Fundamentos e estado da arte da espectroscopia no infravermelho próximo no setor de base florestal

Graciela Inês Bolzon de Muñiz, Washington Luiz Esteves Magalhães, Mayara Elita Carneiro, Lívia Cássia Viana

Resumo


http://dx.doi.org/10.5902/198050987567

O conhecimento das propriedades da madeira é de fundamental importância para indicação dos potenciais de utilização final deste material. Na busca por novas alternativas para caracterização rápida, simples e confiável, destacam-se as avaliações não destrutivas da madeira. A espectroscopia no infravermelho próximo (NIRS) vem sendo utilizada como método não destrutivo que permite obter informações qualitativas e quantitativas dos constituintes da biomassa através da interação das ondas eletromagnéticas do infravermelho próximo com a amostra. Este trabalho tem como objetivo fornecer uma revisão sobre a técnica da espectroscopia no infravermelho próximo e sua aplicação no setor florestal. A técnica está presente em praticamente todas as áreas, devido ao nível de desenvolvimento que esta tecnologia atingiu nos últimos anos. A espectroscopia NIR tem se mostrado uma ferramenta rápida e eficiente para substituição dos diversos ensaios que determinam a qualidade da madeira.

Palavras-chave


espectroscopia; infravermelho próximo; madeira.

Texto completo:

PDF

Referências


ABRAHÃO, C. P. Estimativa de algumas propriedades da Madeira de Eucalyptus urophylla por espectrometria. 2005. 182 f. Tese (Doutorado em Ciências Florestais) – Universidade Federal de Viçosa, Viçosa, 2005.

ANDRÉ, N. et al. Assessment of wood load condition by near infrared (NIR) spectroscopy. Journal Material Science, v. 41, p. 1876-1886, 2006.

BAILLÈRES, H.; DAVRIEUX, F.; HAM-PICHAVANT, F. Near infrared analysis as a tool for rapid screening of some major wood characteristics in a eucalyptus breeding program. Forestry Science, v. 59, p. 479-490, 2002.

BARCELLOS, D. C. Caracterização do Carvão Vegetal através do uso de Espectroscopia no Infravermelho Próximo. 2007. 140 f. Tese (Doutorado em Ciências Florestais) – Universidade Federal de Viçosa, Viçosa, 2007.

BIRKETT, J. A.; GAMBINO, M. J. T. Estimation of Pulp kappa number with near-infrared spectroscopy. Tappi Journal, v. 72, n. 9, p. 193-197, 1989.

BOKOBZA, L. Near Infrared Spectroscopy. Journal of Near Infrared Spectroscopy, v. 6, n. 1, p.3-17, 1998.

BURNS, D. A.; CIURCZAK, E. W. Handbook of near-infrared analysis. 3th ed. Boca Raton: CRC, 2008. 808 p.

CALDEIRA, A. F. et al. NIR on-line: an innovation in the VCP wood yard. Disponível em: Acesso em 12/04/2006.

COWAN, J. J.; LANDERS, A. G. Method using NIR spectroscopy to monitor components of engineered wood products. United States Patent, 7,279,684 B2, Oct.9, 2007.

ENGSTRÖM, B.; HEDQVIST, M. Prediction of the properties of board by using a spectroscopy method combined with multivariate calibration. United States Patent, 5,965,888, Oct. 12, 1999.

EVANS, J. L. W.; SENFT, J. F.; GREEN, D. W. Juvenile wood effect in red alder: analysis of physical and mechanical data to delineate juvenile and mature wood zones. Forest Products Journal. v. 50, n. 7/8, p. 75-87, 2000.

FERREIRA, M. C. et al. Quimiometria I: Calibração Multivariada, um Tutorial, Química Nova, v. 22, p.724- 731, 1999.

FERREIRA, M. C. Multivariate QSAR. Journal Brazilian Chemical Society, São Paulo, v. 13, n. 6, p. 742-753, 2002.

FUJIMOTO, T.; YAMAMOTO, H.; TSUCHIKAWA, S. Estimation of wood stiffness and strength properties of hybrid larch by near infrared spectroscopy. Applied spectroscopy, v. 61, p. 882-888, 2007.

GELADI, P.; KOWALSKI, B. R. Partial Least-Square regression: a tutorial. Analytica Chimica Acta, Amsterdam, v. 185, p. 1-17, 1986.

GINDL, W. et al. The relationship between Near Infrared Spectra of radial wood surfaces and wood mechanical properties. Journal Near Infrared Spectroscopy, v. 9, n. 4, p. 255, 2001.

HAUKSSON, J. B. et al. Prediction of basic wood properties for Norway spruce. Interpretation of Near Infrared Spectroscopy data using partial least squares regression. Wood Science and Technology, v. 35, n. 6, p. 475, 2001.

HEIN, P. R. G. Avaliação das Propriedades da Madeira de Eucalyptus urophylla por meio da espectroscopia no Infravermelho Próximo. 2008. 74 f. Dissertação (Mestrado em Ciências Florestais) –Universidade Federal de Lavras, Lavras, 2008.

HOFFMEYER, P.; PEDERSEN, J. Evaluation of density and strength of Norway spruce wood by near infrared reflectance spectroscopy. Holz als Roh- und Werkstoff, v. 53, p. 165, 1995.

JONES, P. D. et al. Nondestructive estimation of Pinus taeda L. wood properties for samples from a wide range of sites in Georgia. Canadian Journal of Forest Research, v. 35, p. 85-92, 2005.

JONES, P. D. et al. Nondestructive estimation of wood chemical composition of sections of radial wood strips by diffuse reflectance near infrared spectroscopy. Wood Science and Technology, v. 40, p. 709–720, 2006.

KELLEY, S. S. et al. Use of near infrared spectroscopy to predict the mechanical properties of six softwoods. Holzforschung, v. 58, n. 3, p. 252-260, 2004b.

KELLEY, S. S. et al. Use of near infrared spectroscopy to measure the chemical and mechanical properties of solid wood. Wood Science and Technology, v. 38, p. 257-276, 2004a.

KIHARA, M. et al. Determination of the carbonyl groups in native lignin utilizing Fourier transform Raman spectroscopy. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, v. 58, n. 10, p. 2213-2221, 2002.

KOLLMANN, F. R.; COTÉ, W. A. Principles of Wood science and technology. Berlin: Springer-Verlag, 1968, 592 p.

MALINOWSKI, E. R. Factor Analysis in Chemistry, 2th. ed. New York: John Wiley & Sons, Inc., 1991.

MARKLUND, A.; HAUKSSON, J. B. Multivariate data analysis based on orthogonal signal correction and near infrared spectroscopy. Nordic Pulp and Paper research Journal, v. 14, n. 2, p. 140-148, 1999.

MARTENS H.; TORMOD N. Multivariate Calibration, New York: John Wiley & Sons, 1989.

MEDER R.; THUMM, A.; BIER, H. Veneer stiffness predicted by NIR spectroscopy calibrated using mini-LVL test panels. Holz als Roh- und Werkstoff, v. 60, n. 3, p. 159, 2002.

MEGLEN, R. R.; KELEY, S. S. Use of region of the visible and Near Infrared Spectrum to predict mechanical properties of wet wood and standing trees. United States Patent, 6,525,319 B2, Feb,25, 2003.

MICHELL, A. J.; SCHIMLECK, L. R. NIR spectroscopy of woods from Eucalyptus globulus. Appita Journal, v. 49, p. 23-26, 1996.

NENRISKSEN, H. C. et al. Simultaneous modeling o process variables and raw material properties as measured by NIR. A case study from cellulose production. Chemometrics and Intelligent Laboratory System, v. 77, p. 238-246, 2005.

NIEMEYER, J.; CHEN, Y.; BOLLAG, J. M. Characterization of humic acids, composts and peat by diffuse reflectance Fourier-transform infrared spectroscopy. Soil Science Society of America Journal, v. 56, p. 130-135, 1992.

NIGOSKI, S. Espectroscopia no infravermelho próximo no estudo de características da madeira e papel de Pinus taeda L. 2005. 160 f. Tese (Doutorado em Engenharia Florestal) – Setor de Ciências Agrárias, Universidade Federal do Paraná, Curitiba, 2005.

PASQUINI, C. Near infrared spectroscopy: fundamentals, practical aspects and analytical applications. Journal of the Brazilian Chemical Society, v. 14, n. 2, p. 198-219, 2003.

RAYMOND, C. A. et al. Nondestructive sampling of Eucalyptus globus and E. nitens for wood properties. III. Predict pulp yield using near infrared reflectance analysis. Wood Science and Technology, v. 35, p. 203-215, 2001.

RIALS, T, G.; KELLEY S, S.; SO C. L. Use of advanced spectroscopy techniques for predicting the mechanicals properties of wood composites. Wood and Fiber Science, v. 34, n. 3, p. 398–407, Jul 2002.

SAMISTRARO, G. Previsão das propriedades químicas da polpa e papel Kraft por espectroscopia no Infravermelho Próximo (NIR) e regressão de mínimos quadrados parciais (PLS). 2008. 115 f. Dissertação (Mestrado em Engenharia Florestal) – Setor de Ciências Agrárias,. Universidade Federal do Paraná. Curitiba, 2008.

SCAFI, S. H. F. Sistema de Monitoramento em Tempo Real de Destilações de Petróleo e Derivados Empregando a Espectroscopia no Infravermelho Próximo. 2005. 196 f. Tese (Doutorado em Química) – Instituto de Química, Universidade Estadual de Campinas, Campinas, 2005.

SCHIMLECK, L. R. et al. Estimation of microfibril angle and stiffness by near infrared spectroscopy using sample sets having limited wood density variation. IAWA Journal, v. 26, n. 2, p. 175-187, 2005.

SCHIMLECK, L. R. et al. Microfibril angle prediction of Pinus taeda wood samples based on tangencial face NIR spectra. IAWA Journal, v. 28, n. 1, p. 1–12, 2007.

SCHIMLECK, L. R. et al. Near-infrared spectra and chemical compositions of Eucalyptus globulus and Eucalyptus nitens plantation woods. Appita Journal, v. 50, p. 40-46, 1997.

SCHIMLECK, L. R. et al. Nondestructive estimation of tracheid length from sections of radial wood strips by near infrared spectroscopy. Holzforschung, v. 58, p. 375-381, 2004.

SCHIMLECK, L. R.; EVANS, R. Estimation of microfibril angle of increment cores by near infrared spectroscopy. IAWA Journal, v. 23, n. 3, p. 225 – 234, 2002.

SCHIMLECK, L. R.; EVANS, R.; ILIC, J. Application of near infrared spectroscopy to a diverse range of species demonstrating wide density and stiffness variation. IAWA Journal, v. 22, n. 4, p. 415 – 429, 2001b.

SCHIMLECK, L. R.; EVANS, R.; ILIC, J. Estimation of Eucalyptus delegatensis wood properties by near infrared spectroscopy. Canadian Journal Forestry Resource, v. 31, n. 10, p. 1671-1675, 2001a.

SCHIMLECK, L. R.; MORA, C.; DANIELS, R. F. Estimation of tracheid morphological characteristics of green Pinus taeda L. radial strips by near infrared spectroscopy. Wood and Fiber Science, v. 36, n. 4, p. 527-535, 2003.

SCHIMLECK, L.R.; EVANS, R. Estimation of Pinus radiata D. Don tracheid morphological characteristics by near infrared spectroscopy. Holsforschung, v. 58, p. 66-73, 2004.

SCHULTZ T. P.; BURNS D.A. Rapid secondary analysis of lignocellulose: comparison of near infrared (NIR) and Fourier transformation infrared (FTIR), Tappi journal, v. 73, n. 5, p.209 – 212, 1990.

SEFARA, N. L., CONRADIE, D.; TURNER, P. Progress in the use of near infrared absorption spectroscopy as a tool for the rapid determination of pulp yield in plantation eucalypts. Tappsa Journal, p. 15-17, Nov. 2000.

SKOGLUND, A. et al. On-line spectroscopy measurements of wood chips before a continuous digester. Chemometrics and Intelligent Laboratory system, v.70, p. 129-135, 2004.

SYKES, R. et al. Prediction of loblolly pine wood properties using transmittance near-infrared spectroscopy. Canadian Journal of Forest. Research, v. 5, p. 2423-2431, 2005.

TAKAYAMA, M. et al. Fourier transform Raman assigment of gauaiacyl and syringyl marker bands for lignin determination. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, v. 53, n. 10, p. 1621-1628, 1997.

TERDWONGWORAKUL, A. et al. Rapid assessment of wood chemical properties and pulp yield of Eucalyptus camaldulensis in Thailand tree plantations by near infrared spectroscopy for improving wood selection for high quality pulp. Journal Wood Science, v. 51, p. 167–171, 2005.

THUMM, A.; MEDER, R. Stiffness prediction of radiata pine clearwood test pieces using near infrared spectroscopy. Journal of Near Infrared Spectroscopy, v. 9, n. 2, p. 117-122, 2001.

TOMAZELLO FILHO, M. Variação radial da densidade básica e da estrutura anatômica da madeira do Eucalyptus saligna e Eucalyptus grandis. IPEF, n. 29, p. 37-45, 1985.

TSUCHIKAWA, S. et al. Near-infrared spectroscopy study of the physiscal and mechanical properties of wood with meso- and micro-scale anatomical observation. Applied Spectroscopy, v. 59, n. 1, p. 86-93, 2005.

TSUCHKAWA, S.; SIESLER, H. W. Near-infrared spectroscopy monitoring of the diffusion process of deuterium -labeled molecules in wood. Part II: hardwood. Applied Spectroscopy, v. 57, n. 6, p. 675-681, 2003a.

TSUCHKAWA, S.; SIESLER, H. W. Near-infrared spectroscopy monitoring of the diffusion process of deuterium -labeled molecules in wood. Part I: softwood. Applied Spectroscopy, v. 57, n. 6, p. 667-674, 2003b.

VIA, B. K. et al. Tracheid length prediction in Pinus palustris by means of near infrared spectroscopy: the influence of age. Holz als Roh- und Werkstoff, v. 63, p. 231-236, 2005.

VIA, B. K. Modeling longleaf pine (Pinus palustris mill) wood properties using near infrared spectroscopy. 2004. 141 f. Tese (Doctor of Philosophy) – Agriculture and Mechanical College, The School of Renewable Natural Resources, Louisiana State University, USA, 2004.

WILLIAMS, P. C.; SOBERING, D. C. Comparison of commercial near infrared transmittance and reflectance instruments for analysis of whole grains and seeds. Journal of Near Infrared Spectroscopy, Sussex, v. 1, n. 1, p. 25-33, 1993.

WILLIAMS, P.; NORRIS, K. Near-infrared technology. 2nd ed. Saint Paul: American Association of Cereal Chemistry, 2001. 296 p.

WOLD, S. et al. Orthogonal signal correction of near-infrared spectra. Chemometrics and Intelligent Laboratory Systems, v. 44, p. 175-185, 1998.

WOLD, S.; SJÖSTRÖM, M., Chemometrics, present and future success, Chemometrics and Intelligent Laboratory Systems, v. 44, p. 3-14, 1998.

WRIGHT, J. A.; BIRKETT, M. D.; GAMBINO, M. J. T. Prediction of pulp yield and cellulose content from wood samples using near infrared spectroscopy. Tappi Journal. v. 73, n. 8, p. 164-166, 1990.

YEH, T-F. Et Al. Rapid screening of wood chemical component variations using transmittance near-infrared spectroscopy. Journal Agriculture Food Chemistry, v. 53, p. 3328−3332, 2005.




DOI: http://dx.doi.org/10.5902/198050987567