
Abstract:

YouTubeScrap is an open-source tool that streamlines the
collection, analysis, and organization of YouTube video
data and transcripts, tailored to researchers, analysts,
and content creators. Designed for accessibility and effi-
ciency, this tool enables users to perform targeted
searches, extract detailed metadata, and retrieve multi-
lingual transcripts without requiring API keys-addressing
growing restrictions on data accessibility. Operating
seamlessly within Google Colab, YouTubeScrap leverages
a cloud-based infrastructure to eliminate installation bar-
riers, offering a ready-to-use environment for users with
varying technical expertise. The tool integrates Python
libraries such as yt_dlp, YouTubeTranscriptAPI, and
scrapetube to automate video searches, filter results by
criteria like keywords and date ranges, and store outputs
in Google Sheets for easy collaboration and compliance
with international data privacy standards. This API-free
solution democratizes access to digital content, enabling
large-scale data collection and analysis across academic
research, media studies, and communication fields. By
simplifying complex data-handling processes,
YouTubeScrap empowers users to navigate vast digital
landscapes ethically and efficiently, promoting equitable
access to critical online information in an era of increas-
ing platform restrictions. This tool serves as a scalable,
user-friendly resource for engaging and advancing data-
driven research.

Keywords: Data scraping; Computing; Computational
social sciences

Resumo:

YouTubeScrap é uma ferramenta de código aberto que
simplifica a coleta, análise e organização de dados de
vídeos e transcrições do YouTube, projetada para pesqui-
sadores, analistas e criadores de conteúdo. Desenvolvida
para ser acessível e eficiente, esta ferramenta permite
que os usuários realizem buscas direcionadas, extraiam
metadados detalhados e recuperem transcrições mul-
tilíngues sem a necessidade de chaves de API - resolven-
do as crescentes restrições ao acesso a dados. Operando
perfeitamente no Google Colab, o YouTubeScrap utiliza
uma infraestrutura baseada em nuvem para eliminar bar-
reiras de instalação, oferecendo um ambiente pronto
para uso, adequado para usuários com diferentes níveis
de conhecimento técnico. A ferramenta integra bibli-
otecas Python, como yt_dlp, YouTubeTranscriptAPI e
scrapetube, para automatizar buscas de vídeos, filtrar
resultados por critérios como palavras-chave e intervalos
de datas, e armazenar os resultados no Google Sheets,
facilitando a colaboração e garantindo conformidade com
padrões internacionais de privacidade de dados. Esta
solução sem uso de APIs democratiza o acesso ao
conteúdo digital, permitindo a coleta e análise de dados
em larga escala para pesquisas acadêmicas, estudos de
mídia e comunicação. Ao simplificar processos complexos
de manipulação de dados, o YouTubeScrap capacita os
usuários a navegar por vastos ecossistemas digitais de
maneira ética e eficiente, promovendo um acesso mais
equitativo a informações críticas online em uma era de
restrições crescentes nas plataformas. Essa ferramenta se
destaca como um recurso escalável e fácil de usar, ideal
para fomentar e avançar pesquisas baseadas em dados.

Palavras-chave: Data scraping; Computação; Ciências
sociais computacionais

I PhD Candidate, University of Brasília , Brasília, Federal District, Brazil.

isabelarocha.contato@gmail.com, https://orcid.org/0000-0001-8488-5528

II Master in Public Administration and Government from Fundação Getulio Vargas; Member in the Council for Sustainable Economic and Soci-

al Development, Brasília, Federal District, Brazil.
contato@ergoncugler.com, https://orcid.org/0000-0002-5753-1705

Página 1 ISSN 2357-7975

Publicado por InterAção sob uma licença CC BY-NC-SA 4.0

Revista InterAção —

Artigos Dossiê

YouTubeScrap: a comprehensive tool for scraping
YouTube data and transcript

YouTubeScrap: uma ferramenta abrangente para

raspagem de dados e transcrições do YouTube

Isabela Rocha I

Ergon Cugler de Moraes Silva II

IA., Santa Maria, v . 16, n. 4, e92749, p. 1 -13, Oct./Dec. 2025 • https://dx.doi.org/10.5902/2357797592749
Submitted: 6th/07/2025 • Approved: 21st/08/2025 • Published: 30th/09/2025

mailto:isabelarocha.contato@gmail.com
https://orcid.org/0000-0001-8488-5528
mailto:contato@ergoncugler.com
https://orcid.org/0000-0002-5753-1705
https://orcid.org/0000-0001-8488-5528
https://orcid.org/0000-0002-5753-1705
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://dx.doi.org/10.5902/2357797592749
https://dx.doi.org/10.5902/2357797592749
https://ror.org/02xfp8v59

Página 2 ISSN 2357-7975

InterAção — Artigos Dossiê

INTRODUCTION

Video-sharing platforms like YouTube have

become an integral part of everyday life, serving as

a hub for information, entertainment, and commu-

nication. Its widespread use offers researchers,

analysts, and content creators unique opportuni-

ties to explore public discourse, monitor trends,

and examine patterns of digital engagement. As of

July 2024, the countries with the largest YouTube

user bases include India, leading with approxi-

mately 476 million users, followed by the United

States with around 239 million users. Brazil ranks

third with about 144 million users, while Indonesia

and Mexico have approximately 139 million and 83

million users, respectively (Statista, 2024). As of

the third quarter of 2023, the platform was used

by 91.2% of the country's online audience, ranking

just below WhatsApp (93.4%) and Instagram

(91.2%) (Statista, 2023). However, extracting and

organizing meaningful data from such platforms

can be time-consuming and technically challeng-

ing, especially when dealing with large datasets or

multilingual content.

YouTubeScrap was developed to address

this gap. This open-source, API key free tool simpli-

fies the process of collecting, analyzing, and stor-

ing YouTube video data and transcripts, making it

accessible to a wide audience, offering a scalable

and efficient solution for gathering detailed video

metrics, retrieving multilingual transcripts, and in-

tegrating the data directly into Google Sheets for

further analysis. With its user-friendly design and

versatile features, YouTubeScrap has applications

across academic research, media analysis, commu-

nication studies, and digital marketing.

The tool automates various processes to

maximize efficiency and accuracy. It enables users

to perform targeted YouTube searches with cus-

tomizable queries, filter results by date ranges,

and save video links for analysis. YouTubeScrap

extracts comprehensive video metadata, including

titles, views, likes, upload dates, channel infor-

mation, and tags. Additionally, it retrieves multilin-

gual transcripts for videos that provide subtitles,

facilitating content analysis across different lan-

guages. All collected data is seamlessly organized

into a Google Sheet, ensuring accessibility, sharea-

bility, and compatibility with additional processing

tools. By integrating Python libraries like yt_dlp,

YouTubeTranscriptAPI, and scrapetube, the tool

ensures flexibility. Built specifically for use in the

Google Colab environment with Google Sheets,

YouTubeScrap ensures ease of deployment and

accessibility for users with varying levels of tech-

nical expertise as Colab’s cloud-based platform

eliminates the need for local installations and

offers a ready-to-use Python environment. The

step-by-step execution format allows users to in-

teract with the tool intuitively, running functions in

Página 3 ISSN 2357-7975

V. 16, N. 4, e92749, p. 1-13, 2025

sequence without needing deep programming

knowledge.

This whitepaper outlines the development

and capabilities of YouTubeScrap, providing guid-

ance on how users can leverage this tool to effi-

ciently navigate and analyze YouTube content. Be-

yond this introductory section, the whitepaper will

count with further three: the Step-by-step usage

section provides step-by-step instructions on how

to use the tool for searching videos, extracting

metrics, and retrieving transcripts; the Code sec-

tion delves into the technical aspects, explaining

the functionality of key modules and offering in-

sights for customization; and finally, the fourth and

final Conclusions sections discuss the broader im-

plications of the tool and potential areas for fur-

ther development or application.

STEP-BY-STEP USAGE

I. [Required] Create or load a Google Sheet

Open the tool in Google Colab and evaluate

the first cell where you’re invited to Create a

Worksheet. After authenticating your Google ac-

count to connect with Google Sheets, where the

data will be stored, proceed to name your work-

sheet. If the specified sheet doesn’t exist, the tool

will create one automatically with pre-defined col-

umn headers. These headers ensure that all ex-

tracted data, such as video links, metadata, and

transcripts, is structured for easy organization and

analysis. Once this step is complete, a link to your

worksheet will be provided for quick access and

verification.

Figure 1 - First cell to be evaluated

Source: Authors (2024)

Página 4 ISSN 2357-7975

InterAção — Artigos Dossiê

II. [Optional] Search YouTube videos and save
links

Define your search queries by specifying

the the search queries for the YouTube videos you

want to retrieve. The tool provides five query input

fields (query_1 to query_5), where you can enter

keywords or phrases to guide your search. Each

query can include filtering options using positive or

negative keywords (e.g., "presidente lula" -

bolsonaro -eleição). You can also Adjust the

max_results slider to set the number of videos to

retrieve for each query and specify a start_date

and end_date to filter videos based on their up-

load dates. Once you’ve entered your queries and

filters, run this section. The tool will begin search-

ing YouTube for videos matching the defined crite-

ria, displaying progress for each query. The re-

trieved video links will be saved directly to your

Google Sheet.

After gathering the data, your worksheet

will contain every discovered link. On the next

step, we shall add relevant Metadata to the dis-

covered videos. Attention: Instead of running this

cell, you can also manually add links in your gen-

erated worksheet, as many as you want, to ex-

tract metrics and transcripts in the following cells.

Figure 2 - Result after running the first cell of the code

Source: Authors (2024)

Página 5 ISSN 2357-7975

V. 16, N. 4, e92749, p. 1-13, 2025

Figure 3 - Second cell with search queries

Source: Authors (2024)

Figure 4 - Result after running the second cell of the code

Source: Authors (2024)

Página 6 ISSN 2357-7975

InterAção — Artigos Dossiê

III. [Optional] Extract metrics from videos (with the worksheet already created in Step 1 and links ei-
ther inserted manually or added in Step 2)

The code will now extract significant Metadata from each collected link. These are: [“ID”, “Title”,

“Full Title”, “Description”, “Channel Name”, “Channel ID”, “Channel URL”, “Timestamp”, “Publish Date”,

“Channel Name (Alt)”, “Channel ID (Alt)”, “Channel URL (Alt)”, “Subscribers”, “Is Verified”, “Location”,

“Length (s)”, “Views”, “Likes”, “Dislikes”, “Reposts”, “Comments”, “Tags”, “Thumbnail”], ensuring that all

relevant information is easily accessible in a structured and organized format.

Figure 5 - Third cell where Metadata is extracted

Source: Authors (2024)

Figure 6 - Result after running the third cell of the code

Source: Authors (2024)

Página 7 ISSN 2357-7975

V. 16, N. 4, e92749, p. 1-13, 2025

IV. [Optional] Extract video transcripts (with the worksheet already created in Step 1 and links either
inserted manually or added in Step 2)

If subtitles are available, the tool fetches the transcript in multiple languages and stores it in the

sheet. Videos without subtitles are marked accordingly.

Figure 7 - The last cell to be evaluated, where Transcriptions are extracted, if available

Source: Authors (2024)

Figure 8 - Result after running the last cell of the code

Source: Authors (2024)

Página 8 ISSN 2357-7975

InterAção — Artigos Dossiê

CODE

I. Create or load a Google Sheet

Table 1 - First cell approaches and code

Approach description Code description

This cell sets up the functionality for creating or access-

ing a Google Sheet, which acts as the storage location for

the extracted YouTube data. First, the required Python

libraries are installed to ensure the necessary tools for

interacting with YouTube and Google Sheets are availa-

ble. !pip install installs the required libraries (yt-dlp,

youtube-transcript-api, gspread, tqdm, and scrape-

youtube) for video data extraction and Google Sheets

interaction. Additionally, auth and gspread are used for

Google authentication and worksheet management, and

google.auth enables default authentication for accessing

Google Sheets. Then, the code authenticates the user’s

Google account, granting the tool permission to access

and modify Google Sheets. This is done through

auth.authenticate_user(), which prompts the user to

login and grant access to their Google account, enabling

the tool to interact with Google Sheets. Through creds, _

= default(), the user’s credentials are obtained for au-

thentication, and gc = gspread.authorize(creds) authoriz-

es access to Google Sheets using the authenticated cre-

dentials. A predefined list of column names to organize

the extracted data (e.g., video links, titles, descriptions,

channel information, views, likes, and transcripts) is cre-

ated through COLUMN_HEADERS. These headers ensure

the worksheet is formatted for consistent data entry,

and the load_or_create_sheet function manages the

creation or retrieval of the Google Sheet. It attempts to

open an existing Google Sheet with the name specified

in sheet_name, and, If the specified sheet does not exist,

it creates a new Google Sheet.

!pip install -q yt-dlp youtube-transcript-api gspread tqdm scrape-youtube

sheet_name = "name_your_worksheet" # @param {type:"string"}

from google.colab import auth

import gspread

from google.auth import default

auth.authenticate_user()

creds, _ = default()

gc = gspread.authorize(creds)

COLUMN_HEADERS = [

 "Link", "ID", "Title", "Full Title", "Description", "Channel Name", "Channel ID",

 "Channel URL", "Timestamp", "Publish Date", "Channel Name (Alt)", "Channel ID

(Alt)",

 "Channel URL (Alt)", "Subscribers", "Is Verified", "Location", "Length (s)",

 "Views", "Likes", "Dislikes", "Reposts", "Comments", "Tags", "Thumbnail",

"Transcript"

]

def load_or_create_sheet(sheet_name, headers):

 try:

 sheet = gc.open(sheet_name)

 except gspread.SpreadsheetNotFound:

 sheet = gc.create(sheet_name)

 print(f"Worksheet '{sheet_name}' created successfully.")

 worksheet = sheet.get_worksheet(0) or sheet.add_worksheet(title="Sheet1",

rows="100", cols="26")

 current_headers = worksheet.row_values(1)

 if current_headers != headers:

 worksheet.insert_row(headers, 1)

 print(f"Access your worksheet here: https://docs.google.com/spreadsheets/d/

{sheet.id}/edit")

 return worksheet

worksheet = load_or_create_sheet(sheet_name, COLUMN_HEADERS)

Source: Authors (2024)

Página 9 ISSN 2357-7975

V. 16, N. 4, e92749, p. 1-13, 2025

II. Search YouTube videos and save links

Table 2 - Second cell approaches and code

Approach description Code description

This cell sets up the functionality for searching YouTube videos

and saving their links based on specified criteria. First, it defines

the input parameters for user queries, including keywords,

maximum results, and a date range. You may input up to five

queries (query_1 to query_5), where each query can include

positive and negative keywords to refine the search. The

max_results parameter, controlled via a slider, specifies the

maximum number of results to retrieve for each query, while

the start_date and end_date parameters enable filtering of

videos based on their upload dates. This is the point where

libraries are leveraged to process the queries effectively. The

scrapetube library retrieves search results from YouTube based

on the defined queries, while yt_dlp handles metadata extrac-

tion for the retrieved video links. The datetime module is used

for parsing and comparing dates, and tqdm provides a progress

bar for visual feedback, ensuring that users can monitor the

status of the operation. The input queries are collected into a

list and filtered to remove any empty entries. Dates are convert-

ed from strings into datetime objects to allow proper compari-

son and filtering during the video search process. This ensures

that the tool processes only the videos that meet the defined

criteria. Two helper functions are also defined to streamline the

process. The get_video_details (video_id) function uses yt_dlp

to extract basic video metadata such as the title, upload date,

and video link. The video_matches_date (video, date_start,

date_end) function checks if a video's upload date falls within

the specified date range, ensuring that only relevant videos are

processed further. The main function,

search_youtube_to_sheet, performs the core task of searching

YouTube and saving the results. It iterates through each query,

retrieves video results using scrapetube.get_search(query), and

processes each video to extract its ID and metadata using

get_video_details. It then verifies if the video’s upload date

matches the specified range using video_matches_date. If the

video meets the criteria, its link is saved into the Google Sheet

at the next available row. Finally, the function is executed to

process all user-defined queries, with progress displayed for

each query using tqdm.

query_1 = "'presidente lula' -bolsonaro -eleição" # @param {type:"string"}
query_2 = "election usa -biden -kamala -trump" # @param {type:"string"}
query_3 = "" # @param {type:"string"}
query_4 = "" # @param {type:"string"}
query_5 = "" # @param {type:"string"}
max_results = 10 # @param {type:"slider", min:1, max:1000, step:1}
start_date = '2020-01-01' # @param {type:"date"}
end_date = '2024-12-31' # @param {type:"date"}

import scrapetube

from yt_dlp import YoutubeDL

from datetime import datetime

from tqdm.notebook import tqdm

queries = [query_1, query_2, query_3, query_4, query_5]
queries = [q for q in queries if q.strip()] # Remove empty queries

date_start = datetime.strptime(start_date, "%Y-%m-%d")
date_end = datetime.strptime(end_date, "%Y-%m-%d")

def get_video_details(video_id):
 url = f"https://www.youtube.com/watch?v={video_id}"
 ydl_opts = {"quiet": True}
 with YoutubeDL(ydl_opts) as ydl:
 info = ydl.extract_info(url, download=False)
 return {
 "title": info.get("title", "Unknown"),
 "upload_date": info.get("upload_date", "00000000"),

 "link": url,
 }

def video_matches_date(video, date_start, date_end):
 try:
 upload_date = datetime.strptime(video["upload_date"], "%Y%m%d")
 return date_start <= upload_date <= date_end

 except:
 return False

def search_youtube_to_sheet(worksheet, queries, max_results, date_start,
date_end):
 next_row = len(worksheet.col_values(1)) + 1

 for query in tqdm(queries, desc="Searching YouTube"):
 videos = scrapetube.get_search(query)
 results = []
 for video in tqdm(videos, desc=f"Processing '{query}'", leave=False):
 if len(results) >= max_results:
 break

 video_id = video["videoId"]
 video_details = get_video_details(video_id)
 if video_matches_date(video_details, date_start, date_end):
 results.append(video_details)
 worksheet.update_cell(next_row, 1, video_details["link"])
 next_row += 1

search_youtube_to_sheet(worksheet, queries, max_results, date_start, date_end)

Source: Authors (2024)

Página 10 ISSN 2357-7975

InterAção — Artigos Dossiê

III. Extract metrics from videos

Table 03 - Third cell approaches and code

Approach description Code description

This cell is responsible for extracting detailed video metadata

(metrics) from the links previously saved in the Google Sheet. It

iterates through each video link, retrieves relevant data using the

yt_dlp library, and updates the corresponding rows in the Google

Sheet with the extracted information. The process begins with

importing the required libraries that together form the backbone

of the video data extraction functionability: the aforementioned

yt_dlp is used to fetch comprehensive metadata for each video, re

allows the use of regular expressions to parse video IDs from

YouTube URLs, and tqdm provides a progress bar for real-time

visual feedback during the operation. The extract_video_metrics

(worksheet) function starts by scanning the Google Sheet for

video links that need processing by identifying rows where a link

exists in the first column, but the second column (Video ID) is

empty. These links are added to a list for further processing, en-

suring that previously processed links are skipped to save time and

avoid duplication. For each video link in the list, the tool extracts

the video ID using the extract_video_id() function and fetches the

associated metadata using yt_dlp. This metadata includes essen-

tial video details such as title, full title, description, duration, and

tags. It also retrieves channel information like the channel name,

ID, URL, number of subscribers, and verification status. Perfor-

mance metrics, including views, likes, dislikes, reposts, and com-

ment count, are recorded as well. Additionally, the upload date,

timestamp, location, and thumbnail URL are extracted. Tags are

converted into a comma-separated string for easier analysis and

storage. The extracted metadata is then systematically added to

the Google Sheet. Each piece of information is inserted into its

corresponding column based on the predefined headers, ensuring

that all data is well-organized and ready for analysis. This step

provides users with structured insights directly in the worksheet.

The function also includes robust error handling: if an issue arises

while processing a video link, such as an invalid link or network

error, the tool logs the error and moves on to the next link, ensur-

ing it that the process continues uninterrupted for the remaining

videos. Finally, the function is executed, and a progress bar is

displayed using tqdm, indicating how many videos have been

processed and how many remain. Upon completion, the tool

prints a success message, confirming that all video metrics have

been extracted and stored in the Google Sheet. This structured

and automated process simplifies the collection and organization

of comprehensive video data for analysis.

from yt_dlp import YoutubeDL
import re
from tqdm.notebook import tqdm

def extract_video_id(link):
 """
 Extracts the video ID from a YouTube link.

 Args:
 link (str): Full video URL.

 Returns:
 str: Extracted video ID.
 """
 match = re.search(r"v=([^&]+)", link)
 return match.group(1) if match else "Unknown"

def extract_video_metrics(worksheet):
 """
 Extracts video metrics and updates the worksheet.

 Args:
 worksheet: Google Worksheet object.
 """
 ydl_opts = {
 'quiet': True,
 'no_warnings': True,
 'skip_download': True,
 }

 # Collect all links with missing metadata
 links = []
 i = 2
 while worksheet.cell(i, 1).value:
 if not worksheet.cell(i, 2).value:
 links.append((i, worksheet.cell(i, 1).value))
 i += 1

 # Iterate over links and process each video
 for index, link in tqdm(links, desc="Extracting metrics"):
 try:
 video_id = extract_video_id(link) # Extract video ID from the link

 with YoutubeDL(ydl_opts) as ydl:
 info = ydl.extract_info(link, download=False)

 tags = info.get('tags', [])
 tags_str = ', '.join(tags) if isinstance(tags, list) else 'Unknown'

 # Update worksheet with extracted data
 worksheet.update_cell(index, 2, video_id) # Video ID
 worksheet.update_cell(index, 3, info.get('title', 'Unknown'))
 worksheet.update_cell(index, 4, info.get('fulltitle', 'Unknown'))
 worksheet.update_cell(index, 5, info.get('description', '').replace('\n', ' '))
 worksheet.update_cell(index, 6, info.get('uploader', 'Unknown'))
 worksheet.update_cell(index, 7, info.get('uploader_id', 'Unknown'))
 worksheet.update_cell(index, 8, info.get('uploader_url', 'Unknown'))
 worksheet.update_cell(index, 9, info.get('timestamp', 'Unknown'))
 worksheet.update_cell(index, 10, info.get('upload_date', 'Unknown'))
 worksheet.update_cell(index, 11, info.get('channel', 'Unknown'))
 worksheet.update_cell(index, 12, info.get('channel_id', 'Unknown'))
 worksheet.update_cell(index, 13, info.get('channel_url', 'Unknown'))
 worksheet.update_cell(index, 14, info.get('channel_follower_count', 'Unknown'))
 worksheet.update_cell(index, 15, info.get('channel_is_verified', 'FALSE'))
 worksheet.update_cell(index, 16, info.get('location', 'Unknown'))
 worksheet.update_cell(index, 17, info.get('duration', 'Unknown'))
 worksheet.update_cell(index, 18, info.get('view_count', 'Unknown'))
 worksheet.update_cell(index, 19, info.get('like_count', 'Unknown'))
 worksheet.update_cell(index, 20, info.get('dislike_count', 'Unknown'))
 worksheet.update_cell(index, 21, info.get('repost_count', 'Unknown'))
 worksheet.update_cell(index, 22, info.get('comment_count', 'Unknown'))
 worksheet.update_cell(index, 23, tags_str)
 worksheet.update_cell(index, 24, info.get('thumbnail', 'Unknown'))
 except Exception as e:
 print(f"Error processing link {link}: {e}")

print("Processing metrics...")
extract_video_metrics(worksheet)
print("Metrics extracted successfully!")

Source: Authors (2024)

Página 11 ISSN 2357-7975

V. 16, N. 4, e92749, p. 1-13, 2025

IV. Extract video transcripts

Table 04 - Fourth cell approaches and code

Source: Authors (2024)

Approach description Code description

YouTubeTranscriptAPI is used to fetch video

transcripts, re enables the parsing of video

IDs from the YouTube URLs, and tqdm, once

more, provides a progress bar to monitor

the process. The main function, ex-

tract_video_transcripts (worksheet), starts

by collecting video links from the first col-

umn of the Google Sheet. It identifies rows

where a video link is present, but the corre-

sponding cell in the transcript column

(column 25) is empty. It is configured to re-

trieve subtitles in multiple languages, spe-

cifically English (en), Spanish (es), and Portu-

guese (pt) as standard. This cleaned tran-

script is then inserted into the correspond-

ing cell in the Google Sheet. If no transcript

is available for a particular video (e.g., subti-

tles are disabled or unavailable), the tool

updates the cell with the placeholder text

"[no subtitles]". Finally, the function is exe-

cuted, and the tqdm progress bar provides

real-time feedback on the status of the op-

eration. Users can track how many videos

have been processed and how many re-

from youtube_transcript_api import YouTubeTranscrip-

tApi

import re

from tqdm.notebook import tqdm

def extract_video_transcripts(worksheet):

 col_url = worksheet.col_values(1)

 urls_to_process = [(idx, url) for idx, url in enumerate

(col_url[1:], start=2) if not worksheet.cell(idx, 25).value]

 for idx, url in tqdm(urls_to_process, desc="Extracting

transcripts"):

 video_id = re.search(r"v=([^&]+)", url)

 video_id = video_id.group(1) if video_id else None

 if video_id:

 try:

 transcript = YouTubeTranscrip-

tApi.get_transcript(video_id, languages=['en', 'es', 'pt'])

 transcript_text = ' '.join([item['text'].replace

('\n', ' ') for item in transcript])

 worksheet.update_cell(idx, 25, transcript_text)

 except Exception:

 worksheet.update_cell(idx, 25, "[no subtitles]")

Página 12 ISSN 2357-7975

InterAção — Artigos Dossiê

CONCLUSIONS

The YouTubeScrap tool proposes a step

forward in democratizing access to Social Media

data, addressing the current challenges research-

ers and analysts face in collecting and analyzing

online content. Designed as an open-source and

freely available solution, the code’s placement

within the Google Colab environment ensures ease

of use and accessibility for users at all levels of

technical expertise as colab’s cloud-based infra-

structure eliminates the need for local installations

and provides a ready-to-use environment, allowing

users to focus on their research without worrying

about software compatibility or setup complexi-

ties.

A standout feature of this tool is its ability

to operate without requiring API keys. As access to

online data becomes increasingly limited due to

stricter API regulations and usage restrictions,

YouTubeScrap provides a key-free solution that

enables users to retrieve, analyze, and organize

video data with ease. By eliminating the need for

API keys, the tool removes barriers for those who

may face challenges in obtaining credentials, pro-

moting equitable access to critical data. Addition-

ally, YouTubeScrap has been designed to align

with international data privacy regulations, ensur-

ing that its operation respects the principles of

ethical data handling while empowering users to

engage in compliant research and analysis.

Beyond its technical capabilities, this tool

was developed with a clear mission: to support

and enable research, media analysis, and public

discourse studies in a time when data availability is

diminishing. By automating the extraction of video

links, metadata, and transcripts, it not only saves

time but also standardizes the organization of

large datasets, making them more actionable.

YoutubeScrap bridges the gap between data inac-

cessibility and the growing need for systematic

analysis of digital platforms: API-free design and

integration with widely accessible technologies like

Google Sheets highlight its potential to support

academic, media, and communication studies

while fostering innovation in research.

As a reflection of the value of open-source

development in advancing knowledge, this tool is a

critical resource for empowering researchers and

practitioners in the field of Computational Social

Sciences. While the evolving landscape of data ac-

cessibility presents ongoing challenges, we hope

that YouTubeScrap remains operational long

enough.

Its use is highly encouraged and recom-

mended for academic and scientific research, con-

tent analysis, sentiment analysis, and speech anal-

ysis. While it is free to use and modify, the respon-

sibility for its use and any modifications lies with

the user. Feel free to explore, utilize, and adapt

Página 13 ISSN 2357-7975

V. 16, N. 4, e92749, p. 1-13, 2025

the code to suit your needs, but please ensure you

comply with YouTube's terms of service and data

privacy regulations. This tool is released under a

free and open-source license. When using or modi-

fying the tool, please ensure to provide appropri-

ate credit and citation. Referencing the tool in

your research is appreciated and contributes to its

continued development and improvement.

REFERENCES

Silva, Ergon Cugler de Moraes; Rocha, Isabela.

YouTubeScrap: A comprehensive tool for scraping

YouTube data and transcript. (Dec, 2024). Availa-

ble at: https://github.com/ergoncugler/web-

scraping-youtube.

Statista. Leading countries based on YouTube au-

dience size as of July 2024 (in millions) (2024).

Available at: https://www.statista.com/

statistics/280685/number-of-monthly-unique-

youtube-users/.

Statista. Leading social media platforms in Brazil

2023, by reach (2023). Available at: https://

www.statista.com/statistics/1307747/social-

networks-penetration-brazil/.

NOTES

¹See Code available on GitHub: https://

github.com/ergoncugler/web-scraping-youtube

https://github.com/ergoncugler/web-scraping-youtube
https://github.com/ergoncugler/web-scraping-youtube
https://www.statista.com/statistics/280685/number-of-monthly-unique-youtube-users/
https://www.statista.com/statistics/280685/number-of-monthly-unique-youtube-users/
https://www.statista.com/statistics/280685/number-of-monthly-unique-youtube-users/
https://www.statista.com/statistics/1307747/social-networks-penetration-brazil/
https://www.statista.com/statistics/1307747/social-networks-penetration-brazil/
https://www.statista.com/statistics/1307747/social-networks-penetration-brazil/
https://github.com/ergoncugler/web-scraping-youtube
https://github.com/ergoncugler/web-scraping-youtube

