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ABSTRACT

The objective of this study is to estimate the canopy height of three sugarcane varieties at different 
growth stages, with UAV data and to evaluate its relationship with two vegetation indices (VIs) (NDVI 
and EVI) at different spatial resolutions (3m, 10m and 30m). The indices were calculated using images 
from the PlanetScope, Sentinel-2, and Landsat 8 satellites, acquired as close as possible to the UAV 
imaging date. The estimated canopy height for each field was obtained by subtracting the Digital 
Surface Model (DSM) from the Digital Terrain Model (DTM), built by the Structure from Motion (SfM) 
technique with UAV RGB images as input. The average from each estimated height was compared with 
the average measured in the field, to verify the accuracy of the model. Both Pearson’s correlation and 
the Determination Coefficient (R²) were calculated between the estimated heights and the VIs. The 
average estimated canopy height and measurements in the field were different (p<0.05), with the model 
generally underestimating the height. However, the plantation’s surface models portrayed the spatial 
variability within the field. The use of GCPs is mandatory to reduce errors in estimation. Regarding 
the indices, the spatial resolution did not influence the correlation analysis, with NDVI showing higher 
values than EVI, except for area A. However, all values, for both coefficients, were below 0.5 for all areas. 
Despite that, a temporal analysis is necessary to improve the relationship between the canopy height 
and VIs. The potential of UAV data as a proxy to zonal management should be addressed in future 
studies. 
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RESUMO 

O objetivo deste trabalho foi estimar a altura do dossel de três variedades de cana-de-açúcar em 
diferentes estágios fenológicos, utilizando dados de um VANT e avaliar sua relação com dois índices 
de vegetação (IVs) (NDVI e EVI) em diferentes resoluções espaciais (3m, 10m e 30m). Para o calcular 
os índices foram utilizadas imagens dos satélites PlanetScope, Sentinel-2 e Landsat 8, adquiridas o 
mais próximo possível da data do voo com o VANT. A altura estimada para cada talhão foi obtida pela 
subtração entre o MDS e MDT construídos a partir das imagens RGB do VANT, por meio da técnica SfM. 
As médias de cada altura estimada foram comparadas com médias obtidas em campo, a fim de se 
verificar a acurácia do modelo. Uma análise de correlação de Pearson e o coeficiente de Determinação 
(R²) foram calculados entre as alturas estimadas e os IVs. As médias de altura estimada e medidas 
em campo foram diferentes (p<0,05), com o modelo, geralmente, subestimando a altura. Todavia, 
os modelos de superfície da plantação conseguiram retratar a variabilidade espacial do talhão. É 
recomendado o uso de GCPs para reduzir os erros na estimativa. Em relação aos índices, a resolução 
espacial não exerceu influência na análise de correlação, com NDVI apresentando valores maiores que 
o EVI, com exceção da área A. Contudo, todos os valores, de ambos os coeficientes ficaram abaixo de 
0,5 para todas as áreas. Ainda assim, se faz necessária uma análise temporal para compreender melhor 
a relação entre altura e os IVs. O potencial dos dados de UAV para o gerenciamento zonal deve ser 
abordado em estudos futuros.

Palavras-chave: VANT; Sensoriamento remoto; Structure from motion; Altura do dossel

1 INTRODUCTION 

The use of Remote Sensing (RS) techniques benefits the agriculture with the 

reduction of costs and environmental impacts, and increasing the productivity and 

profitability, as recommended by Precision Agriculture (PA). PA became possible due 

to the advent of technologies such as GNSS (Global Navigation Satellite System), orbital 

imaging, Artificial Intelligence, integration of different sensor types, sensors with 

automatic controls, and unmanned aerial vehicles (UAVs) (Zhang; Wang; Wang, 2002).

PA seeks to increase production efficiency, reducing the use of inputs and costs, 

through management practices that aim to meet the needs of each area, seeking not 

to consider the cultivation medium as a homogeneous region (Mulla, 2012). To reach 

these goals, RS is a fundamental tool, as it can provide such information in a non-

destructive basis, with spatial and temporal distributed continuity, at different scales.

The main applications of RS in PA can be classified into three categories according 

to Hunt & Daughtry (2017): 1) the exploration of possible problems, using real-time 
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videos, without requiring much costs or complex analysis; 2) the monitoring to obtain 

advanced information, enabling actions and thus to avoid production losses; and 3) 

the planning of plantation management operations, which is the niche with the highest 

economic return, but also the one that demands more on data acquisition and analysis, 

presenting a higher cost than the others. Among these three classes, monitoring is still 

the most frequent applied category in PA practices. The main analysis performed with 

UAVs include the detection of water stress (Santesteban et al., 2017; Hoffman et al., 

2016; Quebrajo et al., 2018; Bian et al., 2019); estimation of soil salinity (Ivushkin et al., 

2019) and; chlorophyll concentration (Elarab et al., 2015); lodging (Chu et al., 2017; Liu 

et al., 2018); monitoring of biomass and production (Bendig et al., 2015, Sanches et al., 

2018; Grüner; Astor; Wachendorf, 2019); fault detection (Luna; Lobo, 2016; Souza et al., 

2017a), field zoning (Damian et al., 2017; Breunig et al., 2020a; Damian et al. 2020) and 

crop growth assessment (Bendig; Bolten, Bareth, 2013; Souza et al., 2017b). 

In Brazil, one of the sectors that have taken advantage of remote sensing 

techniques to improve management practices and consequently increase productivity 

is the sugarcane sector. A proof of this, is the production increase in the 2019/20 harvest, 

as evidenced by CONAB (2020). According to the survey conducted, the Brazilian 

sugarcane production reached 642.7 million tons in the 2019/20 harvest, an increase 

of 3.6% in relation to the previous year. Most of this production is concentrated in 

São Paulo State (342.6 million tons). However, despite the increase of more than 3% 

in the country’s production, the total planted area decreased by 1.7%, a proof that 

management practices focused on increase of productivity are fundamental for the 

development of a more sustainable agricultural production, capable of meeting market 

demands with the possibility of maintaining or reducing the planted area.

The main application of RS techniques in sugarcane crops, over the years, 

has focused on crop classification and mapping of planted areas, identification of 

the development stage through thermal data, discrimination between varieties, 

production forecasting and the monitoring of health and nutritional status of the crop 

(Abdel-Rahman; Ahmed, 2008; Rudorff; Aguiar; Silva; Sugawara; Adami; Moreira, 2010; 
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Adami; Rudorff; Freitas; Aguiar; Sugawara; Mello, 2012). This analysis is usually done 

with satellite data and it is focused on large areas. 

In recent years, research in sugarcane fields has turned to PA using unmanned 

aerial vehicle (UAVs) and data acquired from orbital sensor systems with refined spatial 

resolution. Among the applications of remote sensing in PA, with great interest in the 

management of agricultural crops, is the knowledge about biomass and the forecast 

of crop productivity. Historically in remote sensing, these estimates have been made 

using vegetation indices (Kross et al. 2015; Todd, Hoffer; Milchunas 1998; Zhou et al. 2017).

UAVs and Structure from Motion (SfM) techniques facilitated the construction 

of canopy elevation and structure models with high spatial resolution, allowing to 

generate plant height data. Thus, canopy surface models have been successfully used 

to estimate productivity and biomass in several crops, such as barley (Bendig et al. 

2015), corn (Zhu et al. 2019), and also sugarcane (Sofonia et al. 2019), either alone 

or in conjunction with vegetation indices. Several studies have made canopy height 

estimates through SfM for different cultures (Paturkar; Gupta; Bailey, 2020; Malambo 

et al., 2018; Souza et al., 2017a); however, the direct relationship between canopy 

height and vegetation indices, with variable spatial resolutions has been little studied. 

Thus, this work aims to estimate the height of three different sugarcane 

varieties, in different development stages, to verify the capability and effectiveness 

of canopy height estimation models built from UAV data. Additionally, an analysis on 

the relationship between height at different stages and vegetation indices is made, at 

different spatial resolutions.

2 MATERIALS AND METHODS

The study area is located in the region of Ribeirão Preto city, NE São Paulo State, 

Brazil (S21°.18 and W47°.82, the exact location is confidential, under NDA). It is a strong 

agricultural and agro-industrial pole, with coffee, rubber, peanut, soybean, corn, citrus, 

sugar cane crops, among others (IEA, 2018). The sugar and alcohol industry is the main 
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economic activity. It concentrates most of the Brazilian sugarcane production, being 

the world largest producer of sugar and alcohol (Emplasa, 2016).

The region’s climate, according to the Köppen classification, is classified as Aw 

(Dubreuil et al., 2018): tropical with rainy summer and dry winter, average temperatures 

over 18° C and rainfall rates of approximately 1,500 mm/year (Ayoade, 1996). The 

predominant soil type is the Red Latosol, known locally as “Terra roxa”, due to its great 

fertility (Rossi, 2017). The terrain is 600 m high, and the highest areas are located at 

the eastern border, with altitudes above 1000 m. In the western portion are the lowest 

altitudes, with a minimum of 400 m, characterized by flat terrains with a predominance 

of plains.  In these regions there is a predominance of sugarcane plantation while in 

the higher parts there is a greater diversity of cultures and preserved areas (Emplasa, 2016),

Table 1 – Characteristics of the area under study

Area
(ha)

Soil type
Date of 1st 
plantation

Variety Stage of cust
Date of last 

harvest

A 23,24 Typic 
Hapludox Feb. 20th 2017 CTC9005HB 2nd cut 

(18 months) May / 2019

B 16,44 Rhodic 
Hapludox Feb. 26th 2017 RB855453 2nd cut 

(18 months) April / 2019

C 30,33 Rhodic 
Hapludox Dec, 3rd 2014 SP80-3280 4th cut 

(12 months) Oct./ 2019

Source: Prepared by the autor

The analysis was carried out in three different plots, due to the availability of 

auxiliary data and to differences at the sugarcane development. Relevant information 

about each area is presented in Table 1. Sugarcane is a semi-perennial crop with a 

growth cycle of 12 or 18 months depending on the variety. It develops in four stages: 

sprouting, tilling, stalk growth and maturation. The first stage is characterized by the 

formation and development of leaves, taking 20 to 30 days for sprouting to occur. 

Tilling is the process of emitting shoots, stems and lateral stems, and occurs around 

40 days after planting, lasting up to 120 days. Stalk growth begins after 120 days and 

can last up to 270 days in a 12-month crop. At this stage 75% of the total dry matter 
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accumulates. At maturation, there is a reduction in the growth rates of the plants and 

an increase in the accumulation of sucrose. This phase starts from 270 to 360 days 

after planting, and can last for up to 6 months (Marafon, 2012).

2.2 UAV data

An aerial survey was carried out on Dec. 19, 2019, using a DJI Phantom 3 UAV, 

with an RGB camera, resolution of 12.4 Megapixels, image dimensions of 4000 x 3000 

pixels and focal length of 20 mm (1/2.3”, with f / 2.8 and 94° FOV).  No ground control 

points were collected. The flight height was 100 m above ground, following the planting 

line, with 80% of lateral and longitudinal overlap. The flight time was around noon, with 

cloudy sky, and an interval of approximately half an hour between one flight and another.

Figure 1 – Workflow of the main steps to obtain the estimated canopy height of 

sugarcane in the SE Region of Brazil, using UAV data 

Source: Prepared by the autor

The geo-referencing and processing of UAV images were performed with the 

Agisoft Metashape software (Agisoft LLC., St. Petersburg, Russia), which allows the 

generation of elevation and ortho-mosaic models with the SfM algorithm. The photos 

were aligned considering the highest parameter, followed by the construction of a 

dense-cloud (no additional corrections were carried out). The parameters considered 

were ultrahigh for the quality and mild for the depth filter, to preserve the details of 

the model. Afterwards, the Digital Elevation Model (DEM) and orthomosaics were made, 

using the software’s default settings, considering all points of the dense cloud (Figure 1).
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The Digital Terrain Model (DTM) was built by interpolating points with information 

on ground altitude between the planting lines. These data were obtained from a flight 

performed on a previous date, when the sugarcane was sufficiently small to visualize 

the soil. The roads were used as stable ground reference for difference calculation.  For 

areas A and B the DTM was made from images obtained in June 2020, while, for area C, 

images from Dec. 2020 were used. The height estimation was obtained by subtracting 

the DEM from the UAV images, and the interpolated DTM (Figure 1). Negative values 

were standardized to zero.

2.3 Satellite data

To calculate the vegetation indices, multispectral images were acquired from 

three satellites, with different spatial resolutions: PlanetScope, Sentinel-2 MSI and 

Landsat 8 OLI. All data were acquired in surface reflectance, and no bandwidth 

adjustment was performed. The acquisition date was as close as possible to the flight 

with UAV, on December 17, 26 and 30, respectively. Different spatial resolutions were 

evaluated to verify its influence on the spatial variance, considering the actual sensors 

available. NDVI (Rouse et al, 1973; Tucker, 1979) and EVI (Justice et al., 1998; Huete et 

al., 2002) were used for the correlation with canopy height. The calculation of it was 

done according to equations 1 and 2, respectively;

NDVI = (ρnir - ρred) / (ρnir + ρred)                                                                                         (1)

where ρnir is the reflectance in the near infrared and ρred is the reflectance in the red region.

EVI = 2.5 * (ρnir - ρred) / (1+ ρnir + 6 * ρred - 7.5 * ρblu)                                                  (2)

where ρblu is the blue region of the electromagnetic spectrum. Thus, the indices were 

calculated for each area in three different spatial resolutions, 3, 10 and 30 meters.
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2.4 Field information and activities

For each area, an average canopy height was obtained in the field, to compare 

with the height estimated by the SfM model. To obtain the most representative values 

of the observed areas, each field collection point was composed of four samples, 

distributed as vertices in a quadrangular geometry, and the canopy height was 

measured for each vertex, finally, an average was performed between the heights of 

the 4 measured points, to obtain the final average height for each area.

Field conditions were also observed, such as the presence of weeds and failures 

in the planting lines; the height was also assessed visually during imaging with the 

UAV. Furthermore, meteorological and management data were obtained.

2.5 Data analysis 

The estimated average for each area was compared statistically with the average 

obtained in the field when sugarcane was in the same stage of development. For this 

purpose, random samples were selected from the models in each area, and those 

with height equal to zero were removed, and thus, the number of samples was 994, 

989 and 421 for areas A, B and C respectively. Initially, a Shapiro-Wilk test (Shapiro; 

Wilk, 1965) was performed with a significance level (α) of 0.1, to verify the normality of 

the data. As the p-value results for all areas were less than α (p <0.1), the data did not 

come from a normal distribution, thus, the Wilcoxon – Mann – Whitney (WMW) test 

was performed (Neuhäuser, 2011).

To verify whether there is a spatial relationship between canopy height and 

vegetation indices for the whole area, Pearson’s correlation coefficient and the 

determination coefficient (R²) between estimated canopy height data and vegetation 

indices, NDVI and EVI, were calculated. NDVI, EVI and height values were selected and 

plotted along a transect in each area (indicated with arrows in the Figures 2, 4 and 6), 

referring to the highest available resolution (3 m). This analysis was performed using 

software R v.3.6.1.
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3 RESULTS 

Figure 2 shows the orthomosaic and the estimated canopy height map for area 

A, with a spatial resolution of 0.10 m. The canopy height ranged from 0 to 5 m, with 

an average of 3.24 m and Standard Deviation (SD) of 0.55 m, considering only values ​​

above 0.50 m. This value was statistically different from the average obtained in the 

field, of 3.73 m (p <0.05) at 5% significance, in Dec. 2018, based on field samples and 

comparison of pairs. The lowest heights are located in the central and lower part of the 

field, while the highest (above 4 m) at the edges and the top, possible related to miss 

corrections of the model.

Figure 2 – (A) Orthomosaic for study area A processed using SfM in true RGB 

composition, UAV images obtained in December / 2019. Coordinates are neglected 

due to NDA.  (B) Height map from UAV images for Area A obtained in Dec.2019, 0.10 m 

spatial resolution, were the border was masked. (C) Section highlighted in the height 

map and (D) same section as in the orthomosaic. . The arrow indicates the transect 

where the height samples were taken

Source: Prepared by the autor

The NDVI values from images of the three satellites, ​​ranged from 0.37 to 0.79 

(PlanetScope), from 0.12 to 0.89 (Sentinel-2 MSI) and from 0.17 to 0.85 (Landsat 8 OLI). 
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Regarding the range of EVI values, as follows: 0.25 to 0.65 (PlanetScope), 0.05 to 0.70 

(Sentinel-2) and 0.01 to 0.63 (Landsat 8) (Figure 3). Both indices showed a large spatial 

variation, which is smaller at 3 m spatial resolution, possible due to its largest bandwidth 

(early generation of PlanetScope cubsats). No in-depth analysis of the bandwidth was 

performed; however, its largest bandwidth increases its covariation. 

Figure 3 – Per-field variation of vegetation indices (NDVI and EVI) for area A, according 

to the spatial resolution of orbital data. At the base of the figure a natural color 

composition of each image is presented

Source: Prepared by the autor

At figure 3, the lowest IV values are found mainly in the areas at the edge of the 

field, which probably is due to a stronger mixture with bare soil pixels in this section. 
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At Table 2, the indices did not correlate with height, at any spatial resolution, on both 

Pearson’s and the Determination coefficients.

Figure 4 – (A) Orthomosaic of study area B processed with SfM in true RGB composition, 

UAV images December / 2019. Coordinates are neglected due to NDA. (B) Height map 

of UAV images, Area B, Dec. 2019, 0.10 m spatial resolution, where the border was 

masked.  (C) Enlarged section in height map, (D) Orthomosaic of the same section. 

Different scales are adopted in the figure. The arrow indicates the transect where the 

height samples were taken

Source: Prepared by the autor

Figure 4 shows the orthomosaic and the height map estimated for area B, with 

a spatial resolution of 0.10 m. For area B the estimated height values ​​varied from 

approximately 0 to 4 m, with an average of 2.46 m and a SD of 0.57 m, considering 

only values ​​above 0.50 m. The lowest heights are located in the central portion of the 

field and the highest in the eastern section. At this point it is important to highlight the 

potential implications of ground control points (GCPs) absence for an effective access 

of the terrain model. Due to the lack of height data measured in the field, referring 

to the same stage of the sugarcane development, a visual height estimate was 

made at the date of drone imaging, which is approximately 2.30 m (absence of field 
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measurements). The result of the WMW analysis indicates that the average obtained 

during field measurements and estimated, are statistically different (p <0.05) at 5% 

significance, although their values ​​are close.

Figure 5 – Per-field variation of vegetation indices (NDVI and EVI) for area B, according 

to the spatial resolution of orbital data. The natural color composition of each image is 

at the bottom of the figure

Source: Prepared by the autor

For the three satellite images used, the NDVI values ranged as follows: 0.32 to 

0.78 (PlanetScope), 0.21 to 0.89 (Sentinel-2) and 0.72 to 0.85 (Landsat 8). The EVI varied 
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from 0.17 to 0.64 (PlanetScope), 0.09 to 0.70 (Sentinel-2) and 0.50 to 0.67 (Landsat 8) 

(Figure 5). Both indices showed great spatial variation in resolutions of 3 and 10 m, and 

less variation at 30 m. This occurs because larger pixels end up homogenizing large 

areas, while smaller pixels present a greater variety of details. Again, the lowest values ​​

of VIs are located mainly on the edges of the field. The results of the spatial correlation 

analysis are shown in Table 2. The NDVI showed higher correlation values with canopy 

height than the EVI in all spatial resolutions. Nevertheless, these results do not indicate 

any type of correlation between the variables analyzed. 

Figure 6 – (A) Ortho-mosaic, study area C processed with SfM, true RGB composition, UAV 

images from Dec. / 2019. Coordinates are neglected due to NDA. (B) Height map from UAV 

images for Area C, Dec. 2019, 0.10 m spatial resolution, where the border was masked, (C) 

Enlarged section of height map, (D) same area in ortho-mosaic. . The arrow indicates the 

transect where the height samples were taken

Source: Prepared by the autor

Figure 6 shows the ortho-mosaic and the estimated canopy height map for area 

C, with a spatial resolution of 0.10 m. The height values ​​estimated for area C have 

amplitude of 0 to 1.4 m, with an average of 0.20 m and a SD of 0.18 m, considering only 

values ​​above 0.05 m. The average obtained in the field, referring to the same stage of 

development, was 0.33 m, showing a significant difference from the estimated average 
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(p <0.05) according to the WMW test using multiple pairs of points. The height values ​​

were slightly above those in the lower portion of the field, and there are flaws in the 

planting lines, also observed in the field. 

Figure 7 – Per-field variation of vegetation indices (NDVI and EVI) for area C, according to 

the spatial resolution of orbital data. The natural color composition of each image is at the 

bottom of the figure

Source: Prepared by the autor

For Area C, the NDVI values ​​ranged from 0.34 to 0.58 (PlanetScope), 0.29 to 0.75 

(Sentinel-2) and 0.37 to 0.66 (Landsat 8). The EVI varied from 0.23 to 0.45 (PlanetScope), 

0.21 to 0.60 (Sentinel-2) and 0.26 to 0.53 (Landsat 8) (Figure 7). The EVI index showed 



Simões, G. Z.; Kux, H. J. H.; Breuning, F. M.; Pereira, L. H.|  15

Geog Ens Pesq, Santa Maria, v. 27, p. 1-25, e65070, 2023

lower values ​​than the NDVI, similarly to the other areas analyzed, which can be due 

to the higher saturation of this index, as compared to EVI. In this area, the height 

did also not correlate with the indices at any spatial resolution (Table 2). However, at 

30 m spatial resolution, the correlation values, for both Pearson and R², were lower. 

Here probably there is a greater mixture of soil and vegetation pixels, while at higher 

resolutions there is a tendency for pure pixels. At the maps of Figure 7 one verifies 

that in the lower portion of the plot, sugarcane is more robust, also observed on the 

Height Map.

Table 2 – Pearson and R² correlation values ​​for Areas A, B and C

3 m 10 m 30 m

Person R2 Person R2 Person R2

Area A NDVI 0.0707 0.0109 0.0960 0.0133 0.0996 0.099

EVI -0.0402 0.0352 -0.1255 0.0869 -0.1032 0.0106

Area B NDVI 0.2626 0.069 0.2041 0.0417 0.4184 0.175
EVI 0.2172 0.0472 0.1285 0.0135 0.3287 0.1155

Area C NDVI 0.3610 0.1303 0.3475 0.1207 0.1578 0.0249
EVI 0.3303 0.1091 0.3189 0.1017 0.1366 0.0187

Source: Prepared by the autor

4 DICUSSION 

The height models showed satisfactory results, with average values ​​close to 

those obtained in the field measurements, despite not being statistically significant. 

Except for area B, where the average estimated by the model was higher than that one 

estimated in the field measurements, the models have a tendency to underestimate 

the height, also found out by other authors (Willkomm; Bolten; Bareth, 2016; Aasen et 

al., 2015). Additionally, the averages obtained with SfM are continuous and encompass 

all the internal micro-variability of the canopy, while for field measurements a 

homogeneous area was selected, seeking to be as representative as possible, but it did 

not encompass all its variability. Unfortunately, no densification of field samples could 
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be conducted to include the spatial variability within the plot. Such internal variability 

can be a proxy to delineate management zones (Breunig et al., 2020b). Thus, for the 

direct comparison of averages, a lower average is expected for data derived from UAVs. 

However, the significant difference between the averages does not disqualify any of 

the products obtained. Using Height models, it was also possible to identify flaws in 

the planting lines for all areas, as shown in the enlargements of figures 2, 4 and 6. The 

model showed more flaws in the smallest stage of development of sugarcane (area C), 

and some sections with very small plants were not identified, due to the omission of 

the Height model.

Souza et al. (2017b) when estimating the height of sugarcane with high resolution 

images and different acquisition geometries (N - S and E - W) found that the shadow 

affects the quality of the model obtained, and that an approach combining the two 

different flight planes generated models with less errors, softening the shadow effect on 

the images. Bendig et al. (2013) concluded that different image acquisition geometries 

can lead to better results, especially when there are large height differences. This 

procedure however requires a longer acquisition time, thus, imaging at nadir close to 

noon could mitigate this effect without the need for an extra flight.

The use of ground control points (GCPs) could provide significant improvements 

in the accuracy of the model, as evidenced by Ruiz et al. (2013) and Turner, Lucieer and 

Watson (2012), who concluded that geo-referencing done exclusively by GPS onboard 

an UAV, increases the errors in the SfM algorithms. In spite of that, through the models 

created in our study, it was possible to identify flaws in the planting lines at the first 

stage of sugarcane growth (Area C), in addition to sections of lower development within 

the plot, as observed in areas A and B.

Both vegetation indices showed large spatial variation, mainly in areas A and 

B. According to Bégué et al. (2010) the variations of vegetation indices, specifically 

the NDVI, are mainly caused by phenological factors and climatic conditions during 

data acquisition. These authors also mention management practices as a determining 

factor for spatial variability in sugarcane fields. The NDVI showed a higher saturation in 
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relation to EVI, as shown in Figures 3, 4 and 7. Due to its lower saturation and greater 

sensibility to structural parameters, small variations are more evident in EVI at all 

resolutions. It is different for NDVI, where, at 10 and 30 m spatial resolution, the field 

seems quite homogeneous, except for area C, where these variations are visible, due 

to a larger amount of soil and a lower spectral response of vegetation.

Figure 8 – VIs of sugarcane vs. estimated height for the transects in each area: (a) Area A, 

(b) Area B, (c) Area C. Transect is indicated by an arrow over the figures 2, 4 and 6

Source: Prepared by the autor

For the three areas, the results of spatial correlation analysis did not indicate a 

direct relationship between canopy height and vegetation indices. Figure 8 confirms 

this, where the index values ​​are independent from the observed heights. The transects 

were selected to show specific regions and highlight possible differences, instead to 
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the use of all data per-plot. However, the NDVI showed higher correlation values with 

height than EVI in all spatial resolutions, excluding area A, where EVI presented higher 

R² values. Nevertheless, since it represents a single period and little variation in height 

was observed, the data variability is too small to obtain more significant correlations 

between the VIs and the Height data. The rapid drop of the vegetation indices in Figure 

8A and Figure 8B seems related to a border effect or possible canopy height model 

errors due to the absence of GCPs. 

Comparing the results between spatial resolutions, no relevant differences were 

observed, indicating that resolution was not a limiting factor in this case (Breunig et 

al., 2020b). It should be emphasized that the VIs analyzed have different formulation 

principles. NDVI is an index related especially to pigments (chlorophylls) and EVI is 

strongly related to structural parameters of the canopy and has a strong correlation 

with the near infrared band (Leblon; Granberg; Charland, 1996; Huete et al., 2002; 

Galvão et al., 2018).

Payero et al. (2004) compared the ability of 11 vegetation indices to estimate the 

height of alfalfa and grass plants. They found a good logistical relationship between 

the indices and the height for alfalfa (R²> 0.90). The NDVI, IPVI and TVI indices however 

became insensitive to plant growth when they exceeded 0.40 m height. For grass, 

the indices showed a lower performance in height estimation, and only the RATIO, 

TVI, NDVI and IPVI indices presented a good linear relationship (R² ≈ 0.76). Thus, the 

responses of these indices vary according to the characteristics of vegetation and of 

its phenological stage. For this task, a temporal analysis is of fundamental importance, 

to verify its behavior at different stages of the culture development, besides the 

evaluation of other indices.

In spite of that, both the height and the vegetation indices can be related to 

productivity and biomass. Bendig et al. (2015) found that the combination of vegetation 

indices and height information generated an improved model for estimating biomass 

when compared to a model using only one variable. Yu et al. (2020), by incorporating 

height measures in a production estimate model for sugarcane, observed an 
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improvement of the results obtained. They concluded that the measures taken in the 

last development stage produced more significant results, and so it is unnecessary to 

sample the entire development period. Therefore, even without presenting a direct 

relationship, these variables can complement each other in the analysis of other 

vegetation properties.

Furthermore, the analysis made with UAV images, highlighted the importance of 

the spatial continuity, showing the micro-variability within the field, and allowing a more 

precise and detailed evaluation than by traditional field inspection. This information 

is essential for decision making and for increasing production efficiency, because it 

reduces errors due to possible poor representativeness of samples in the field.

5 CONCLUSION

The results obtained in this work demonstrates the potential of using UAVs to 

estimate the height of plantations, such as sugarcane. Using the plantation surface 

model, it was possible to spatially determine the different growth patterns, and thus, 

allowing direct management practices to the specific needs of each portion from the 

stand. The models tended to underestimate the heights, which could be improved 

with the use of GCPs or UAVs with post-processed positioning (PPK), as well as with the 

reduction of the shadow effect.

The correlation analysis did not indicate any direct relationship between 

vegetation indexes and height. Nevertheless, a temporal analysis is necessary to 

present more consistent conclusions. Such an analysis will be carried out in future 

works. The spatial resolution was not a limiting factor. We recommend however to 

consider higher resolutions in the early stages of the plantation growth, when there 

is still a considerable portion of bare soil, which could increase errors due to mixed 

pixels. These variables are important to estimate other vegetation parameters, such as 

biomass and productivity, as advised by several authors.
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