Universidade Federal de Santa Maria
Ci. Fl., Santa Maria, v. 31, n. 3, July/Sept., 2021
DOI: 10.5902/1980509843824
ISSN 1980-5098
Submitted: 26th/04/2020 • Approved: 26th/02/2021 • Published: 6th/09/2021
Artigos
Phytosociology of natural regeneration as a subsidy for restoration in post-harvest areas of Pinus sp. in the Mixed and Dense Ombrophilous Forest
Fitossociologia da regeneração natural como subsídio para restauração em áreas pós-colheita de Pinus sp. na Floresta Ombrófila Mista e Densa em transição
Emanoéli de OliveiraI
Charline ZangalliII
Guilherme Diego FockinkIII
Maria Raquel KanieskiIV
Marcos Felipe NicolettiV
Beatriz Rodrigues Bagnolin MunizVI
Rômulo KoecheVII
Mireli Moura Pitz FlorianiVIII
I Forestry Engineer, MSc., Universidade do Estado de Santa Catarina, Lages, SC, Brazil
https://orcid.org/0000-0002-8587-895X – emanoelibinsfeld@gmail.com
II Forestry Engineer, MSc., Universidade do Estado de Santa Catarina, Lages, SC, Brazil
https://orcid.org/0000-0002-7667-3389 – charlineeng@gmail.com
III Forestry Engineer, MSc., Universidade do Estado de Santa Catarina, Lages, SC, Brazil
https://orcid.org/0000-0003-0949-1398 – guilhermefockink@gmail.com
IV Forestry Engineer, Dr., Universidade do Estado de Santa Catarina, Lages, SC, Brazil
https://orcid.org/0000-0003-1078-5641 – raquel.kanieski@udesc.br
V Forestry Engineer, Dr., Universidade do Estado de Santa Catarina, Lages, SC, Brazil
https://orcid.org/0000-0003-4732-0119 – marcos.nicoletti@udesc.br
VI Sanitary and Environmental Engineer, Universidade do Estado de Santa Catarina, Lages, SC, Brazil
https://orcid.org/0000-0003-4648-1818 – beatriz-muniz@outlook.com
VII Undergraduate in Forestry Engineer, Universidade do Estado de Santa Catarina, Lages, SC, Brazil
https://orcid.org/0000-0001-9789-1089 – rom-ulo@hotmail.com
VIII Biologist, Dr., Klabin Unidade SC., Otacílio Costa, SC, Brazil
https://orcid.org/0000-0003-0067-1042 – mmpitz@klabin.com.br
ABSTRACT
The objective of this study was to evaluate the natural regeneration in permanent preservation areas (PPA) in forest restoration process after Pinus sp. harvest through the survey of phytosociological parameters.. The study was carried out in the PPA, associated with springs and rivers in two areas with different post-harvest ages of Pinus sp., being inserted in Mixed Ombrophilous Forest (MOF - 7 years old) and Dense Ombrophilous Forest in transition (DOF/MOF - 12 years old) both in the Santa Catarina state. Nineteen rectangular plots with dimensions of 25 m x 4 m (100 m²) were allocated at random in each one of the areas, for the floristic-structural evaluation of the tree-shrub regenerative component. In the DOF in transition, 913 regenerating individuals of tree and shrub species were sampled, belonging to 90 species, 60 genera and 30 botanical families. The species with the highest importance value were Cupania vernalis (8.71%), followed by Bernardia pulchella (5.93%), Aureliana wettsteiniana (5.25%). At MOF, an area undergoing restoration in less time, 782 regenerating individuals of tree and shrub species were sampled, belonging to 62 species, 21 botanical families and 30 genera. The species with the highest importance value were Myrsine coriacea (10.06%), Solanum variabile (9.79%), Myrsine lorentziana (7.08%). Shannon’s diversity indexes were H’ = 3.76 for DOF in transition and H’ = 3.24 for MOF, and showed a high diversity of species, whereas the Pielou equability index obtained J = 0.81 for DOF in transition and J = 0.77 for MOF, showing high uniformity in the distribution of individuals in the species for the two areas. The diametric distribution of the individuals showed an “inverted J” pattern for both phytophysiognomies, behavior expected in native forests. The NMDS (Non-metric multidimensional scaling) presented a stress value of 9.81% indicating suitability of the ordering and allowing inferences to be made with reliability. Through the NMDS ordering, it was observed the formation of two distinct floristic-structural groups, associated with MOF phytophysiognomies and MOF/DOF transition. All plots inserted in MOF areas are grouped to the right in the ordering, while most plots inserted in the MOF/DOF transition area are grouped to the left of the ordering. The tree-shrub regenerative component evaluated in post-harvest areas of Pinus sp. at both phytophysiognomies has a great diversity of species with great importance for forest formation, being a favorable environment for the conservation of species and essential to guarantee the succession of the forest and the restoration resilience.
Keywords: Phytosociology; Regenerative Component; Richness
RESUMO
O objetivo deste estudo foi avaliar a regeneração natural em Áreas de Preservação Permanente em processo de restauração florestal pós-colheita de Pinus sp. por meio do levantamento de parâmetros fitossociológicos. O estudo foi realizado nas APPs associadas a nascentes e rios de duas áreas com diferentes idades pós-colheita de Pinus sp., sendo inseridas em Floresta Ombrófila Mista (FOM - 7 anos) e Floresta Ombrófila Densa em transição (FOD/FOM - 12 anos) ambas no estado de Santa Catarina. Foram alocadas 19 parcelas retangulares com dimensões de 25 m x 4 m (100 m²) de forma aleatória em cada uma das áreas, para a avaliação florístico-estrutural do componente regenerativo arbóreo-arbustivo. Na FOD em transição foram amostrados 913 indivíduos regenerantes de espécies arbóreas e arbustivas, pertencentes a 90 espécies, 60 gêneros e 30 famílias botânicas. As espécies com maior IVI foram Cupania vernalis (8,71%), seguido de Bernardia pulchella (5,93%), Aureliana wettsteiniana (5,25%). Na FOM, área em processo restauração em menor tempo, foram amostrados 782 indivíduos regenerantes de espécies arbóreas, arbustivas, pertencentes a 62 espécies, 21 famílias botânicas e 30 gêneros. As espécies com maior IVI foram Myrsine coriacea (10,06%), Solanum variabile (9,79%), Myrsine lorentziana (7,08%). Os índices de diversidade de Shannon foram H’ = 3,76 para FOD em transição e H’ = 3,24 para FOM, e denotaram alta diversidade de espécies, já o índice de equabilidade de Pielou obteve J = 0,81 para FOD em transição e J = 0,77 para FOM, demonstrando alta uniformidade na distribuição dos indivíduos nas espécies para as duas áreas. A distribuição diamétrica dos indivíduos apresentou padrão “J invertido” para ambas as fitofisionomias, comportamento esperado em florestas nativas. A NMDS apresentou um valor de stress de 9,81% indicando adequabilidade da ordenação e permitindo a realização de inferências com confiabilidade. Por meio da ordenação NMDS, observou-se a formação de dois grupos florístico-estruturais distintos, associados as fitofisionomias de FOM e transição FOM/FOD. Todas as parcelas inseridas em áreas de FOM encontram-se agrupadas à direita na ordenação, enquanto que a maioria das parcelas inseridas na área de transição FOM/FOD estão agrupadas à esquerda da ordenação. O componente regenerativo arbóreo-arbustivo avaliado em áreas pós-colheita de Pinus sp. em ambas as fitofisionomias possui grande diversidade de espécies com grande valor de importância à formação florestal, sendo um ambiente favorável para a conservação de espécies e fundamental para garantir a sucessão da floresta e a resiliência da restauração.
Palavras-chave: Fitossociologia; Componente regenerativo; Riqueza
The Atlantic Forest is one of the world’s biodiversity hotspots (MYERS et al., 2000) for having several species of great importance, this ecosystem is considered one of the most threatened ones in the world, (SCARANO; CEOTTO, 2015) mainly due to the high index of fragmentation that led to the loss of more than 80% of its original coverage (RIBEIRO et al., 2011). Among the typologies of the Atlantic Forest Biome present in the Santa Catarina state, the Dense Ombrophilous Forest (DOF) and the Mixed Ombrophilous Forest (MOF) stand out as those most affected by the exploitation of wood and the agricultural activities, resulting in a high rate of fragmentation and even extinction of endemic species (GASPER et al., 2013; VIBRANS et al., 2013).
The DOF is one of the main typologies of the state, with high diversity. However, due to the exploration, it is currently composed of isolated remnants and of varying sizes and stages of regeneration (VIBRANS et al., 2013). The MOF, known as Araucaria Forest, due to the predominant presence of Araucaria angustifolia (Bertol.) Kuntze on the canopy (VIBRANS et al., 2013) also suffered with the exploration and removal of wood (GASPER et al., 2013; VIBRANS et al., 2013) of noble species such as Araucaria angustifolia (Pinheiro-do-Paraná) and Ocotea porosa (Nees) Barroso (Imbuia). This exploration led to the reduction of natural reserves, giving space to agricultural production and forest plantations.
Among the species used in forest stands, the genus Pinus stands out in terms of cultivated area, once it is a source of raw material of great importance for the forest sector (BOGNOLA et al., 2018). Many of the areas implanted in past decades encompassed permanent preservation areas, which included the banks of rivers, streams, springs and hilltops, among others (SEUBERT et al., 2017). However, areas with forest plantations in inadequate locations are being regularized by forestry companies and, the most common situation that has been occurring, is that companies leave the permanent preservation areas to recover themselves through natural regeneration. This method has been highlighted for being the best cost-benefit in areas with potential for natural regeneration (BRANCALION et al., 2010).
However, in order to be successful in conducting natural regeneration, it is necessary to carry out the monitoring of the ecological processes until the restoration of the forest (RODRIGUES; BRANCALION; ISERNHAGEN, 2013). The monitoring of the restoration can be carried out using ecological indicators and, among the indicators used are the floristic and structural survey of natural regeneration, which allows to know the floristic composition of the regenerative layer, being highly influenced by anthropic actions in the initial process of vegetation succession (DARONCO; MELO; DURIGAN, 2013).
In order to verify the evolution of forest restoration in post-harvest areas of Pinus sp. and to subsidize restoration actions, the objective of this study was to carry out a phytosociological survey of natural regeneration in post-harvest permanent preservation areas of Pinus sp. in the Mixed Ombrophilous Forest and in a transition area between Dense Ombrophilous Forest and Mixed Ombrophilous Forest. In this sense, we sought to answer the following questions: 1) Does the floristic-structural composition of natural regeneration in the post-harvest areas of Pinus sp. differ between the phytophysiognomies evaluated? 2) Is natural regeneration satisfatory to attest to the passive restoration of these areas? 3) Do richness and the diversity of species guarantee the succession and restoration of the evaluated areas?
2 MATERIAL AND METHODS
2.1 Description of the study area
The study was carried out in the permanent preservation areas (PPA) associated with springs and rivers in two areas, one inserted in the Mixed Ombrophilous Forest (MOF) and the other in a transition area between Dense Ombrophilous Forest (DOF) and MOF in the state of Santa Catarina. The areas were previously occupied by stands of Pinus sp., and were harvested, following the determination of Law No 12651/2012 (BRAZIL, 2012) and, subsequently, the forest restoration process of the areas began through the conduction of natural regeneration. Both areas evaluated have vegetation in the medium stage of regeneration, with understory present, significant species diversity and indicator species and characteristics of the medium stage of vegetation. In the MOF/DOF transition area, the following stand out: Inga marginata Willd.; Jacaranda puberula Cham; Ilex paraguariensis A. St.-Hil.; Cupania vernalis Cambess, among others. In the MOF area, Baccharis uncinella DC stands out; Solanum variabile Mart., Solanum mauritianum Scop.; Myrsine coriacea (Sw.) R. Br. ex Roem. & Schult., in addition to species from the Lauraceae and Myrtaceae families (COUNCIL OF NATIONAL ENVIRONMENT, 1994).
The area evaluated in the municipality of Bom Retiro, Santa Catarina state, is inserted in a transition area between MOF and DOF (Figure 1). At an average altitude of 940 m, the climate of the region is characterized as humid mesothermal (Cfb), with cool summer and average temperature of 17.7ºC, with no defined dry season (ALVARES et al., 2013). The soil is classified as Cambisol with a prominent A horizon with a clay texture (POTTER et al., 2004; BATISTA, 2012). Approximately 12 years ago, after environmental regularization and removal of Pinus sp. in approximately 610.5 ha destined for the APP, the restoration process began by conducting natural regeneration.
The area evaluated in the municipality of Santa Cecília, Santa Catarina state, is part of the Mixed Ombrophilous Forest typology (Figure 1), with an average altitude of 1,138 m, and a climate characterized by humid mesothermal (Cfb), with a cool summer and an average temperature of 15.8ºC, without presenting well-defined dry seasons (ALVARES et al., 2013). The soil type is classified as Latosol Bruno with a prominent A horizon and very clayey texture (POTTER et al., 2004). Approximately seven years after the environmental adaptation and the removal of Pinus sp. present in approximately 406 ha destined to the PPA, the restoration process began by conducting local natural regeneration.
Figure 1 – Location of study areas in the municipalities of Bom Retiro (Dense Ombrophilous Forest in transition) and Santa Cecília (Mixed Ombrophilous Forest) both in the state of Santa Catarina, Brazil
Figura 1 – Localização das áreas de estudo nos municípios de Bom Retiro (Floresta Ombrófila Densa em transição) e município de Santa Cecília (Floresta Ombrófila Mista) ambas no estado de Santa Catarina, Brasil
Source: Authors (2020)
2.2 Data collection and processing
Nineteen rectangular plots with dimensions of 25 m x 4 m (100 m²) were allocated at random, according to the methodology proposed by CBRN 01/2015 (SÃO PAULO, 2015) which establishes a protocol for monitoring areas under restoration for the state of São Paulo.
In each plot, all tree/shrub individuals taller than 50 cm and circumference at breast height (CBH) of up to 15 cm, measured at 1.30 m, were measured and marked with metal plates. For individuals with a height of less than 1.30 m, the circumference at soil height (CSH) was measured. The identification of the species, whenever possible, was carried out in loco and, when not recognized in the field, these were collected and sent to the Dendrology Laboratory of the University of the State of Santa Catarina for later identification. The material was identified by consulting the Herbarium LUSC of the same institution, specialists and specialized bibliography. The taxonomic classification of the species was performed according to APG IV (ANGIOSPERM PHYLOGENY GROUP, 2016) and Flora do Brasil 2020 (JARDIM BOTÂNICO DO RIO DE JANEIRO, 2020). As they are regenerating individuals, some individuals did not have leaves or reproductive organs, making identification difficult, being thus classified into morphospecies.
In the phytosociological survey and analysis of the horizontal structure, the parameters proposed by Mueller-Dombois and Ellemberg (2002) were considered, these being density, dominance, frequency and the importance value, in addition to Shannon’s diversity indexes (H‘) and Pielou’s equability (J). The comparison of the richness between the areas was carried out through the construction of the species accumulation curve, developed by the randomization method, with 1,000 permutations. The distribution of diameters and heights of natural regeneration was carried out for the two studied vegetation types. The classes and their amplitudes were defined according to the statistical method. The species were classified according to the literature as for dispersion syndrome as anemochoric, autochoric and zoochoric, based on a review of studies that used the classification by Budowski (1965). As for the ecological group, the species were classified as pioneer, early secondary, late secondary and climax, based on the review of works that used the classification of Van Der Pijl (1982), being calculated the percentage of species for each functional group.
The floristic-structural similarity of natural regeneration between the plots was analyzed using NMDS (Non-metric Multidimensional Scaling) analysis using species abundance data in the plots and as a measure of similarity the Bray-Curtis method. The suitability of the ordering was assessed using the stress value. For this analysis, rare species (with less than 10 individuals) have been removed from the similarity matrix, as they are of little relevance and may hinder your interpretation of the analysis. From the NMDS ordering, it was verified the formation of two floristic-structural groups associated with the different studied physiognomies. The comparison of the community organization between the groups was carried out by means of non-parametric multivariate analysis of variance (PERMANOVA). All analyzes were performed using the R Studio statistical program (R DEVELOPMENT TEAM, 2019). For the diversity indices, NMDS and PERMANOVA, the Vegan package was used (OKSANEN et al., 2019).
3 RESULTS AND DISCUSSION
In the transition areas between FOM/FOD, 913 regenerating individuals of tree and shrub species were sampled, belonging to 90 species, 60 genera and 30 botanical families, one species was identified at the family level, six species at the genus level and four non-species were identified due to the absence of leaves and/or reproductive organs. The families with the highest species richness were: Fabaceae (11 species), Myrtaceae (11 species), Solanaceae (9 species), Asteraceae (7 species) and Lauraceae (6 species) (Figure 2 A). The floristic composition, with high richness of the Myrtaceae and Lauraceae families, characterizes a transition area of Mixed Ombrophilous Forest (MOF) and Dense Ombrophilous Forest (DOF) (SILVA et al., 2013). Thus, the families sampled in this study are in accordance with the floristic pattern, following the natural composition of the Dense Ombrophylous Forest (BOSA et al., 2015).
In the MOF areas, 782 regenerating individuals of tree and shrub species, belonging to 62 species, 21 botanical families and 30 genera, were sampled. In addition, three species were identified at the genus level and four species were not identified due to the absence of leaves and/or reproductive organs. The families with the highest species richness were: Asteraceae (11), Myrtaceae (10), Solanaceae (7), Lauraceae (5), Fabaceae (3) (FIGURE 2 B). The richness of these families follows the floristic pattern of the MOF, since the predominance of Myrtaceae, Asteraceae, Solanaceae and Lauraceae were also found in studies carried out by several authors (e.g. HIGUCHI et al., 2012; FERREIRA et al., 2013; 2016).
Figure 2 – Species richness by family in post-harvest permanent preservation areas of Pinus sp. in transition areas between Mixed and Dense Ombrophilous Forest (A); and in areas of Mixed Ombrophilous Forest (B)
Figura 2 – Riqueza de espécies por família em APP pós-colheita de Pinus sp. em áreas de transição entre Floresta Ombrófila Mista e Densa (A); e em áreas de Floresta Ombrófila Mista (B)
Source: Authors (2020)
Regarding the phytosociological survey for the regenerative component of the transition areas between MOF/DOF, it was possible to observe that the species with the highest importance value (VI) were Cupania vernalis Cambess. (8.71%), followed by Bernardia pulchella (5.93%), Aureliana wettsteiniana (5.25%), Clethra scabra (5.22%), and Matayba elaeagnoides (4.51%) (Table 1). The species that obtained the highest VI have zoochoric dispersion syndrome, with the exception of Clethra scabra, which is anemochoric. Cupania vernalis and Bernardia pulchella are early secondary and Clethra scabra and Aureliana wettsteiniana are pioneer species, present at the beginning of the forest succession process. Matayba elaeagnoides is late secondary, and is present in more advanced stages of the forest, once it is a species that has higher edaphoclimatic requirements and only establishes itself in degraded areas after the initial colonization by an early pioneer and secondary species (FERREIRA et al., 2013).
Table 1 – Phytosociological parameters of the regenerative component in transition areas between Mixed and Dense Ombrophilous Forest, ordered in descending order by the Importance Value (IV)
Tabela 1 – Parâmetros fitossociológicos do componente regenerativo em áreas de transição entre Floresta Ombrófila Mista e Densa, ordenados em ordem decrescente pelo Índice de Valor de Importância
Species |
Ni |
AD |
RD |
ADo |
RDo |
AF |
RF |
IV |
EG/DS |
Cupania vernalis Cambess. |
89 |
468,42 |
9,75 |
0,15 |
12,79 |
47,37 |
3,59 |
8,71 |
Es/Zoo |
Bernardia pulchella (Baill.) Müll. Arg. |
85 |
447,37 |
9,31 |
0,06 |
5,3 |
42,11 |
3,19 |
5,93 |
Es/Zoo |
Aureliana wettsteiniana (Witasek) Hunz. & Barbosa |
54 |
284,21 |
5,91 |
0,07 |
5,46 |
57,89 |
4,38 |
5,25 |
P/Zoo |
Clethra scabra Pers. |
42 |
221,05 |
4,6 |
0,11 |
9,06 |
26,32 |
1,99 |
5,22 |
P/Ane |
Matayba elaeagnoides Radlk. |
41 |
215,79 |
4,49 |
0,08 |
6,65 |
31,58 |
2,39 |
4,51 |
Ls/Zoo |
Piper aduncum L. |
60 |
315,79 |
6,57 |
0,03 |
2,51 |
57,89 |
4,38 |
4,49 |
P/Zoo |
Annona sylvatica A. St.-Hil. |
43 |
226,32 |
4,71 |
0,08 |
6,93 |
15,79 |
1,2 |
4,28 |
Es/Zoo |
Allophylus edulis (A.St.-Hil. et al.) Hieron. ex Niederl. |
52 |
273,68 |
5,7 |
0,04 |
3,36 |
36,84 |
2,79 |
3,95 |
Es/Zoo |
Cabralea canjerana (Vell.) Mart. |
23 |
121,05 |
2,52 |
0,04 |
3,45 |
47,37 |
3,59 |
3,19 |
Ls/Zoo |
Myrsine coriacea (Sw.) R. Br. ex Roem. & Schult. |
34 |
178,95 |
3,72 |
0,03 |
2,08 |
47,37 |
3,59 |
3,13 |
P/Zoo |
Solanum sanctae-catharinae Dunal |
32 |
168,42 |
3,5 |
0,03 |
2,27 |
36,84 |
2,79 |
2,85 |
P/Zoo |
Machaerium paraguariense Hassl. |
34 |
178,95 |
3,72 |
0,05 |
3,79 |
10,53 |
0,8 |
2,77 |
Ls/Ane |
Mollinedia clavigera Tul. |
22 |
115,79 |
2,41 |
0,03 |
2,61 |
42,11 |
3,19 |
2,74 |
Es/Zoo |
Cedrela fissilis Vell. |
12 |
63,16 |
1,31 |
0,03 |
2,82 |
36,84 |
2,79 |
2,31 |
Ls/Ane |
Myrcia splendens (Sw.) DC. |
7 |
36,84 |
0,77 |
0,03 |
2,55 |
26,32 |
1,99 |
1,77 |
P/Zoo |
Casearia sylvestris Sw. |
10 |
52,63 |
1,1 |
0,03 |
2,41 |
21,05 |
1,59 |
1,7 |
Ls/Zoo |
Symplocos tenuifolia Brand |
8 |
42,11 |
0,88 |
0,02 |
1,65 |
26,32 |
1,99 |
1,51 |
Ls/Zoo |
Psychotria vellosiana Benth. |
8 |
42,11 |
0,88 |
0,01 |
1 |
26,32 |
1,99 |
1,29 |
Es/Zoo |
Lithraea brasiliensis Marchand |
8 |
42,11 |
0,88 |
0,01 |
0,93 |
21,05 |
1,59 |
1,13 |
P/Zoo |
Cinnamomum sellowianum (Nees & Mart.) Kosterm. |
6 |
31,58 |
0,66 |
0,01 |
1 |
21,05 |
1,59 |
1,08 |
Ls/Zoo |
Nectandra membranácea (Sw.) Griseb. |
7 |
36,84 |
0,77 |
0,01 |
0,79 |
21,05 |
1,59 |
1,05 |
Ls/Zoo |
Erythrina cristagalli L. |
10 |
52,63 |
1,1 |
0,01 |
0,43 |
21,05 |
1,59 |
1,04 |
P/Aut |
Annona rugulosa (Schltdl.) H. Rainer |
9 |
47,37 |
0,99 |
0,01 |
0,74 |
15,79 |
1,2 |
0,97 |
Es/Zoo |
Myrcia glomerata (Cambess) G. Burton & E. Lucas |
7 |
36,84 |
0,77 |
0,02 |
1,32 |
10,53 |
0,8 |
0,96 |
Es/Zoo |
Ocotea puberula (Rich.) Nees |
11 |
57,89 |
1,2 |
0,01 |
0,77 |
10,53 |
0,8 |
0,92 |
Es/Zoo |
Luehea divaricata Mart. & Zucc. |
5 |
26,32 |
0,55 |
0,02 |
1,32 |
10,53 |
0,8 |
0,89 |
Es/Ane |
Aspidosperma tomentosum Mart. & Zucc. |
6 |
31,58 |
0,66 |
0,01 |
0,78 |
15,79 |
1,2 |
0,88 |
P/Ane |
Campomanesia xanthocarpa (Mart.) O. Berg |
7 |
36,84 |
0,77 |
0,01 |
0,6 |
15,79 |
1,2 |
0,85 |
Ls/Zoo |
Dalbergia frutescens (Vell.) Britton |
7 |
36,84 |
0,77 |
0,01 |
0,89 |
10,53 |
0,8 |
0,82 |
Ls/Aut |
Xylosma ciliatifolia (Clos) Eichler |
4 |
21,05 |
0,44 |
0,01 |
0,78 |
15,79 |
1,2 |
0,81 |
Es/Zoo |
Eugenia pyriformis Cambess. |
11 |
57,89 |
1,2 |
0 |
0,38 |
10,53 |
0,8 |
0,79 |
Es/Zoo |
Solanum mauritianum Scop. |
4 |
21,05 |
0,44 |
0,01 |
0,62 |
15,79 |
1,2 |
0,75 |
P/Zoo |
Solanum pseudocapsicum L. |
4 |
21,05 |
0,44 |
0 |
0,17 |
21,05 |
1,59 |
0,73 |
P/Zoo |
Myrocarpus frondosus Allemão |
6 |
31,58 |
0,66 |
0 |
0,24 |
15,79 |
1,2 |
0,7 |
Es/Ane |
Inga edulis Mart. |
3 |
15,79 |
0,33 |
0,01 |
0,85 |
10,53 |
0,8 |
0,66 |
Es/Zoo |
Myrcia palustres DC. |
5 |
26,32 |
0,55 |
0 |
0,17 |
15,79 |
1,2 |
0,64 |
P/Zoo |
Endlicheria paniculata (Spreng.) J. F. Macbr. |
4 |
21,05 |
0,44 |
0 |
0,27 |
15,79 |
1,2 |
0,63 |
Ls/Zoo |
Styrax leprosus Hook. & Arn. |
4 |
21,05 |
0,44 |
0,01 |
0,61 |
10,53 |
0,8 |
0,61 |
Es/Zoo |
Muellera campestris (Mart. ex Benth.) M. J. Silva & A. M. G. Azevedo |
3 |
15,79 |
0,33 |
0,01 |
0,69 |
10,53 |
0,8 |
0,6 |
Es/Ane |
Casearia decandra Jacq. |
6 |
31,58 |
0,66 |
0 |
0,33 |
10,53 |
0,8 |
0,59 |
Ls/Zoo |
Lantana cf. camara L. |
4 |
21,05 |
0,44 |
0 |
0,14 |
15,79 |
1,2 |
0,59 |
N/Zoo |
Psychotria sp. |
4 |
21,05 |
0,44 |
0 |
0,08 |
15,79 |
1,2 |
0,57 |
N/N |
Frangula sphaerosperma (Sw.) Kartesz & Gandhi |
3 |
15,79 |
0,33 |
0,01 |
0,53 |
10,53 |
0,8 |
0,55 |
P/Zoo |
Athenaea fasciculata (Vell.) I.M.C. Rodrigues & Stehmann |
6 |
31,58 |
0,66 |
0,01 |
0,57 |
5,26 |
0,4 |
0,54 |
P/Zoo |
Solanum cassioides L. B. Sm. & Downs |
7 |
36,84 |
0,77 |
0,01 |
0,46 |
5,26 |
0,4 |
0,54 |
Es/Zoo |
Not identified sp. 1 |
3 |
15,79 |
0,33 |
0 |
0,09 |
15,79 |
1,2 |
0,54 |
N/N |
Myrsine parvula (Mez) Otegui. |
2 |
10,53 |
0,22 |
0,01 |
0,52 |
10,53 |
0,8 |
0,51 |
Es/Zoo |
Miconia sellowiana Naudin |
3 |
15,79 |
0,33 |
0 |
0,35 |
10,53 |
0,8 |
0,49 |
P/Zoo |
Machaerium cf. stipitatum Vogel |
3 |
15,79 |
0,33 |
0,01 |
0,71 |
5,26 |
0,4 |
0,48 |
Es/Ane |
Aiouea glaziovii (Mez) R. Rodhe |
4 |
21,05 |
0,44 |
0 |
0,2 |
10,53 |
0,8 |
0,48 |
C/Zoo |
Vernonanthura tweedieana (Baker) H. Rob. |
4 |
21,05 |
0,44 |
0 |
0,12 |
10,53 |
0,8 |
0,45 |
P/Ane |
Inga lentiscifolia Benth. |
4 |
21,05 |
0,44 |
0 |
0,11 |
10,53 |
0,8 |
0,45 |
Es/Zoo |
Myrcia hatschbachii D. Legrand |
6 |
31,58 |
0,66 |
0 |
0,26 |
5,26 |
0,4 |
0,44 |
Ls/Zoo |
Zanthoxylum rhoifolium Lam. |
2 |
10,53 |
0,22 |
0 |
0,26 |
10,53 |
0,8 |
0,42 |
Ls/Zoo |
Not identified sp. 2 |
2 |
10,53 |
0,22 |
0 |
0,24 |
10,53 |
0,8 |
0,42 |
P/Zoo |
Dahlstedtia pentaphylla (Taub.) Burkart |
3 |
15,79 |
0,33 |
0 |
0,09 |
10,53 |
0,8 |
0,4 |
N/Zoo |
Blepharocalyx salicifolius (Kunth) O. Berg |
3 |
15,79 |
0,33 |
0 |
0,07 |
10,53 |
0,8 |
0,4 |
Es/Zoo |
Symphyopappus compressus (Gardner) B. L. Rob. |
6 |
31,58 |
0,66 |
0 |
0,12 |
5,26 |
0,4 |
0,39 |
P/Ane |
Nectandra megapotamica (Spreng.) Mez |
3 |
15,79 |
0,33 |
0 |
0,03 |
10,53 |
0,8 |
0,39 |
Ls/Zoo |
Eugenia pluriflora DC. |
2 |
10,53 |
0,22 |
0 |
0,11 |
10,53 |
0,8 |
0,38 |
Ls/Zoo |
Pavonia sp. |
5 |
26,32 |
0,55 |
0 |
0,18 |
5,26 |
0,4 |
0,38 |
N/N |
Piptocarpha regnellii (Sch.Bip.) Cabrera |
1 |
5,26 |
0,11 |
0,01 |
0,6 |
5,26 |
0,4 |
0,37 |
P/Ane |
Vitex megapotamica (Spreng.) Moldenke |
4 |
21,05 |
0,44 |
0 |
0,14 |
5,26 |
0,4 |
0,32 |
Es/Zoo |
Piptocarpha angustifolia Dusén ex Malme |
2 |
10,53 |
0,22 |
0 |
0,33 |
5,26 |
0,4 |
0,32 |
P/Ane |
Erythroxylum myrsinites Mart. |
2 |
10,53 |
0,22 |
0 |
0,26 |
5,26 |
0,4 |
0,29 |
Ls/Zoo |
Symplocos tetrandra Mart. |
3 |
15,79 |
0,33 |
0 |
0,1 |
5,26 |
0,4 |
0,27 |
Ls/Zoo |
Peltophorum dubium (Spreng.) Taub. |
2 |
10,53 |
0,22 |
0 |
0,2 |
5,26 |
0,4 |
0,27 |
Es/Zoo |
Senna neglecta (Vogel) H. S. Irwin Barneby |
2 |
10,53 |
0,22 |
0 |
0,16 |
5,26 |
0,4 |
0,26 |
P/Aut |
Piper sp. |
2 |
10,53 |
0,22 |
0 |
0,12 |
5,26 |
0,4 |
0,25 |
N/N |
Piptocarpha axillaris (Less.) Baker |
1 |
5,26 |
0,11 |
0 |
0,21 |
5,26 |
0,4 |
0,24 |
P/Ane |
Coccocypselum lanceolatum (Ruiz & Pav.) Pers. |
1 |
5,26 |
0,11 |
0 |
0,21 |
5,26 |
0,4 |
0,24 |
N/Zoo |
Solanum variabile Mart. |
2 |
10,53 |
0,22 |
0 |
0,09 |
5,26 |
0,4 |
0,24 |
P/Zoo |
Baccharis dentata (Vell.) G. M. Barroso |
1 |
5,26 |
0,11 |
0 |
0,14 |
5,26 |
0,4 |
0,22 |
P/Ane |
Prunus myrtifolia (L.) Urb. |
1 |
5,26 |
0,11 |
0 |
0,14 |
5,26 |
0,4 |
0,21 |
Es/Zoo |
Jacaranda puberula Cham. |
1 |
5,26 |
0,11 |
0 |
0,13 |
5,26 |
0,4 |
0,21 |
P/Ane |
Solanum cf. didymum Dunal |
2 |
10,53 |
0,22 |
0 |
0,01 |
5,26 |
0,4 |
0,21 |
N/Zoo |
Eugenia neoverrucosa Sobral |
1 |
5,26 |
0,11 |
0 |
0,11 |
5,26 |
0,4 |
0,21 |
Ls/Zoo |
Campomanesia guazumifolia (Cambess.) O. Berg. |
1 |
5,26 |
0,11 |
0 |
0,07 |
5,26 |
0,4 |
0,19 |
Ls/Zoo |
Psychotria suterella Müll.Arg. |
1 |
5,26 |
0,11 |
0 |
0,05 |
5,26 |
0,4 |
0,19 |
Ls/Zoo |
Banara tomentosa Clos |
1 |
5,26 |
0,11 |
0 |
0,05 |
5,26 |
0,4 |
0,19 |
C/Zoo |
Solanum sp. |
1 |
5,26 |
0,11 |
0 |
0,05 |
5,26 |
0,4 |
0,19 |
N/N |
Campovassouria bupleurifolia (DC.) R. M. King & H. Rob. |
1 |
5,26 |
0,11 |
0 |
0,05 |
5,26 |
0,4 |
0,19 |
P/Ane |
Symphyopappus sp. |
1 |
5,26 |
0,11 |
0 |
0,03 |
5,26 |
0,4 |
0,18 |
N/N |
Not identified sp. 3 |
1 |
5,26 |
0,11 |
0 |
0,02 |
5,26 |
0,4 |
0,18 |
N/N |
Mollinedia schottiana (Spreng.) Perkins |
1 |
5,26 |
0,11 |
0 |
0,02 |
5,26 |
0,4 |
0,18 |
C/Zoo |
Not identified sp. 4 |
1 |
5,26 |
0,11 |
0 |
0,02 |
5,26 |
0,4 |
0,18 |
N/N |
Trichilia cf. pallens C. DC. |
1 |
5,26 |
0,11 |
0 |
0,01 |
5,26 |
0,4 |
0,17 |
C/Zoo |
Sorocea bonplandii (Baill.) W. C. Burger et al. |
1 |
5,26 |
0,11 |
0 |
0,01 |
5,26 |
0,4 |
0,17 |
Ls/Zoo |
Pleroma sellowianum (Cham.) P. J. F. Guim. & Michelang. |
1 |
5,26 |
0,11 |
0 |
0,01 |
5,26 |
0,4 |
0,17 |
P/Ane |
Alchornea sidifolia Müll. Arg. |
1 |
5,26 |
0,11 |
0 |
0,01 |
5,26 |
0,4 |
0,17 |
Ls/Zoo |
Source: Authors (2020)
In where: Ni = Number of individuals; AD = Absolute density (ind/ha); RD = Relative density (%); ADo = Absolute dominance (m²/ha); RDo = Relative dominance (%); AF = Absolute frequency (%); RF= Relative frequency (%); IV = Importance value index (%); EG = Ecological group; DS = Dispersion syndrome; N = Not identified.
In the MOF areas, the species with the highest importance value (VI) were Myrsine coriacea (10.06%), Solanum variabile (9.79%), Myrsine lorentziana (7.08%), Baccharis uncinella (5, 22%), Clethra scabra (5.48%) and Ilex paraguariensis (3.61%). Among the species with the highest IV, four have zoochoric dispersion syndrome and two anemochoric. Except Ilex paraguariensis, which is a late secondary and Myrsine lorentziana, which is an early secondary, the other species are pioneers, characteristic of the initial stage of forest succession.
Myrsine coriacea and Solanum variabile had the highest IV, of 10.06% and 9.79%, respectively (Table 2). The high IV of these species is related to the dispersion syndrome and the ecological group, zoochoric and pioneer, respectively. They are species that have a large seed bank on the soil, allowing their establishment in altered areas (SALAMI et al., 2015). In addition, in recovery projects with conduction of natural regeneration, the pioneer species are the first to establish themselves, and are called facilitating species, which help in the initial phase of restoration, changing the conditions of the community, so that the next species have an easier time to establish themselves, because the location is already favorable so that the successional plants can introduce themselves.
Among the species sampled, Araucaria angustifolia and Ocotea porosa, both of great ecological importance for the conservation of MOF and threatened with extinction, presented low IV, 1.27% and 1.65%, respectively. Araucaria angustifolia is a characteristic species of this formation, frequently observed in fragments of the region (FERREIRA et al., 2016), mainly due to the dominance of the forest canopy. However, the number of individuals found in this study was extremely low, with only one regenerant. Similar results to this study were found by Secco, Accra and Caraiola (2019), in a survey carried out in a regeneration area after clearcut of Pinus taeda in the Paraná state, which original forest typology belongs to the MOF.
The low number of individuals of Araucaria angustifolia occurs among other factors, due to the low availability of seeds, caused by the absence of nearby native forest remnants (PALUDO et al., 2011). Secco, Accra and Caraiola (2019), point out that this result may be a consequence of the limited seed dispersal mechanism, the lack of dispersing animals, among which birds (red-spectacled amazon and blue jackdaw) stand out and especially small mammal ones. Araucaria angustifolia represents food for several species of wild fauna, these can act both as predators and as dispersers of these seeds, making it more difficult to find these individuals in the regenerative stratum (SANQUETTA et al., 2005).
Table 2 – Phytosociological parameters of the regenerative component in areas of Mixed Ombrophilous Forest, ordered in descending order by the Importance Value
Tabela 2 – Parâmetros fitossociológicos do componente regenerativo em áreas de Floresta Ombrófila Mista, ordenados em ordem decrescente pelo Índice de Valor de Importância
Species |
Ni |
AD |
RD |
ADo |
RDo |
AF |
RF |
IV |
EG/DS |
Myrsine coriacea (Sw.) R. Br. ex Roem. & Schult. |
149 |
784,21 |
0,38 |
0,28 |
20,06 |
94,74 |
9,73 |
10,06 |
P/Zoo |
Solanum variabile Mart. |
92 |
484,21 |
11,76 |
0,17 |
12,21 |
52,63 |
5,41 |
9,79 |
P/Zoo |
Myrsine parvula (Mez) Otegui. |
14 |
73,68 |
19,05 |
0,02 |
1,1 |
10,53 |
1,08 |
7,08 |
Es/Zoo |
Baccharis uncinella DC. |
45 |
236,84 |
0,26 |
0,14 |
9,99 |
52,63 |
5,41 |
5,22 |
P/Ane |
Clethra scabra Pers. |
39 |
205,26 |
1,92 |
0,08 |
5,69 |
57,89 |
5,95 |
4,52 |
P/Ane |
Ilex paraguariensis A.St.-Hil. |
36 |
189,47 |
0,26 |
0,07 |
5,17 |
52,63 |
5,41 |
3,61 |
Ls/Zoo |
Grazielia intermedia (DC.) R. M. King & H. Rob. |
63 |
331,58 |
0,13 |
0,07 |
5,36 |
42,11 |
4,32 |
3,27 |
P/Ane |
Grazielia serrata (Spreng.) R. M. King & H. Rob. |
2 |
10,53 |
8,06 |
0 |
0,2 |
10,53 |
1,08 |
3,11 |
P/Ane |
Baccharis intermixta Gardner |
35 |
184,21 |
0,13 |
0,06 |
4,39 |
42,11 |
4,32 |
2,95 |
P/Ane |
Frangula sphaerosperma (Sw.) Kartesz & Gandhi |
22 |
115,79 |
1,15 |
0,05 |
3,47 |
26,32 |
2,7 |
2,44 |
P/Zoo |
Myrcia cruciflora A. R. Lourenço & E. Lucas |
5 |
26,32 |
5,75 |
0,01 |
0,46 |
10,53 |
1,08 |
2,43 |
Es/Zoo |
Inga lentiscifolia Benth. |
4 |
21,05 |
4,6 |
0,01 |
0,79 |
15,79 |
1,62 |
2,34 |
Es/Zoo |
Drimys angustifolia Miers |
5 |
26,32 |
4,99 |
0,01 |
0,39 |
15,79 |
1,62 |
2,33 |
P/Zoo |
Ocotea pulchella (Nees & Mart.) Mez |
15 |
78,95 |
1,53 |
0,02 |
1,45 |
31,58 |
3,24 |
2,08 |
Ls/Zoo |
Schinus terebinthifolia Raddi |
15 |
78,95 |
1,92 |
0,01 |
0,79 |
31,58 |
3,24 |
1,98 |
P/Zoo |
Allophylus edulis (A.St.-Hil. et al.) Hieron. ex Niederl. |
24 |
126,32 |
2,81 |
0,02 |
1,43 |
15,79 |
1,62 |
1,96 |
Ls/Zoo |
Baccharis microdonta DC. |
2 |
10,53 |
4,48 |
0 |
0,26 |
10,53 |
1,08 |
1,94 |
P/Ane |
Cinnamomum sellowianum (Nees & Mart.) Kosterm. |
15 |
78,95 |
1,28 |
0,05 |
3,44 |
10,53 |
1,08 |
1,93 |
N/Zoo |
Vernonanthura montevidensis (Spreng.) H. Rob. |
22 |
115,79 |
2,81 |
0,02 |
1,79 |
10,53 |
1,08 |
1,89 |
P/Ane |
Solanum cassioides L.B.Sm. & Downs |
25 |
131,58 |
3,2 |
0,02 |
1,69 |
5,26 |
0,54 |
1,81 |
N/N |
Ocotea porosa (Nees & Mart.) Barroso |
12 |
63,16 |
1,79 |
0,02 |
1,53 |
15,79 |
1,62 |
1,65 |
Ls/Zoo |
Mimosa scabrella Benth. |
6 |
31,58 |
0,26 |
0,04 |
2,78 |
15,79 |
1,62 |
1,55 |
P/Aut |
Prunus myrtifolia (L.) Urb. |
9 |
47,37 |
1,41 |
0,02 |
1,55 |
15,79 |
1,62 |
1,52 |
Es/Zoo |
Podocarpus lambertii Klotzsch ex Endl. |
11 |
57,89 |
0,51 |
0,01 |
0,74 |
26,32 |
2,7 |
1,32 |
Ls/Zoo |
Araucaria angustifolia (Bertol.) Kuntze |
1 |
5,26 |
3,07 |
0 |
0,2 |
5,26 |
0,54 |
1,27 |
Es/Zoo |
Solanum paranense Dusén |
8 |
42,11 |
1,02 |
0,02 |
1,1 |
15,79 |
1,62 |
1,25 |
Es/Zoo |
Cinnamomum amoenum (Nees & Mart.) Kosterm. |
10 |
52,63 |
0,13 |
0,03 |
2,11 |
10,53 |
1,08 |
1,11 |
Ls/Zoo |
Symplocos cf. pentandra (Mattos) Occhioni ex Aranha |
7 |
36,84 |
0,9 |
0,01 |
0,59 |
15,79 |
1,62 |
1,03 |
Ls/Zoo |
Myrceugenia oxysepala (Burret) D. Legrand & KauselI |
4 |
21,05 |
0,9 |
0,01 |
0,79 |
10,53 |
1,08 |
0,92 |
Ls/Zoo |
Myrceugenia myrcioides (Cambess.) O. Berg |
7 |
36,84 |
0,77 |
0,02 |
1,46 |
5,26 |
0,54 |
0,92 |
Ls/Zoo |
Not identified sp. 8 |
3 |
15,79 |
0,38 |
0,01 |
0,59 |
15,79 |
1,62 |
0,87 |
N/N |
Ocotea sp. |
1 |
5,26 |
1,92 |
0 |
0,03 |
5,26 |
0,54 |
0,83 |
N/N |
Myrceugenia euosma (O. Berg) D. Legrand |
6 |
31,58 |
0,77 |
0,01 |
0,5 |
10,53 |
1,08 |
0,78 |
Es/Zoo |
Symphyopappus sp. |
10 |
52,63 |
1,28 |
0,01 |
0,52 |
5,26 |
0,54 |
0,78 |
N/N |
Picramnia parvifolia Engl. |
4 |
21,05 |
0,13 |
0 |
0,31 |
15,79 |
1,62 |
0,68 |
Ls/Zoo |
Not identified sp. 7 |
3 |
15,79 |
0,13 |
0 |
0,17 |
15,79 |
1,62 |
0,64 |
N/N |
3 |
15,79 |
0,38 |
0 |
0,26 |
10,53 |
1,08 |
0,58 |
P/Zoo |
|
Myrcia guianensis (Aubl.) DC. |
2 |
10,53 |
0,51 |
0 |
0,13 |
10,53 |
1,08 |
0,57 |
Es/Zoo |
Eugenia pluriflora DC. |
3 |
15,79 |
0,38 |
0 |
0,18 |
10,53 |
1,08 |
0,55 |
Es/Zoo |
Myrciaria delicatula (DC.) O. Berg |
5 |
26,32 |
0,13 |
0,01 |
0,97 |
5,26 |
0,54 |
0,55 |
Ls/Zoo |
Luehea divaricata Mart. & Zucc. |
3 |
15,79 |
0,13 |
0 |
0,33 |
10,53 |
1,08 |
0,51 |
Es/Ane |
Solanum lacerdae Dusén |
2 |
10,53 |
0,26 |
0,01 |
0,71 |
5,26 |
0,54 |
0,5 |
P/Zoo |
Drimys brasiliensis Miers |
1 |
5,26 |
0,64 |
0 |
0,28 |
5,26 |
0,54 |
0,49 |
Ls/Zoo |
Vernonanthura westiniana (Less.) H. Rob. |
2 |
10,53 |
0,26 |
0 |
0,09 |
10,53 |
1,08 |
0,48 |
P/Ane |
Not identified sp. 5 |
2 |
10,53 |
0,13 |
0 |
0,21 |
10,53 |
1,08 |
0,47 |
N/N |
Matayba elaeagnoides Radlk. |
3 |
15,79 |
0,38 |
0,01 |
0,38 |
5,26 |
0,54 |
0,43 |
Ls/Zoo |
Myrciaria tenella (DC.) O. Berg |
3 |
15,79 |
0,64 |
0 |
0,11 |
5,26 |
0,54 |
0,43 |
Ls/Zoo |
Campovassouria cruciata (Vell.) R. M. King & H. Rob. |
1 |
5,26 |
0,64 |
0 |
0,01 |
5,26 |
0,54 |
0,4 |
P/Ane |
Schinus polygama (Cav.) Cabrera |
3 |
15,79 |
0,38 |
0 |
0,15 |
5,26 |
0,54 |
0,36 |
P/Zoo |
Inga vera Willd. |
1 |
5,26 |
0,51 |
0 |
0,02 |
5,26 |
0,54 |
0,36 |
Es/Zoo |
Symplocos uniflora (Pohl) Benth. |
1 |
5,26 |
0,13 |
0,01 |
0,4 |
5,26 |
0,54 |
0,36 |
Ls/Zoo |
Eugenia uniflora L. |
1 |
5,26 |
0,38 |
0 |
0,06 |
5,26 |
0,54 |
0,33 |
Es/Zoo |
Solanum sanctae-catharinae Dunal |
3 |
15,79 |
0,38 |
0 |
0,04 |
5,26 |
0,54 |
0,32 |
P/Zoo |
Monteverdia aquifolia (Mart.) Biral |
1 |
5,26 |
0,38 |
0 |
0,01 |
5,26 |
0,54 |
0,31 |
Es/Zoo |
Solanum pseudoquina A. St.-Hil. |
1 |
5,26 |
0,13 |
0 |
0,22 |
5,26 |
0,54 |
0,3 |
Es/Zoo |
Baccharis sp. |
2 |
10,53 |
0,26 |
0 |
0,09 |
5,26 |
0,54 |
0,3 |
N/N |
Myrcia selloi (Spreng.) N. Silveira |
1 |
5,26 |
0,26 |
0 |
0,08 |
5,26 |
0,54 |
0,29 |
Es/Zoo |
Vernonanthura tweedieana (Baker) H. Rob. |
2 |
10,53 |
0,26 |
0 |
0,05 |
5,26 |
0,54 |
0,28 |
N/Ane |
Not identified sp. 6 |
1 |
5,26 |
0,26 |
0 |
0,02 |
5,26 |
0,54 |
0,27 |
N/N |
Monteverdia ilicifolia (Mart. ex Reissek) Biral |
2 |
10,53 |
0,13 |
0 |
0,05 |
5,26 |
0,54 |
0,24 |
Ls/Zoo |
Symplocos tetrandra (Mart.) Miq. |
1 |
5,26 |
0,13 |
0 |
0,04 |
5,26 |
0,54 |
0,24 |
Ls/Zoo |
Escallonia bífida Link & Otto |
1 |
5,26 |
0,13 |
0 |
0,01 |
5,26 |
0,54 |
0,23 |
P/Ane |
Source: Authors (2020)
In where: Ni= Number of individuals; AD = Absolute density (ind/ha); RD = Relative density (%); ADo = Absolute dominance (m²/ha); RDo = Relative dominance (%); AF = Absolute frequency (%); RF = Relative frequency (%); IV = Importance value index (%); EG = Ecological group; DS = Dispersion syndrome; N = Not identified.
For the MOF/DOF transition areas, the value of the Shannon diversity index (H ‘) obtained was 3.76 and the Pielou index (J) was 0.81. These values confirm the high diversity and low dominance of one or a few species in the regenerative component. Ronchi, Duarte and Schorn (2020) found values close to those verified in this study when evaluating the natural regeneration of an area under restoration nine years ago, after the extraction of Eucalyptus grandis in Santa Catarina state, obtaining 3.7 for H ‘and 0.89 for J.
In the MOF area, the Shannon (H‘) diversity was 3.24 and the Pielou index (J) was 0.77, ensuring high species diversity and low dominance of one or a few species in the evaluated area. Ferreira et al. (2016), evaluated the natural regeneration in an area inserted in an anthropized matrix of the MOF, used for agricultural purposes with seven years in the process of restoration, and obtained a Shannon diversity (H ‘) of 3.21 and a Pielou index (J) of 0.79, showing low ecological dominance and relatively homogeneous distribution between species.
The species richness found for the MOF/DOF transition areas and MOF areas, were 90 and 62, respectively. The species accumulation curves (Figure 3) demonstrate that the sampling was adequate for the floristic characterization of natural regeneration, since with the inclusion of the last sample unit, a low inclusion of new species was obtained, being 3.75% and 3.57%, respectively.
The species richness verified for the MOF/DOF transition areas (90) was lower than that observed by other authors in assessments of natural regeneration in fragments of DOF in Santa Catarina state, such as Colonetti et al. (2009), which sampled 107 species distributed in 80 genera and 42 families, in areas with forest fragments conserved nearby, directly influencing the dispersion and appearance of a greater number of species, when compared with the present study. In the study by Bosa et al. (2015) in an area degraded by selective cut, abandoned approximately 30 years ago, 102 regenerating species distributed in 78 genera and 42 families were sampled, that is, the number of regenerating species is variable and is related to the degree of degradation, environmental conditions in the area.
Regarding the species richness in the sampled MOF area (62), the result obtained was internal to other studies, such as the one carried out by Secco, Accra and Caraiola (2019), which also evaluated the restoration process in post-harvest MOF area of Pinus sp., in restoration process for approximately two years, where it sampled 64 species, grouped into 42 genera and 27 families.
Figure 3 – Accumulation curve of regeneration species in transition areas between Mixed and Dense Ombrophilous Forest (A); and in areas of Mixed Ombrophilous Forest (B)
Figura 3 – Curva de acumulação de espécies da regeneração em áreas de transição entre Floresta Ombrófila Mista e Densa (A); e em áreas de Floresta Ombrófila Mista (B)
Source: Authors (2020)
However, the richness of the natural regeneration sampled in both areas evaluated is in accordance with the expected standards and indicated by Maçaneiro et al. (2016), who raised a variation between 39 and 109 species in studies of natural regeneration in MOF, demonstrating the importance value of this fragment for conservation and studies of secondary forests.
In the MOF/DOF transition areas, most species sampled have zoochoric dispersion syndrome (66.67%), followed by anemochoric (18.89%) and autochoric (4.44%), and without evaluation (10%) (Figure 4). Likewise, in the areas of MOF, most of the sampled species have zoochoric dispersion syndrome (66.13%), followed by anemochoric (19.36%) and autochoric (1.61%) and without evaluation (12.90 %) (Figure 4). The expressive presence of zoochoric species corresponds to what is expected for riparian forests in the domain of the Atlantic Forest, as it presents 50% to 90% of its tree species dispersed by animals, being the main responsible for the revegetation of degraded or disturbed areas, in addition to increasing chances of recolonization and promote the increase of biodiversity in disturbed areas through the entry of new propagules (BOCCHESE et al., 2008; PEREIRA et al., 2010; SOUZA et al., 2012; FERREIRA et al., 2013).
Regarding the ecological groups, in the areas in transition from MOF/DOF, 27 early secondary species (30.00%), 26 pioneer species (28.89%), 20 late secondary species (22.22%), five species were sampled climax (5.56%) and 12 species without classification (13.33%) (Figure 4). In the MOF, 20 pioneer species (32.26%), 17 early secondary species (27.42%) and 15 late secondary species (24.19%) were sampled, 10 species without evaluation (16.13%), it is important to highlight that in the MOF area there was no presence of climax species.
The predominance of pioneer species is characteristic in areas that are established after a long period of disturbances (PEREIRA et al., 2010). And both pioneer and early secondary species are representative of forest formations in the process of initial restoration and responsible for the colonization of these disturbed forests, these species show rapid growth and development and provide favorable edaphoclimatic conditions for the development of late species (SILVA et al., 2013; SECCO; ACRA; CORAIOLA, 2019). In this way, the importance of obtaining pioneer species in recovery areas is highlighted, as they provide efficient and rapid soil coverage (PEREIRA et al., 2010) and facilitate the occurrence of natural regeneration.
Figure 4 – Dispersion syndromes and ecological groups of species sampled in the natural regeneration of the transition area between Mixed and Dense Ombrophylous Forest (A and B); and in the area of Mixed Ombrophylous Forest (C and D)
Figura 4 – Síndrome de dispersão e Grupo ecológico das espécies amostradas na regeneração natural da área de transição entre Floresta Ombrófila Mista e Densa (A; B); e na área de Floresta Ombrófila Mista (C; D)
Source: Authors (2020)
3.1 Height and diameter classes
The diametric distribution of the individuals presented an “inverted J” pattern, for both phytophysiognomies (Figure 5), expected behavior in native forests. In the MOF areas and in the MOF/DOF transition area, 72.1% and 72.3% of the individuals are included in the four classes of smaller diameter (<2.0 cm), respectively. Regarding height, 92.1% are in the four lowest height classes (<4 m) in the MOF areas, and 86.4% in the MOF/DOF transition area (<3.5 m).
The high occurrence of individuals in the lower classes of diameter denotes that the population is stable in development. Canalez, Corte and Sanquetta (2006) concluded that the “J-inverted” form of distribution indicates that regeneration remains within a continuous flow, with a higher density of individuals in the lower classes in natural regeneration being common, this behavior is expected in natural forests.
Figure 5 – Diametric structure and height of natural regeneration in post-harvest permanent preservation areas of Pinus sp. in Mixed Ombrophylous Forest (A and C) and transition area between Mixed and Dense Ombrophylous Forest (B and D)
Figura 5 – Estrutura diamétrica e altura da regeneração natural em Áreas de Preservação Permanente pós-colheita de Pinus sp. em Floresta Ombrófila Mista (A e C) e área de transição Floresta Ombrófila Mista/Densa (B e D)
Source: Authors (2020)
3.2 NMDS Ordering
The NMDS presented a stress value of 9.81%, indicating suitability of the ordering and allowing inferences to be made with reliability. Through the NMDS ordering (Figure 6), the formation of two distinct floristic-structural groups was observed, associated with MOF and MOF/DOF transition. All plots inserted in MOF areas are grouped to the right in the ordering, while most plots inserted in the MOF/DOF transition area are grouped to the left of the ordering. There was a difference in the floristic composition between the clusters by means of PERMANOVA (p <0.001), indicating that the natural regeneration in the post-harvest PPA of Pinus sp. presentes a low floristic-structural similarity between the studied vegetation types, althought they presente similar characteristics and include transition enviroments.
The low floristic similarity between MOF and DOF phytophysiognomies occurs mainly in response to climatic variables, altitude and the presence of a geographical barrier (HIGUCHI et al., 2012). According to these authors, the occurrence of lower temperatures in areas of higher altitude and the presence of a geographical barrier formed by mountain formations “Serra do Mar” and “Serra Geral” prevent the flow of species between DOF and MOF, allowing the establishment of exclusive species in DOF, intolerant to low temperatures, which causes high species substitution among phytophysiognomies.
The heterogeneity between the evaluated areas is associated with several factors, ranging from the topographic profile, availability of nutrients in the soil and the successional stage. Narvaes et al. (2014) attributed topography to the main source of vegetation variation in these environments, since the physical and chemical characteristics of soils vary depending on the topographic position.
The occurrence of exclusive species in both phytophysiognomies was verified. It is the case of: Annona sylvatica, Aureliana wettsteiniana, Piper aduncum, Cabralea canjerana, Cupania vernalis and Mollinedia clavigera in the transition areas MOF/DOF and Grazielia intermedia, Ocotea porosa, Ocotea pulchella, Ilex paraguariensis and species of the genus Baccharis in the areas of MOF. Species such as Clethra scabra, Cinnamomum sellowianum and Allophylus edulis, had a wide distribution in both phytophysiognomies, being located in the center of the diagram (Figure 6).
Figure 6 – Plot distribution and floristic-structural composition of natural regeneration in post-harvest permanent preservation areas of Pinus sp. in Mixed Ombrophilous Forest and transition area between Mixed and Dense Ombrophilous Forest, in NMDS analysis (Nonmetric Multidimensional Scaling)
Figura 6 – Distribuição das parcelas e composição florístico-estrutural da regeneração natural em Áreas de Preservação Permanente pós-colheita de Pinus sp. em Floresta Ombrófila Mista e área de transição Floresta Ombrófila Mista/Densa, na análise NMDS (Nonmetric Multidimensional Scaling)
Source: Authors (2020)
In where: Alloedul= Allophylus edulis; Annosylv= Annona sylvatica, Aurewett= Aureliana wettsteiniana; Baccinte: Baccharis intermixta; Baccunci: Baccharis uncinella; Bernpulc: Bernardia pulchella; Cabrcanj: Cabralea cajerana; Cedrfiss: Cedrela fissilis; Cinnsell= Cinnamomum sellowianum; Cletscab= Clethra scabra; Eugepyri: Eugenia pyriformis; Franspha= Frangula sphaerosperma; Grazinte= Grazielia intermedia; Ilexpara = Ilex paraguariensis; Machpara = Machaerium paraguariense; Mataelae= Matayba elaeagnoides; Mollclav= Mollinedia clavigera; Myrccruc= Myrcia cruciflora; Myrscori= Myrsine coriacea; Myrsparv= Myrsine parvula; Ocotporo= Ocotea porosa; Ocotpube= Ocotea puberula; Ocotpulc= Ocotea pulchella; Pipeadun = Piper aduncum; Podolamb= Podocarpus lambertii; Schitere = Schinus terebinthifolia; Solacass= Solanum cassioides; Solasanc= Solanum sanctae-catharinae; Solavari= Solanum variabile; Sympsp= Symphyopappus sp.; Vernmont= Vernonanthura montevidensis.
Fonte: Autores (2020)
Legenda: Alloedul = Allophylus edulis; Annosylv = Annona sylvatica, Aurewett = Aureliana wettsteiniana; Baccinte: Baccharis intermixta; Baccunci: Baccharis uncinella; Bernpulc: Bernardia pulchella; Cabrcanj: Cabralea cajerana; Cedrfiss: Cedrela fissilis; Cinnsell = Cinnamomum sellowianum; Cletscab = Clethra scabra; Eugepyri: Eugenia pyriformis; Franspha = Frangula sphaerosperma; Grazinte = Grazielia intermedia; Ilexpara = Ilex paraguariensis; Machpara = Machaerium paraguariense; Mataelae = Matayba elaeagnoides; Mollclav = Mollinedia clavigera; Myrccruc = Myrcia cruciflora; Myrscori = Myrsine coriacea; Myrsparv = Myrsine parvula; Ocotporo = Ocotea porosa; Ocotpube = Ocotea puberula; Ocotpulc = Ocotea pulchella; Pipeadun = Piper aduncum; Podolamb = Podocarpus lambertii; Schitere = Schinus terebinthifolia; Solacass = Solanum cassioides; Solasanc = Solanum sanctae-catharinae; Solavari = Solanum variabile; Sympsp = Symphyopappus sp.; Vernmont = Vernonanthura montevidensis.
The species sampled in the MOF/DOF transition are of great environmental and ecological importance. Aureliana wettsteiniana and Piper aduncum are pioneer and zoochoric species. The species Annona sylvatica, Cupania vernalis and Mollinedia clavigera are the early secondary group and zoochoric, representative in the initial phase and responsible for the colonization of these disturbed forests. Cabralea canjerana, on the other hand, is late secondary and zoochoric, present in the intermediate phase of the succession. At MOF, the species sampled from the genus Baccharis, the others belonging to the Asteraceae family (e.g. Grazielia intermedia) are present in the initial stage of the succession, and are responsible for the colonization of open areas, coming to contribute to the process and ensure the beginning of the restoration process. (RECH et al., 2017; SECCO; ACRA; CORAIOLA, 2019). It is important to highlight the presence of Ocotea puberula due to its great ecological importance, mainly for areas in recovery of the ecosystem, being zoochoric, with abundant fruiting, guaranteeing the conservation of the local fauna and flora (MARTINS, 2009).
Both areas evaluated had Pinus plantation as the main factor of degradation, but after the removal of these individuals and the beginning of the recovery process, they show great potential for perpetuation and reestablishment of the forest ecosystem. The areas presented several similar characteristics in the regenerative extract, when considering attributes such as high richness, diversity and the presence of species with high importance value for the evaluated formations. However, the time of restoration, environmental factors, the presence or absence of the degradation factor and the typology of the region contributes to the results being different, both in diversity and species richness. These results show the different succession trajectories of the forest, and provide relevant information regarding the restoration period and conditions of the evaluated ecosystem, enabling the proper planning of the restoration in the local context, such as the definition of priority species for the introduction and enrichment these areas.
4 CONCLUSIONS
The arboreal-shrubby regenerative component evaluated in post-harvest areas of Pinus sp. in MOF areas and MOF/DOF transition areas they have a great diversity of species with great importance for forest formation, being a favorable environment for the conservation of species and essential to guarantee the succession of the forest and the restoration resilience.
The richness and diversity of the arboreal-shrubby regeneration componente was satisfactory, with high richness and species diversity, making the conduction of natural regeneration a viable alternative for the restoration of post-harvest areas of Pinus sp. in the MOF areas and MOF/DOF transition areas, capable of providing subsidies that guarantee the restoraion and succession os the of the evaluated areas.
ACKNOWLEDGEMENTS
Klabin SA for providing the study areas and for the financial assistance in the development of this work.
FAPESC for its support through the Forest Resources Management Research Group from the University of the State of Santa Catarina.
REFERENCES
ALVARES, C. A. et al. Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift, Stuttgart, v. 22, n. 6, p. 711-728, 2013.
ANGIOSPERM PHYLOGENY GROUP. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Botanical Journal of the Linnean Society, London, v. 181, p. 1-20, 2016.
BATISTA, F. Diagnóstico florístico e mapeamento de locais críticos em áreas de preservação permanente em função do índice de diversidade de Shannon. 2012. Dissertação (Mestrado em Produção Vegetal) – Universidade do Estado de Santa Catarina, Florianópolis, 2012.
BOCCHESE, R. A. et al. Chuva de sementes e estabelecimento de plântulas a partir da utilização de árvores isoladas e poleiros artificiais por aves dispersoras de sementes, em área de Cerrado, Mato Grosso do Sul, Brasil. Revista Brasileira de Ornitologia, Ararajuba, v. 16, n. 3, p. 207-213, set. 2008.
BOGNOLA, I. A. et al. Dispersão de sementes, regeneração e rebrota de Pinus taeda no Planalto Norte do Estado de Santa Catarina, Brasil. Pesquisa Florestal Brasileira, Colombo, v. 38, e201801651, 2018.
BOSA, M. D. et al. Florística e estrutura do componente arbóreo de uma Floresta Ombrófila Densa Montana em Santa Catarina, Brasil. Revista Árvore, Viçosa, MG, v. 39, n. 1, p. 49-58, 2015.
BRANCALION, P. H. S. et al. Instrumentos legais podem contribuir para a restauração de florestas tropicais biodiversas. Revista Árvore, Viçosa, MG, v. 34, n. 3, p. 455-470, 2010.
BRASIL. Lei Federal n.º 12.651, de 25 de maio de 2012. Código Florestal Brasileiro. Diário oficial da República Federativa do Brasil, Brasília, DF, maio 2012. Disponível em: http://www.planalto.gov.br/ccivil_03/_ato20112014/2012/lei/l12651.htm. Acesso em: 20 jul. 2019.
BUDOWSKI, G. Distribution of tropical American rain forest species in the light of sucessional processes. Turrialba, Costa Rica, v. 15, n. 1, p. 40-42, 1965.
CANALEZ, G. G.; CORTE, A. P. D.; SANQUETTA, C. R. Dinâmica da estrutura da comunidade de Lauráceas no período 1995-2004 em uma floresta de araucária no sul do estado do Paraná, Brasil. Revista Ciência Florestal, Santa Maria, v. 16, n. 4, p. 357-367, 2006.
COLONETTI, S. et al. Florística e estrutura fitossociológica em Floresta Ombrófila Densa Submontana na barragem do rio São Bento, Siderópolis, Estado de Santa Catarina. Revista Acta Scientiarum Biological Sciences, Maringá, v. 31, n. 4, p. 397-405, 2009.
CONSELHO NACIONAL DE MEIO AMBIENTE (Brasil). Resolução n°4 de 4 de maio de 1994. Define vegetação primária e secundária nos estágios inicial, médio e avançado de regeneração da Mata Atlântica, a fim de orientar os procedimentos de licenciamento de atividades florestais no estado de Santa Catarina. Diário Oficial da União, Brasília, DF, n. 114, p. 174, 17 jun. 1994.
DARONCO, C.; MELO, A. C. G.; DURIGAN, G. Ecossistema em restauração versus ecossistema de referência: estudo de caso da comunidade vegetal de mata ciliar em região de Cerrado, Assis, SP, Brasil. Revista Hoehnea, São Paulo, v. 40, n. 3, p. 485-498, 2013.
FERREIRA, P. I. et al. Espécies potenciais para recuperação de Áreas de Preservação Permanente no Planalto Catarinense. Floresta e Ambiente, Seropédica, v. 20, n. 2, p. 173-182, abr./jun. 2013.
FERREIRA, T. S. et al. Composição florístico-estrutural ao longo de um gradiente de borda em fragmento de Floresta Ombrófila Mista Alto-Montana em Santa Catarina. Revista Ciência Florestal, Santa Maria, v. 26, n. 1, p. 123-134, jan./mar. 2016.
GASPER, A. L. de et al. Inventário florístico florestal de Santa Catarina: espécies da Floresta Ombrófila Mista, Blumenau, SC. Rodriguésia, Rio de Janeiro, v. 64, n. 2, p. 201-210, 2013.
HIGUCHI, P. et al. Floristic composition and phytogeography of the tree component of Araucaria Forest fragments in southern Brazil. Brazilian Journal of Botany, São Paulo, v. 35, n. 2, p. 145-157, abr./jun. 2012.
JARDIM BOTÂNICO DO RIO DE JANEIRO. Flora do Brasil 2020 em construção. Rio de Janeiro, 2020. Disponível em: http://floradobrasil.jbrj.gov.br/. Acesso em: 10 nov. 2020.
MAÇANEIRO, P. J. et al. Regeneração de uma Floresta Ombrófila Mista no Planalto Catarinense. Revista Biotemas, Florianópolis, v. 29, n. 4, p. 31-42, dez. 2016.
MARTINS, S. V. Recuperação de áreas degradadas. Viçosa, MG: Aprenda Fácil, 2009. 269 p.
MUELLER-DOMBOIS, D.; ELLEMBERG, H. Aims and methods of Vegetation Ecology. New Jersey: The Blackburn Press, 2002. 547 p.
MYERS, N. et al. Biodiversity hotspots for conservation priorities. Nature, London, v. 403, p. 853-858, 2000.
NARVAES, I. S. et al. Arboreous species population in a topographic gradient of Mixed Ombrophilous Forest in Rio Grande do Sul. Revista Floresta, Curitiba, v. 44, n. 4, p. 553-564, 2014.
OKSANEN, J. et al. Vegan: Community Ecology Package. R package version. [S. l.: s. n.], 2019.
PALUDO, G. F. et al. Regeneração de uma população natural de Araucaria angustifolia (araucariaceae). Revista Árvore, Viçosa, MG, v. 35, n. 5, p. 1107-1119, 2011.
PEREIRA, I. M. et al. Caracterização ecológica de espécies arbóreas ocorrentes em ambientes de mata ciliar, como subsídio à recomposição de áreas alteradas nas cabeceiras do rio grande, Minas Gerais, Brasil. Revista Ciência Florestal, Santa Maria, v. 20, n. 2, abr./jun. 2010.
POTTER, R. O. et al. Solos do Estado de Santa Catarina. Rio de Janeiro: Embrapa Solos, 2004. 713 p. (Boletim de Pesquisa e Desenvolvimento).
R DEVELOPMENT CORE TEAM. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing, 2019. Disponível em: http://www.R-project.org. Acesso em: 19 dez. 2019.
RECH C. C. C. Monitoramento do processo de restauração em uma área degradada no sul do Brasil. Revista Espacios, [s. l.], v. 38, n. 19, p. 5, 2017.
RIBEIRO, M. C. et al. The Brazilian Atlantic Forest: a shrinking biodiversity hostpot. In: ZACHOS, F.; HABEL, J. (ed.). Biodiversity Hotspots. Berlin: Springer, 2011. p. 405-434.
RODRIGUES, R. R.; BRANCALION, P. H. S.; ISERNHAGEN, I. (org.). Protocolo de monitoramento para programas e projetos de restauração florestal. São Paulo: Instituto BioAtlântica, 2013.
RONCHI, D. L.; DUARTE, S. W.; SCHORN, L. A. Composição e estrutura da regeneração natural em até nove anos após a extração de Eucalyptus grandis Hill ex. Maiden no Vale do Itajaí, SC. Revista Ciência Florestal, Santa Maria, v. 30, n. 2, p. 380-395, abr./jun. 2020.
SALAMI, G. et al. Avaliação dos aspectos florísticos e estruturais de um fragmento de Floresta Ombrófila Mista influenciado por sucessivas rotações de espécies florestais exóticas. Revista de Ciências Agroveterinárias, Lages, v. 14, n. 1, p. 7-14, 2015.
SANQUETTA, C. R. et al. Sobrevivência de mudas de Araucaria angustifolia perante o controle de taquaras (Bambusoideae) no Paraná, Brasil. Revista Floresta, Curitiba,v. 35, p. 127-135, 2005.
SÃO PAULO. Portaria CBRN 01/2015. Estabelecer o Protocolo de Monitoramento de Projetos de Restauração Ecológica. Diário Oficial do Estado de São Paulo, São Paulo, 2015.
SCARANO, F. R.; CEOTTO, P. Brazilian Atlantic forest: impact, vulnerability, and adaptation to climate change. Biodiversity and Conservation, London, v. 24, n. 9, p. 2319-2331, 2015.
SECCO, R. T.; ACRA, L. A.; CORAIOLA, M. Regeneração natural em área de corte raso de Pinus taeda L. Revista Ciência Florestal, Santa Maria, v. 29, n. 1, p. 208-220, jan./mar. 2019.
SEUBERT, R. C. et al. Regeneração natural em diferentes períodos de abandono de áreas após extração de Eucalyptus Grandis hill ex maiden, em argissolo vermelhoamarelo álico, em Brusque, Santa Catarina. Ciência Florestal, Santa Maria, v. 27, n. 1, p. 1-19, 2017.
SILVA, A. C. et al. Caracterização fitossociológica e fitogeográfica de um trecho de Floresta ciliar em Alfredo Wagner, SC, como subsídio para restauração ecológica. Ciência Florestal, Santa Maria, v. 23, n. 4, out./dez. 2013.
SOUZA, L. M. de et al. Potencial da regeneração natural como método de restauração do entorno de nascente perturbada. Revista Cerne, Lavras, v. 18, n. 4, p. 565-576, out./dez. 2012.
VAN DER PIJL, L. Principles of dispersal in higher plants. Berlim: Springer-Verlag, 1982. 162 p.
VIBRANS, A. C. et al. Extensão original e remanescentes da Floresta Ombrófila Mista em Santa Catarina. In: VIBRANS, A. C. et al. (ed.). Inventário Florístico Florestal de Santa Catarina: Floresta Ombrófila Mista. Blumenau, SC: Edifurb, 2013. v. 3.
Authorship Contribution
1 – Emanoéli de Oliveira
Contribution: Conceptualization, Methodology, Formal Analysis, Investigation, Writing – original draft, Writing – review & editing
2 – Charline Zangalli
Contribution: Conceptualization, Methodology, Formal Analysis, Investigation, Writing – review & editing
3 – Guilherme Diego Fockink
Contribution: Conceptualization, Methodology, Formal Analysis, Investigation, Writing – review & editing
4 – Maria Raquel Kanieski
Contribution: Conceptualization, Supervision, Project administration, Writing – review & editing
5 – Marcos Felipe Nicoletti
Contribution: Validation, Writing – review & editing
6 – Beatriz Rodrigues Bagnolin Muniz
Contribution: Investigation
7 – Rômulo Koeche
Contribution: Investigation
8 – Mireli Moura Pitz Floriani
Contribution: Writing – review & editing