordura corporal relativa, determinado segundo a equação de BROZEK (1963) e, analisado em relação a distribuição das atletas por grupos etários (Tabela 3) e posição atuante (Tabela 2) apresentaram variabilidade de pouca magnitude e não significativa ($p > 0.05$). Entretanto, observando-se os valores quanto à idade, o maior % de gordura foi encontrado aos 16 anos ($N = 6; \bar{X} = 21.616 \pm 3.281\%$) e o menor aos 19 anos ($N = 10; \bar{X} = 19.47 \pm 2.7\%$). Entre as posições atuantes, o maior % de gordura foi encontrado entre os pivôs ($N = 6; \bar{X} = 21.631 \pm 4.01\%$) e o menor entre extremas ($N = 12; \bar{X} = 19.362 \pm 3.409\%$). Aquele maior % de gordura aos 16 anos pode ser atribuído, possivelmente, ao menor número de casos, do que, propriamente ao efeito idade, pois aquelas com 15 anos possuem menor percentual ($N = 9; \bar{X} = 19.570 \pm 3.344\%$). Em relação a posição atuante, situação semelhante à anterior também ocorreu. Seria inverossimilhável imaginar atletas que atuem em uma posição que solicita constantes deslocamentos, possuirem maior % de gordura do que aquelas atuantes em posições mais estáticas como a de goleira.
<table>
<thead>
<tr>
<th></th>
<th>N. HAMBURGO</th>
<th>B. HORIZONTE</th>
<th>R. JANEIRO</th>
<th>S. MARIA</th>
<th>F</th>
<th>Prob.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(N=10)</td>
<td>(N=11)</td>
<td>(N=13)</td>
<td>(N=10)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Idade</td>
<td>16.10 ± 1.39**</td>
<td>17.91 ± 1.62*</td>
<td>17.5 ± 1.3*</td>
<td>18.2 ± 1.2*</td>
<td>4.393</td>
<td>0.01a</td>
</tr>
<tr>
<td>Peso (kg)</td>
<td>55.9 ± 4.5</td>
<td>61.5 ± 7.4</td>
<td>56.61 ± 9.36</td>
<td>59.49 ± 5.10</td>
<td>1.449</td>
<td>0.241</td>
</tr>
<tr>
<td>Estatura (cm)</td>
<td>165.1 ± 5.0</td>
<td>165.4 ± 5.9</td>
<td>160.3 ± 8.3</td>
<td>162.4 ± 1.8</td>
<td>1.897</td>
<td>0.144</td>
</tr>
<tr>
<td>Densidade</td>
<td>1.0539 ± 0.0079</td>
<td>1.0495 ± 0.110</td>
<td>1.0570 ± 0.0080</td>
<td>1.0494 ± 0.0058</td>
<td>2.288</td>
<td>0.092</td>
</tr>
<tr>
<td>Gordura (kg)</td>
<td>10.802 ± 2.297</td>
<td>13.258 ± 4.011</td>
<td>10.527 ± 3.703</td>
<td>12.708 ± 2.226</td>
<td>2.049</td>
<td>0.121</td>
</tr>
<tr>
<td>MCM (kg)</td>
<td>44.637 ± 2.085</td>
<td>48.241 ± 4.698</td>
<td>46.087 ± 6.069</td>
<td>46.731 ± 3.492</td>
<td>1.160</td>
<td>0.336</td>
</tr>
<tr>
<td>DC Tríceps (mm)</td>
<td>14.184 ± 2.261</td>
<td>15.657 ± 4.501</td>
<td>14.222 ± 4.380</td>
<td>16.222 ± 2.947</td>
<td>0.835</td>
<td>0.514</td>
</tr>
<tr>
<td>DC S. Ilíaca (mm)</td>
<td>13.618 ± 3.2</td>
<td>16.917 ± 5.85</td>
<td>12.437 ± 3.76</td>
<td>18.308 ± 5.876</td>
<td>3.689</td>
<td>0.05b</td>
</tr>
<tr>
<td>DC Coxa (mm)</td>
<td>23.119 ± 5.556</td>
<td>24.388 ± 6.898</td>
<td>19.678 ± 3.528</td>
<td>22.736 ± 6.712</td>
<td>1.092</td>
<td>0.089</td>
</tr>
</tbody>
</table>

a $F_{0.01} = 4.31$; b $F_{0.05} = 2.84$; * Estes valores são iguais entre si e diferem do primeiro**
= Os valores sublinhados diferem entre si.

TABELA 2. Valores médios para composição corporal conforme a posição atuante.

<table>
<thead>
<tr>
<th></th>
<th>GOLEIRAS (N=9)</th>
<th>ARMADORAS (N=17)</th>
<th>EXTREMAS (N=12)</th>
<th>PIVOS (N=6)</th>
<th>F</th>
<th>PROB.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Idade</td>
<td>18.21 ± 1.57</td>
<td>16.98 ± 1.30</td>
<td>17.22 ± 1.30</td>
<td>18.12 ± 0.70</td>
<td>1.77</td>
<td>0.165</td>
</tr>
<tr>
<td>Peso (kg)</td>
<td>59.87 ± 7.34</td>
<td>58.53 ± 7.91</td>
<td>56.57 ± 4.35</td>
<td>58.83 ± 7.80</td>
<td>1.49</td>
<td>0.229</td>
</tr>
<tr>
<td>Estatura (cm)</td>
<td>165.4 ± 3.6**</td>
<td>165.0 ± 5.8**</td>
<td>159.70 ± 7.68*</td>
<td>161.55 ± 3.94</td>
<td>3.72</td>
<td>0.050a</td>
</tr>
<tr>
<td>Densidade</td>
<td>1.0522 ± 0.0099</td>
<td>1.0133 ± 0.0082</td>
<td>1.0541 ± 0.0083</td>
<td>1.0482 ± 0.0095</td>
<td>0.97</td>
<td>0.583</td>
</tr>
<tr>
<td>% Gordura</td>
<td>20.03% ± 4.122</td>
<td>19.64 ± 3.396</td>
<td>19.36 ± 3.409</td>
<td>21.63 ± 4.017</td>
<td>0.97</td>
<td>0.583</td>
</tr>
<tr>
<td>Gordura (kg)</td>
<td>12.25 ± 3.955</td>
<td>11.61 ± 3.25</td>
<td>11.05 ± 2.740</td>
<td>12.98 ± 4.111</td>
<td>1.16</td>
<td>0.335</td>
</tr>
<tr>
<td>MCM (kg)</td>
<td>48.09 ± 4.143</td>
<td>46.65 ± 5.888</td>
<td>45.51 ± 4.49</td>
<td>45.48 ± 4.242</td>
<td>1.35</td>
<td>0.270</td>
</tr>
<tr>
<td>Tríceps (mm)</td>
<td>25.68 ± 5.261</td>
<td>15.50 ± 3.827</td>
<td>13.53 ± 1.285</td>
<td>15.78 ± 3.084</td>
<td>0.88</td>
<td>0.538</td>
</tr>
<tr>
<td>S.Iliaca (mm)</td>
<td>14.17 ± 4.211</td>
<td>16.07 ± 5.197</td>
<td>13.80 ± 5.500</td>
<td>16.77 ± 5.785</td>
<td>0.73</td>
<td>0.538</td>
</tr>
<tr>
<td>Abdominal (mm)</td>
<td>15.01 ± 6.223</td>
<td>15.96 ± 5.083</td>
<td>15.37 ± 5.506</td>
<td>18.24 ± 4.903</td>
<td>0.51</td>
<td>0.675</td>
</tr>
<tr>
<td>Coxa (mm)</td>
<td>23.99 ± 6.401</td>
<td>20.51 ± 6.431</td>
<td>19.89 ± 5.208</td>
<td>25.19 ± 7.495</td>
<td>1.43</td>
<td>0.245</td>
</tr>
</tbody>
</table>

aF0.05 = 2.84
** Estes valores são iguais entre si e diferem do seguinte.
TABELA 3. Valores médios para composição corporal por grupos etários.

<table>
<thead>
<tr>
<th></th>
<th>15 (n=9)</th>
<th>16 (n=6)</th>
<th>17 (n=13)</th>
<th>18 (n=6)</th>
<th>19 (n=10)</th>
<th>F</th>
<th>PROB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peso (kg)</td>
<td>55.52 ± 5.81</td>
<td>61.03 ± 10.46</td>
<td>58.87 ± 7.34</td>
<td>57.28 ± 7.43</td>
<td>59.06 ± 6.4</td>
<td>0.630</td>
<td>0.660</td>
</tr>
<tr>
<td>Estatura (cm)</td>
<td>164.2 ± 4.79</td>
<td>164.01 ± 7.20</td>
<td>161.95 ± 7.89</td>
<td>161.31 ± 5.56</td>
<td>164.51 ± 5.10</td>
<td>0.436</td>
<td>0.783</td>
</tr>
<tr>
<td>Densidade</td>
<td>1.053 ± 0.0080</td>
<td>1.0485 ± 0.0073</td>
<td>1.0537 ± 0.0094</td>
<td>1.0519 ± 0.0121</td>
<td>1.0538 ± 0.0067</td>
<td>0.413</td>
<td>0.799</td>
</tr>
<tr>
<td>MCM (kg)</td>
<td>44.120 ± 2.753</td>
<td>47.650 ± 6.561</td>
<td>47.193 ± 4.795</td>
<td>45.439 ± 4.576</td>
<td>47.435 ± 4.015</td>
<td>0.961</td>
<td>0.569</td>
</tr>
<tr>
<td>Tríceps (mm)</td>
<td>15.185 ± 4.031</td>
<td>18.281 ± 5.083</td>
<td>14.535 ± 3.260</td>
<td>14.441 ± 3.778</td>
<td>13.985 ± 2.792</td>
<td>1.469</td>
<td>0.229</td>
</tr>
<tr>
<td>Abdominal (mm)</td>
<td>14.737 ± 6.426</td>
<td>16.345 ± 5.347</td>
<td>16.122 ± 5.113</td>
<td>16.203 ± 6.360</td>
<td>15.325 ± 4.919</td>
<td>0.129</td>
<td>0.968</td>
</tr>
<tr>
<td>Coxa (mm)</td>
<td>22.477 ± 5.468</td>
<td>24.215 ± 6.646</td>
<td>21.613 ± 6.586</td>
<td>25.781 ± 8.157</td>
<td>*0.596 ± 2.335</td>
<td>0.920</td>
<td>0.536</td>
</tr>
</tbody>
</table>
Entre as equipes (Tabela 1) os % de gordura não diferiram grandemente. O menor foi observado na equipe do Rio de Janeiro e os maiores nas equipes de Santa Maria e Belo Horizonte, sendo a última a equipe que evidenciou maior heterogeneidade nesta variável.

O % médio de gordura das 44 handebolistas (\(\bar{X} = 19.918 \pm 3.58\%\)) é bastante menor que aquele encontrado por SOARES et al (1984) em handebolistas de alto nível (\(N = 18; \bar{X} = 25.5 \pm 3.0\%\)). Em 17 handebolistas americanas de nível olímpico e utilizando medidas de dobras cutâneas, FLECK (1983) encontrou um % médio de gordura de 19.1\%2.4\%, o que parece caracterizar uma relativa homogeneidade entre estas atletas e as do presente estudo. A equação utilizada por FLECK (1983) é a mesma empregada por SOARES (1984). Analisando percentualmente estes valores, pode-se observar que o percentual de gordura encontrado por SOARES (1984) é 21.97% e 25.09% maior que o observado no presente estudo e por FLECK (1983), respectivamente. As handebolistas americanas possuem, percentualmente, menos 4.03% de gordura que as do presente relato (Figura 1).

Figura 1 - Percentual de Gordura

<table>
<thead>
<tr>
<th>% Médio de Gord.</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Desvio Padrão(s)</td>
<td>3.0</td>
<td>2.4</td>
<td>3.5</td>
<td>2.2</td>
</tr>
<tr>
<td>Idade (média)</td>
<td>20.6</td>
<td>23.2</td>
<td>17.0</td>
<td>19.5</td>
</tr>
<tr>
<td>Desvio Padrão</td>
<td>3.2</td>
<td>1.9</td>
<td>1.4</td>
<td>0.9</td>
</tr>
<tr>
<td>NCM (média)</td>
<td>42.5</td>
<td>55.7</td>
<td>46.4</td>
<td>67.4</td>
</tr>
<tr>
<td>Desvio Padrão</td>
<td>4.0</td>
<td>3.3</td>
<td>4.5</td>
<td>5.3</td>
</tr>
<tr>
<td>Número</td>
<td>18</td>
<td>17</td>
<td>44</td>
<td>14</td>
</tr>
</tbody>
</table>
TABELA 4 - Correlações entre as quatro dobras e % de gordura

<table>
<thead>
<tr>
<th>Percentual de Gordura</th>
<th>DC Tríceps</th>
<th>DC Supra-Iliaca</th>
<th>DC Abdominal</th>
<th>DC Coxa</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.719</td>
<td>0.820</td>
<td>0.810</td>
<td>0.747</td>
<td>44</td>
<td></td>
</tr>
<tr>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TABELA 5 - Valores médios para composição corporal das quarenta e quatro handebolistas

<table>
<thead>
<tr>
<th>N</th>
<th>Idade</th>
<th>Peso(kg)</th>
<th>Altura(cm)</th>
<th>Densidade</th>
<th>4 DC</th>
<th>% Gordura</th>
<th>Gordura(kg)</th>
<th>McM(kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>44</td>
<td>17.045</td>
<td>58.315</td>
<td>163.15</td>
<td>1.0527</td>
<td>3009.00</td>
<td>19.913</td>
<td>11.723</td>
<td>45.442</td>
</tr>
<tr>
<td></td>
<td>1.429</td>
<td>7.225</td>
<td>6.15</td>
<td>0.0086</td>
<td></td>
<td></td>
<td>3.582</td>
<td>3.414</td>
</tr>
<tr>
<td>MIN.</td>
<td>14.5</td>
<td>44.0</td>
<td>140.5</td>
<td>1.0302</td>
<td></td>
<td>13.793</td>
<td>5.5</td>
<td>37.47</td>
</tr>
<tr>
<td>MAX.</td>
<td>19.1</td>
<td>76.0</td>
<td>176.5</td>
<td>1.0716</td>
<td></td>
<td>29.38</td>
<td>20.5</td>
<td>57.76</td>
</tr>
</tbody>
</table>

Em homens handebolistas (PIRES NETO, 1984), o percentual de gordura (\(\bar{X} = 10.5 \pm 2.20\%\)) é menor que aqueles observados em atletas femininas (Figura 1). Estas diferenças entre sexo, na quantidade de gordura, são determinadas pela gordura essencial e pela gordura subcutânea. A primeira, refere-se a gordura necessária para a manutenção orgânica de desejáveis padrões de saúde, bem como também a gordura específica ao sexo, ou seja, a gordura encontrada nas glândulas mamárias e região pélvica. A segunda, relaciona-se com a gordura do tecido adiposo subcutâneo (McARDLE, KATCHE & KATCH, 1981).

O somatório das dobras (tríceps, supra-ilíaca, abdominal e coxa) não diferiram (\(p > 0.05\)) entre os grupos etários e entre posições (Tabelas 3 e 2). Entre equipes, estas diferiram entre si na dobra supra-ilíaca (Tabela 1). Coincidentemente, esta dobra diferiu entre equipes na mesma sequência do % de gordura, o que não ocorreu com as demais dobras. A significativa correlação (\(p < 0.001\)) entre a dobra supra-ilíaca e o % de gordura, r= 0.82, não é surpreendente pois a mesma é integrante da equação de regressão para o cálculo da densidade. O que causa espécie é o fato da mesma ser melhor relacionada com o % de gordura que as dobras tricipital e coxa, o que contradiz LOHMAN (1981). Os valores para correlação estão na Tabela 4.

4. CONCLUSÃO

Os valores do percentual de gordura corporal relativa destas quarenta e quatro handebolistas não diferiram entre equipes, posição atuante e grupos etários, o que evidencia a homogeneidade desta
variável. Pode-se inferir que este percentual seja o característico para mulheres handebolistas nesta categoria. Esta sugestão fundamenta-se a partir das diferentes regiões de procedência destas handebolistas.

As diferenças observadas na dobra supra-ilíaca entre equipes, sugere a necessidade de estudos mais específicos, notadamente sobre os métodos de preparação física e controle alimentar.

5. REFERÊNCIAS BIBLIOGRÁFICAS

