MODELOS DE ÍNDICE DE SÍTIO PARA O PINHEIRO CALABRÊS (Pinus brutia Ten.) NA ILHA THASOS GRÉCIA

Kyriaki Kitikidou, Diamantis Bountis, Elias Milios

Resumo


Um modelo de índice de sítio para o pinheiro calabrês (Pinus brutia Ten.) na ilha Thasos Grécia foi apresentado. O modelo foi ajustado e validado com dados de análises de tronco de 150 árvores, obtidas de 75 parcelas de área fixa provenientes de cinco sítios experimentais. Quatro equações de crescimento em altura na forma de diferença algébrica foram testadas, sendo que a função de Bailey e Clutter (1974) foi considerada apropriada em razão da sua boa performance tanto com dados de ajuste como os de validação. Os resultados mostraram erros mais baixos do que 5% e pouco viés.


Palavras-chave


Curvas de sítio; Pinus brutiaTen; método da diferença algébrica.

Texto completo:

PDF

Referências


ADAMOPOULOS, S. et al. Ring width, latewood proportion and dry density in stems of Pinus brutia Ten. European Journal of Wood and Wood Products, Berlin, v. 67, n. 4, p. 471-477, Nov. 2009.

ÁLVAREZ-GONZÁLEZ, J. et al. Modeling the effect of thinnings on the diameter distribution of even-aged maritime pine stands. Forest Ecology and Management, v. 165, n. 1-3, p. 57–65, July 2002.

ARNOLD, R. et al. Genetic variation and tree improvement. In: NAMBIAR, S.; FERGUSON, I. (Eds.). New Forests: Wood production and environmental services. Melbourne: CSIRO Publishing, 2005. p. 248.

BAILEY, R.; CLUTTER, J. Base-age invariant polymorphic site curves. Forest Science, v. 20, n. 2, p. 155–159, June 1974.

BRAVO-OVIEDO, A. et al. Site index curves and growth model for Mediterranean maritime pine (Pinus pinaster Ait.) in Spain. Forest Ecology and Management, v. 201, n. 2-3, p. 187-197, Sept. 2004.

BURKHART, H. Suggestions for choosing an appropriate level for modeling forest stands. In: AMARO, A. et al. (Eds.). Modeling Forest Ecosystems. Wallingford: CABI Publishing, 2003. p. 3–10.

CALAMA, R. et al. Inter-regional variability in site index models for even-aged stands of stone pine (Pinus pinea L.) in Spain. Annals of Forest Science, v. 60, n. 3, p. 259–269, Apr. 2003.

CAO, Q. Estimating coefficients of base-age-invariant site index equations. Canadian Journal of Forest Research, Ottawa, v. 23, p. 2343–2347, Apr. 1993.

CLUTTER, J. Compatible growth and yield models for Loblolly pine. Forest Science, v. 9, n. 3, p. 354–371, Sept. 1963.

ELFVING, B.; KIVISTE, A. Construction of site index equations for Pinus sylvestris L. using permanent plot data in Sweden. Forest Ecology and Management, v. 98, n. 2, p. 125–134, Nov. 1997.

EZEKIEL, M.; FOX, K. Methods of correlation and regression analysis. New York: John Wiley and Sons, 1959. 550 p.

FRANKIS, M. Morphology and affinities of Pinus brutia. In: TASHKIN, O. (Ed.). Papers International Symposium Pinus brutia. Marmaris, Ankara, 1993. p. 11-18.

FRANKIS, M. Pinus brutia. Curtis's Botanical Magazine, London, v. 16, n. 3, p. 173-184, Aug. 1999.

GADOW, K. et al. Modelización del crecimiento y la evolución de bosques. IUFRO, Vienna, v. 12, p. 234-242, Sept. 2001.

GARCÍA, O. The state space approach in growth modeling. Canadian Journal of Forest Research, Ottawa, v. 24, p. 1894–1903, 1994.

GOELZ, J.; BURK, T. Development of a well-behaved site index equation: jack pine in North Central Ontario. Canadian Journal of Forest Research, Ottawa, v. 22, p. 776–784, 1992.

GOELZ, J.; BURK, T. Measurement error causes bias in site index equations. Canadian Journal of Forest Research, Ottawa, v. 26, p. 1585–1593, 1996.

HATZISTATHIS, A. et al. Growth and yield of Pinus brutia reforestations in relation with soil and physiographic factors. Aristotle University of Thessaloniki, Greece, Scientific Annals of the Department of Forestry and Natural Environment, Aristotle University of Thessaloniki, 1995. v. 38.

HEGER, L. Effect of index age on the precision of site index. Canadian Journal of Forest Research, Ottawa, v. 3, n. 1, p. 1–6, 1973.

HUANG, S. Development of compatible height and site index models for young and mature stands within an ecosystem-based management framework. In: AMARO, A.; TOMÉ, M. (Eds.). Empirical and process based models for forest tree and stand growth simulation. Oeiras: Salamandra. 1997. p. 591.

LAIRD, R.; CADY, F. Combined analysis of yield data from fertilizer experiments. Agronomy Journal, Madison, v. 61, p. 829-834, May 1969.

LEVESQUE, R.; SPSS Inc. SPSS programming and data management. 3rd edition. A guide for SPSS and SAS users. Chicago, USA: SPSS Inc., 2006. 388 p.

MARQUARDT, D.; SNEE, R. Ridge regression in practice. The American Statistician, v. 29, n. 1, p. 3-20, Feb. 1975.

MCCARTHY, P. The use of balanced half-sample replication in cross-validation studies. Journal of the American Statistical Association, v. 71, n. 355, p. 596-604, 1976.

MONSERUD, R. Height growth and site index curves for inland Douglas-fir based on stem analysis data and forest habitat type. Forest Science, v. 30, n. 4, p. 943–965, Dec. 1984.

PALAHÍ, M. et al. Modeling site quality and individual-tree growth in pure and mixed Pinus brutia stands in north-east Greece. Annals of Forest Science, v. 65, n. 5, p. 501-515, July 2008.

RICHARDS, F. A flexible growth function for empirical use. Journal of Experimental Botany, v. 10, p. 290–301, 1959.

RIO, M.; MONTERO, G. Modelo de simulación de claras en masas de Pinus sylvestris L. Madrid: Ministerio de Ciencia y Tecnología, 2001. (Monografías INIA: Forestal n. 3).

SKORDILIS, A.; THANOS C. Comparative ecophysiology of seed germination strategies in the seven pine species naturally growing in Greece. In: ELISS, R. et al. (Eds.). Basic and applied aspects in seed biology. Dordrecht: Klower Academic Press, 1997. p. 623-632.

SOARES, P. et al. Evaluating a growth model for forest management using continuous forest inventory data. Forest Ecology and Management, v. 71, n. 3, p. 251–265, Feb. 1995.

SPANOS, I. et al. Postfire, natural regeneration of Pinus brutia forests in Thasos island, Greece. Acta Oecologica, v. 21, n. 1, p. 13-20, Jan. 2000.

STONE, M. Cross-validation choice and assessment of statistical predictions (with discussion). Journal of the Royal Statistical Society Series B, v. 36, p. 111-147, 1974.




DOI: http://dx.doi.org/10.5902/198050982755