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FLORISTIC DIVERSITY AND EQUITABILITY IN FOREST FRAGMENTS USING 
ARTIFICIAL NEURAL NETWORKS

DIVERSIDADE FLORÍSTICA E EQUABILIDADE EM FRAGMENTOS FLORESTAIS USANDO 
REDES NEURAIS ARTIFICIAIS

Christian Dias Cabacinha1   Bruno Oliveira Lafetá2

ABSTRACT

This study aimed to evaluate the predictive efficiency of Shannon index (H’) and Pielou Equitability index 
(J) in forest fragments from the Brazilian Cerrado biome, from the vegetation indices and landscape metrics 
using artificial neural networks (ANN). Feedforward networks were used and they were trained through a 
back propagation error algorithm. The variables used as ANN input for simultaneous estimation of indices 
were: the categorical (H’ and J) and the numbers related to the mean and standard deviation of vegetation 
indices (NDVI, SAVI, EVI, and MVI5, MVI7) and landscape metrics (AREA, GYRATE, SHAPE, CONTIG, 
CORE and ENN). It was generated five models of ANN from the functional relationships between numerical 
variables inherent to vegetation indices in two seasons, a dry season (June) and a rainy season (February). 
The architecture of the networks was the Multilayer Perceptron (MLP), to estimate simultaneously the H’ 
and J: 500 using vegetation indices in the wet season (100 for each vegetation index) and 500 in dry (100 
for each vegetation index). The precision, accuracy and realism of biological ANN were assessed. The nets 
built during the rainy season and dry season that used vegetation indices MVI5 (Moisture Vegetation Index) 
and SAVI (Soil Adjusted Vegetation Index), respectively, were more appropriate, accurate and biologically 
realistic to estimate both indices H’ and J. The ANN modeling demonstrated to be adequate to estimate the 
diversity index.
Keywords: biological diversity; Brazilian Cerrado; MLP.

RESUMO

Este estudo teve como objetivo avaliar a eficiência da predição dos índices de diversidade de Shannon (H’) e 
de Equabilidade de Pielou (J) em fragmentos florestais do Cerrado brasileiro a partir de índices de vegetação 
e métricas da paisagem empregando redes neurais artificiais (RNA). Utilizaram-se redes anteroalimentadas 
(feedforward), treinadas por meio do algoritmo da retropropagação do erro (back propagation). As variáveis 
utilizadas como entradas das RNA para a estimação simultânea dos índices foram: as categóricas (índices 
H’ e J) e as numéricas relacionadas às médias e desvios padrão dos índices de vegetação (NDVI, SAVI, 
EVI, MVI5 e MVI7) e métricas da paisagem (AREA, GYRATE, SHAPE, CONTIG, CORE e ENN). Foram 
gerados cinco modelos de RNA a partir das relações funcionais entre as variáveis numéricas inerentes 
aos índices de vegetação em duas épocas, uma seca (junho) e outra chuvosa (fevereiro). A arquitetura das 
redes foi a Multilayer Perceptron (MLP) para estimar simultaneamente H’ e J: 500 utilizando os índices 
de vegetação na época úmida (100 para cada índice de vegetação) e 500, na seca (100 para cada índice de 
vegetação). Foi avaliada a precisão, acurácia e realismo biológico das RNA. As redes construídas na época 
chuvosa e seca que utilizaram os índices de vegetação MVI5 (Moisture Vegetation Index) e SAVI (Soil 
Adjusted Vegetation Index), respectivamente, foram mais adequadas, precisas e realistas biologicamente 
para estimar, simultaneamente, os índices de H’ e de J. A modelagem por RNA demonstrou-se adequada 
para estimar os índices de diversidade e equabilidade.
Palavras-chave: diversidade biológica; Cerrado; MLP.
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INTRODUCTION

 Biodiversity is often estimated using remote sensing images through basic vegetation indices such 
as NDVI (Normalized Difference Vegetation Index) and traditional statistical techniques such as regression 
(FOODY; CUTLER, 2006; SCRINZI et al., 2007). Among the vegetation indices, NDVI provides an 
estimate of “greenness” of vegetation or biomass per pixel and is commonly used in remote sensing studies 
(INGRAM et al., 2005; MAEDA et al., 2009).
 Relationship between spectral data and forest attributes are usually complex and nonlinear, and 
may vary between different bands (INGRAM et al., 2005). Even under these conditions, linear regression 
establishing relationships between the variables of interest is common in studies that utilize remote sensing 
(BRADSHAW et al., 2002; INGRAM et al., 2005). These approaches are not always appropriate, being 
recommended methods that do not rely on assumptions about the statistical distributions of variables (or 
nonparametric). In the search for new options for a safe and efficient characterization of diversity indices, 
what stands out is artificial intelligence. Artificial neural networks (ANN) represent a new approach to the 
development of predictive models, capable of learn complex patterns and trends in data, even if not normal, 
or linear, are dynamic, flexible and adaptable (HAYKIN, 2001; SCRINZI et al., 2007).
 The ANN computer systems are structured in similarity to the human brain’s design and information 
processing (MAEDA et al., 2009). Made up of simple processing units (or artificial neurons), its training 
consists in providing to pre-established architecture a pair of patterns: a standard input and the desired, 
corresponding to output pattern (MONJEZI et al., 2010). Several algorithms can be used in training a neural 
network model. The back propagation algorithm is the most versatile, robust technique and provides more 
efficient learning in multilayer networks (MLP) (TAWADROUS; KATSABANIS, 2009). This architecture 
builds global proximity, consisting in an input layer, one or more hidden layers and an output layer (SOARES 
et al., 2011).
 The efficiency of ANN can be evaluated using a type of cross-validation commonly referred to as 
holdout method (HAYKIN, 2001). Based on the separation of a set of data into mutually exclusive subsets, 
in which part of the data is used in training and the other remaining data in validation. This procedure is 
important to test the ability to correctly classify patterns not included in the training, and therefore the 
definition of the network with better generalization ability (FERNANDES et al., 2004).
 The networks are being increasingly used in environmental sciences. Recent applications include 
the prediction of severe events using meteorological data (PESSOA et al., 2012). Ingram, Dawson and 
Whittaker (2005) demonstrated the potential use of ANN integrating satellite data (Landsat ETM +) in 
the spectral bands 3, 4, 5 and 7, to estimate the basal area of Madagascar’s southeastern tropical forests. 
Foody and Cutler (2006) found a strong correlation between the biodiversity indices estimates derived from 
remote sensing and field research while working on mapping the richness of species and composition of 
tropical forests in ANN.
 Remote sensing can provide useful information on biodiversity (CABACINHA; CASTRO, 2009; 
FOODY; CUTLER, 2006; INGRAM et al., 2005; KALACSKA et al., 2007). The ANN associated with 
remote sensing can be a viable alternative in research on sustainability and establishment of practical 
criteria for the characterization and classification of sites for the assessment of environmental impacts and 
recovery of degraded areas. In this article, the following hypotheses are being tested: (i) ANN is suitable to 
estimate the Shannon Index and Pielou Equitability Index and (ii) ANN can provide biologically accurate 
and realistic estimates for the Shannon Index and Pielou Equitability Index. This study aimed to evaluate 
the efficiency of the prediction of the Shannon diversity index and Pielou Equitability Index in fragments 
the Brazilian Cerrado biome, from vegetation indices and landscape metrics employing ANN.

MATERIAL AND METHODS

Study area

The study area where data were collected is located in the extreme southwest of Goiás state, in 
Mineiros region, and the south of Mato Grosso state, in Alto Araguaia region, near the frontier of these 
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two states and Mato Grosso do Sul (Figure 1). It is located in the quadrant formed by the coordinates, 
17o49´12”S and 53o15´00”, 18o03´36”S and 52o57´00”W, covering 52,214.70 ha area. According to the 
Köppen climate classification the region presents a climate type Aw, characterized by being; tropical rainy, 
with hot summers and dry winters and annual mean temperatures between 18 and 32 oC and the annual 
precipitation varies between 1500 and 1600 mm (OLIVEIRA et al., 2003). Further details can be seen in 
Cabacinha and Castro (2009).

FIGURE 1:  Localization of the study area and location of forest fragments (black) studied. Brazil. Using 
lat/long unit. Font: Cabacinha and Castro (2009).

FIGURA 1: Localização da área de estudo e locação dos fragmentos florestais (preto) estudados. Brasil. 
Usando unidades de latitude e longitude. Fonte: Cabacinha and Castro (2009).

Artificial neural network model

 The data used in the training of artificial neural networks relates to each fragment evaluated. This 
training, also called learning, consists in adjusting network parameters (weights and biases) through a 
learning algorithm (MAEDA et al. 2009). In this process, the training data set (examples) are submitted to 
a pre-set architecture, i.e. a number of neuron arrangements in layers and the training algorithm extracts 
features in order to represent the information and to perform a given task. The variables used as input of 
ANN for simultaneous estimation of diversity indices were: a categorical index (H’: 1 and J: 2) and the 
number related to the medium (M) and standard deviations (D) of vegetation indices (NDVIM, NDVID, 
SAVIM, SAVID, EVIM, EVID, MVI5N, MVI5D, MVI7M and MVI7D) and landscape metrics (AREA, 
GYRATE, SHAPE, CONTIG, CORE and ENN). Further details can be seen in Cabacinha and Castro 
(2009).
 For the prediction of diversity (ID) 5 models were generated from ANN from the functional 
relationships between numerical variables inherent vegetation indices in two seasons, a dry season (June) 
and a rainy season (February): 

When x equal 1 and 2 refer to H’ and J, respectively. Ten ANN were constructed (Table 1).
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Training and validation

 The networks were fed and trained through the error back propagation algorithm, i.e. during 
training, calculations were performed from the input layer to the network output and the error propagated to 
previous layers. In all of the pre-processing, it was performed a normalization and equalization of data thus 
enhancing the sensitivity to the variation of the same network to better capture their behavior. In accordance 
with Bradshaw et al. (2002) and Pessoa et al. (2012), the data were divided into groups of training and of 
validation using random sampling method. That is, 80% of samples were taken for the first group and the 
remainder in the second.
 Thousand ANN of the type Multilayer Perceptron (MLP) were trained to estimate simultaneously 
the H’ and J: 500 using vegetation indices in the wet season (100 for each vegetation index) and 500 in 
the dry season (100 for each vegetation index). We adopted a heuristic model as described by backward 
elimination Cerqueira, Andrade and Poppi (2001). Of these ANN, were selected one of each type based 
on the deviation of the observed and estimated values. One of the most common problems observed in the 
training of the ANN is overfitting. Seeking to avoid it, the training of the networks was stopped when the 
error began to increase, as Bradshaw et al. (2002), and Maeda et al. (2009).
 The optimal number of hidden layers and neurons per layer is not generally known, a priori. Once 
defined the architecture and training parameters of the artificial neural network, it is trained in an interactive 
form (BLACKARD; DEAN, 1999). Therefore, the definition of the network architecture was optimized by 
the tool Intelligent Problem Solver (IPS) from the software ‘Statistica 7.0’ (STATSOFT, 2007). The number 
of neurons is data dependent, and the following formula was applied as by Ingram, Dawson and Whittaker 
(2005):

Where N is the number of neurons in the input layer i is equal to the number of inputs of the network. There 
were nine inputs formed by numerical and categorical variables.

TABLE 1:    Identification and inputs used in artificial neural networks (ANN) to estimate the diversity 
index due to the season.

TABELA 1: Identificação e inputs utilizados nas redes neurais artificiais (RNA) para estimar os índices de 
diversidade em função da época.

Season ANN n
--------------------------- Inputs ---------------------------

Numerical Categorical

Rainy

(February)

1 44 NDVIM, NDVID, A, G, S, CONTIG, CORE, ENN Índice
2 44 SAVIM, SAVID, A, G, S, CONTIG, CORE, ENN Índice
3 44 EVIM, EVID, A, G, S, CONTIG, CORE, ENN Índice
4 44 MVI5M, MVI5D, A, G, S, CONTIG, CORE, ENN Índice
5 44 MVI7M, MVI7D, A, G, S, CONTIG, CORE, ENN Índice

Dry

(June)

6 44 NDVIM, NDVID, A, G, S, CONTIG, CORE, ENN Índice
7 44 SAVIM, SAVID, A, G, S, CONTIG, CORE, ENN Índice
8 44 EVIM, EVID, A, G, S, CONTIG, CORE, ENN Índice
9 44 MVI5M, MVI5D, A, G, S, CONTIG, CORE, ENN Índice
10 44 MVI7M, MVI7D, A, G, S, CONTIG, CORE, ENN Índice

Em que: A = ÁREA. G = GYRATE. S = SHAPE. When “Índice” equal 1 and 2 refer to H’ and J, respectively. 
n = number of observations.
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Model performance

 The evaluations of the accuracy and precision of the training of ANN were performed using the 
Error%, RMSE% test, Bias% test and a graphical analysis to observe the magnitude and distribution of 
error percentage and detect systematic discrepancies. The estimates were compared using the paired t-test 
probability to 5.0 % with the observed values as Gorgens et al. (2009). The errors (residuals) were defined 
as follows:

Where  and  are the observed and predicted values, respectively.
 The root mean square error (RMSE%) and tendencies (Bias%) were determined according Mabvurira 
and Miina (2002):

Where  and   are the observed and predicted values, respectively.
 The points that extrapolated the general trend of diversity indices were not eliminated in order 
to verify the ability of artificial neural networks to deal with outliers or noises. It was used the Pearson 
correlation coefficient (α = 0.05) to assess the relationship between number of neurons, cycles and statistical 
precision of ANN. To verify that the estimated data meet the assumptions for performing the analysis of 
variance, normality was tested, as by Shapiro Wilk and homogeneity of variances by graphical analysis and 
Cochran test. All statistical analyzes were performed using the software Statistica 7.0 (STATSOFT, 2007).

RESULTS AND DISCUSSION

 Most networks presented nonlinear activation functions in hidden and output layers (Table 2). The 
networks that used vegetation indices NDVI and EVI as numerical input presented a pure logistic and linear 
approximation, respectively in the hidden layer, followed by sigmoidal activation functions in the next 
layer. By the training of ANN, the largest number of neurons in hidden layer resulted in greater complexity 
for ANN 4 and 7. The networks that integrated NDVI, EVI and MVI7 presented a simpler architecture. 
The number of cycles and the neurons in the hidden layer showed a correlation coefficient of 0.52ns. The 
correlation coefficients for the training of networks built during the wet and dry seasons were strong ( above 
0.99). The difference between the correlation coefficients of the training and validation were, on average, of  
0.04, being smaller in the networks that integrated the SAVI and MVI5. It was noticed fewer cycles (median 
87 cycles) in the training the networks that were based on EVI.
 Residuals of the networks 4, 5 and 7 followed a homogeneous distribution in accordance with 
Cochran test and Figure 2. These networks had little noise as outliers by taking the data lines that, after 
processing showed higher levels of diversity than 2.0 standard deviation units compared to the corresponding 
observed data. This criterion was used by Maeda et al (2009). Estimates of these ratios tended to normality 
by the Shapiro Wilk test (pW = 0.34 for ANN 4, pW = 0.64 for ANN 5 and pW = 0.47 for ANN 7).
 Network predictions 4, 5 and 7 did not generate estimates similar (Figure 2), and the ANN 5 showed 
less symmetrical distribution (Figure 2). 
 Despite the loss of accuracy verified when the area of the fragments was smaller, the use of 
vegetation index and landscape metrics associated with artificial intelligence provided accurate estimates 
of the diversity of fragments in Cerrado, both in the rainy season (MVI5) and in the dry one (SAVI).
 Network ability with MLP architecture to establish nonlinear relationships between dependent and 
independent variables may have been impaired by activation functions of the type identity in the middle 
tier, considering that the largest RMSE% (average 9.5 %) during learning networks were observed in EVI 
used as numeric entry (Table 3). The inherent ability of MLP in making nonlinear approximations in the 
hidden layer is important because it allows the composition of functions in successive layers to solve 
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TABLE 2:    Characteristics of artificial neural networks (ANN) constructed to estimate the diversity index 
as a function of season.

TABELA 2: Características das redes neurais artificiais (RNA) construídas para estimar os índices de 
diversidade em função da época.

ANN Architecture
Correlation coefficient

Cycles
Activation function

Training Validation Hidden Output
1 MLP 10-6-1 0.9982* 0.9509* 902 Logistic Tangential
2 MLP 10-8-1 0.9986* 0.9454* 385 Logistic Logistic
3 MLP 10-5-1 0.9906* 0.8975* 64 Identity Logistic
4 MLP 10-12-1 0.9999* 0.9835* 1029 Exponential Logistic
5 MLP 10-6-1 0.9994* 0.9637* 660 Logistic Identity
6 MLP 10-4-1 0.9970* 0.9416* 187 Logistic Logistic
7 MLP 10-13-1 0.9999* 0.9837* 449 Exponential Exponential
8 MLP 10-5-1 0.9742* 0.9534* 109 Identity Tangential
9 MLP 10-9-1 0.9993* 0.9610* 671 Logistic Exponential

10 MLP 10-4-1 0.9978* 0.9522* 315 Logistic Tangential
Where in: Wet season: ANN from 1 to 5; Dry Season: ANN from 6 to 10. *p < 0.05.

TABLE 3:   Artificial neural networks (ANN) precision constructed to estimate the diversity index as a 
function of season.

TABELA 3: Precisão das redes neurais artificiais (RNA) construídas para estimar os índices de diversidade 
em função da época.

ANN Phases RMSE% Bias%

Relative errors (%) t-test
Maximum Medium Minimum p

1
Training 3.2 0.3 5.2 -0.1 -5.2 0.5339

Validation 16.7 0.2 17.2 0.1 -16.9 0.9688

2
Training 2.9 0.3 9.1 -0.1 -6.6 0.4938

Validation 18.0 2.2 18.9 -1.8 -18.2 0.7402

3
Training 7.2 0.7 13.5 -0.6 -10.3 0.5866

Validation 25.3 4.1 21.1 -3.8 -32.2 0.6568

4
Training 0.8 0.1 4.0 -0.1 -6.3 0.5442

Validation 11.6 -3.5 14.7 1.6 -13.5 0.4020

5
Training 1.8 0.0 7.6 0.1 -5.0 1.0000

Validation 14.8 -1.7 16.8 1.1 -13.6 0.7521

6
Training 4.2 0.4 10.8 0.1 -6.9 0.5848

Validation 18.3 0.7 20.1 -0.3 -19.2 0.9120

7
Training 0.7 0.0 4.8 0.1 -3.8 0.8859

Validation 9.6 0.0 8.9 -0.4 -14.0 0.9938

8
Training 11.8 0.5 24.7 0.2 -19.1 0.8184

Validation 17.2 0.9 17.2 -3.2 -30.1 0.8859

9
Training 2.0 -0.3 11.9 0.6 -4.3 0.4373

Validation 14.9 -0.1 18.8 0.1 -14.4 0.9909

10
Training 3.5 0.4 6.5 -0.2 -5.6 0.4677

Validation 16.3 -0.2 17.9 -18.0 -18.0 0.9696
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the problems of higher order in the input space, even if the classes are not linearly separable (HAYKIN, 
2001). Even if the EVI is an enhanced vegetation index that considers the effect of soil (SAVI) and the 
atmosphere (ARVI, Atmosphere Resistance Vegetation Index) (CABACINHA; CASTRO, 2009), a good 
training was not observed. This may be associated with an under fitting (the network does not converge 
during training) generated by a small number of cycles (Table 1), preventing the network from reaching its 
optimum performance.
 Networks complex was not necessarily caused by a greater number of times that training set was 
presented to the architecture, because the ANN 7 had more neurons in the hidden layer and fewer cycles 
when compared to network 1 and 5 (Table 2). However, the performance during the training and validation 
phases may have been influenced by both the number of neurons as by the number of cycles (Table 2 and 
3) (CERQUEIRA et al., 2001; HAYKIN, 2001; MAEDA et al., 2009). Even though the slightest error 
during the training of validation suggests an excessive storage of data during teach (MAEDA et al., 2009), 
overfitting was not verified. This phenomenon can occur when there is an excessive number of neurons in 

FIGURE 2: Residual dispersion (%) in function of fragment area and histogram of frequencies of the error 
classes for artificial neural networks (ANN) constructed to estimate the diversity index in 
function of the rainy season (ANN 4; ANN 5) and dry season (ANN 7).

FIGURA 2: Dispersão dos resíduos (%) em função da área do fragmento e histograma de frequências das 
classes de erros para as redes neurais artificiais (RNA) construídas para estimar o índice de 
diversidade em função da estação chuvosa (RNA 4; RNA 5) e estação seca (RNA 7).
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the hidden layer (CERQUEIRA et al., 2001), which is not observed in networks and corroborated by the 
lack of significance in the paired t test. Furthermore, a high number of cycles were not used by the networks 
(Table 2). Kuplich (2006) found greater accuracy using around 2500 iterations in his training networks 
during his work on the classification of stages of forest regeneration in the Amazon using remote sensing 
images. We applied the technique of early interruption and data normalization as heuristics. The heuristic 
provides an approximation of the optimal solution (SOARES et al., 2011; STATSOFT, 2007).
 Networks 4, 5 and 7 showed minor deviations in the phases of training and validation (Table 3). 
Even though little noise was observed in these networks, the ability to handle outliers during the process of 
adjusting their weights through a learning algorithm was proved (Figure 2). It is noteworthy that the total 
variance of experimental tests is partly attributable to controlled factors of known and independent causes 
and other factors not controlled, so are not free of errors. Estimates of these networks that may be used in 
the majority of statistical techniques that are based on the central limit theorem, did not generate estimates 
similar to each other (Figure 2 and 3).
 Residual distribution in errors classes was less symmetrical in ANN 5 (Figure 2). The training set 
estimates were not exactly the same in all points (Figure 2), mischaracterizing an overffiting as by Statsoft 
(2007). Although the actual number of cycles used to train the network based on MVI5 in the rainy season 

FIGURE 3: Diversity index and Pielou Equitability index estimation due to the rainy season (ANN 4; ANN 
5) and dry season (ANN 7).

FIGURA 3: Estimativa dos índices de diversidade e equabilidade de Pielou em função da estação chuvosa 
(RNA 4; RNA 5) e estação seca (RNA 7).
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presented approximately the ratio 2:1 compared to SAVI in the dry season, and both were superior and 
appropriate for the estimation of diversity indices. For the networks built under the dry season, better results 
were expected due to the reduction of visibility with increasing humidity. The decreases in visual conditions 
may be caused by the intensification of drizzle, fog and atmospheric pollution. The best vegetation index to 
estimate H’ and J in the wet season was MVI5, which, by nature, was developed on the basis of vegetation 
and humidity (CABACINHA; CASTRO, 2009).
 The networks 4 and 7 were able to learn and generalize the assimilated knowledge to all fragments 
of the validation set, i.e., for a set of unknown data not employed during training (Figure 3). Thus, 
demonstrated that they can grasp the biological realism. The generalization capability and connectivity 
allowed for one network to perform the simultaneous estimation of Shannon index and Pielou Equitability 
index. In contrast, the use of traditional methods would imply performing regression analysis for each 
individual diversity index.
 Diversity indices are the basis for the assessment of environmental impact and development of 
programs for the recovery of degraded areas.
  The Statistical method proposed by this paper provided accurate estimates, and furthermore 
obtaining these results related to biodiversity in a much faster, less laborious and less costly way due to the 
possibility of using orbital data, independently of local climatic conditions. 
It is recommended a constant measurement of diversity indices due to variations that can occur in one 
fragment due to anthropogenic factors, edge effect and other soil and climatic conditions, thus, the artificial 
neural networks reduce operational activities for the obtaining of diversity indices.

CONCLUSION

 The modeling by artificial neural network Multilayer Perceptron showed to be appropriate for 
estimating the Shannon and Pielou Equitability indices.
 Artificial neural networks constructed in the rainy and drought season that used vegetation indices 
MVI5 (Moisture Vegetation Index) and SAVI (Soil Adjusted Vegetation Index), respectively, were more 
appropriate, accurate and biologically realistic to estimate, simultaneously, the Shannon and Pielou 
Equitability indices in forest fragments of Brazilian Cerrado biome.
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