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harvesting in a forest in eastern Amazon rain forest

Modelagem do recrutamento de árvores por redes neurais artificiais após a 
colheita de madeiras em floresta no leste da Amazônia

Leonardo Pequeno ReisI, Agostinho Lopes de SouzaII,  

Pamella Carolline Marques dos Reis ReisIII, Lucas MazzeiIV,  

Helio Garcia LeiteII, Carlos Pedro Boechat SoaresII, 
 Carlos Moreira Miquelino Eleto TorresII, Liniker Fernandes da SilvaV,  

Ademir Roberto RuschelIV, Lyvia Julienne Sousa RêgoVI

Abstract

Recruitment models in tropical forests are important for studies on forest management sustainability 
because they provide adequate support to recovery of wood stocks. The objective of this work was to 
estimate recruitment after wood harvesting by using an artificial neural network (ANN) model. The study 
area is located at Tapajós National Forest (55° 00’ W, 2° 45’ S), Pará state. In 64 ha of the study area, in 
1979, an intensive harvest of 72.5 m3 ha-1 was carried out. In 1981, 36 permanent plots of 50 m x 50 m 
were randomly installed. These plots were measured in 1982, 1983, 1985, 1987, 1992, 1997, 2007, 2010 and 
2012. For recruitment modeling, the variables of the target subplot and its vicinity were considered. The 
estimates obtained in ANN training and generalization were evaluated by statistics: correlation () and 
root mean square error (RMSE) were determined: RMSE 35.6% and  0.89. Recruitment tendency could be 
modeled over time in tropical forests after wood harvesting.
Keywords: Ingrowth; Artificial intelligence; Forest management

Resumo

A modelagem do recrutamento em florestais tropicais é importante para estudos de sustentabilidade do 
manejo florestal, por dar subsídio adequado à recuperação do estoque de madeira. O objetivo do trabalho 
foi estimar o recrutamento após a colheita de madeira, empregando um modelo de rede neural artificial 
(RNA). A área de estudo está localizada na Floresta Nacional do Tapajós (55°00’ W, 2°45’ S), Pará. Em 64 
ha da área de estudo, em 1979, foi realizada colheita intensiva de 72,5 m3 ha-1. Em 1981 foram instaladas, 
aleatoriamente, 36 parcelas permanentes de 50 m x 50 m. Essas parcelas foram mensuradas em 1982, 1983, 
1985, 1987, 1992, 1997, 2007, 2010 e 2012. Para modelar o recrutamento foram consideradas as variáveis 
da subparcela-alvo e a sua vizinhança. As estimativas obtidas no treino e na generalização da RNA foram 
avaliadas pelas estatísticas: correlação () e raiz quadrada do erro quadrático médio (RQRQM), sendo obtido 
RQRQM 35,6% e  0,89. Foi possível modelar a tendência do recrutamento ao longo do tempo em florestas 
tropicais, após a colheita de madeira.
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Introduction

In the forest management activity, post-harvest analysis of the species regeneration is 
important to devise techniques as support to the best practices. Analysis of species recruitment 
in the target community, especially species which are harvested, can be a good indicator 
of sustainability. This recruitment is the future of subsequent harvests; thus, the economic 
regeneration of forests after harvesting depends on the establishment of natural regeneration of 
commercial species (REIS et al., 2014).

Recruitment or entrance is the process by which, considering a minimum inclusion 
diameter, trees not measured on a particular occasion are included in measurements made in the 
subsequent years (ROSSI et al., 2007). Modeling and estimating recruitment for future harvests 
is important to determine the cutting intensity and the size of the cutting cycle; they should be 
performed by species or group of species, since such recruitment varies by species and over time. 
Disregarding recruitment may result in a biased estimate of the forest growth and the future 
yield (ZHANG et al., 2012).

Recruitment can be modeled by using dynamic or static models (VANCLAY, 1994). The 
static approach does not consider many details about the community conditions in its respective 
construction, and it predicts a constant amount of recruitment over time. Furthermore, it is less 
sensitive to the effects or impact of harvesting, and it is employed in stand table projection and 
in matrix methods (ROSSI et al., 2007). On the other hand, dynamic models are broader and use 
more stand-related variables such as density, floristic composition, and growth. Moreover, they 
may use variables linked to the harvest intensity.

An alternative method of recruitment modeling is the use of artificial neural networks 
(ANN). Applications of this computational intelligence technique in forestry have become 
very relevant because they have been achieving successful results. Examples include diameter 
distribution modeling (DIAMANTOPOULOU et al., 2015; REIS et al., 2018b), optimization of 
competition indices (RICHARDS; MCDONALD; AITKENHEAD, 2008), volume estimation 
(BINOTI et al., 2014), prediction of forest fires in the Brazilian Amazon (MAEDA et al., 2009), 
classification of successional stages in the Brazilian Amazon (KUPLICH, 2006), tree height 
estimation (DIAMANTOPOULOU, 2012), modeling individual tree mortality and survival in 
uneven-aged forests (CASTRO et al., 2015; ROCHA et al., 2018), production prognosis of even-
aged stands (BINOTI et al., 2015), modeling of diameter growth and individual tree survival 
and mortality in the Brazilian Amazon (REIS et al., 2016; 2018a), and estimation of physical and 
mechanical properties of wood species in the Amazon (REIS et al., 2018c).

Recruitment modeling is difficult to perform because of plot size, time interval between 
inventories, minimum size for inclusion, regeneration variability and vast diversity of species 
(ROSSI et al., 2007), it can be hypothesized that there will be considerable gains in the prognosis 
by using ANN through its inherent properties and capabilities, e.g., nonlinearity, learning ability 
(supervised or unsupervised), and skills such as generalization, adaptability and data organization 
(HAYKIN, 2001; SILVA; SPATTI; FLAUZINO, 2010).

Therefore, the objective of this study was to model tree species recruitment by using 
artificial neural networks after timber harvesting in the Tapajós National Forest.

Material and methods

Study area

The study area is located in the Tapajós National Forest, near Km 67 (55° 00’ W, 2° 45’ 
S) of the BR-163 Highway (Cuiabá-Santarém). It is part of the Amazon biome and its typology is 
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Dense Ombrophilous Forest with solid ground. The climate of the region is humid and tropical 
with mean annual temperature of 26°C, and it is classified as Ami according to Köppen’s system. 
Mean relative humidity is 86%, with mean annual rainfall ranging from 1,900 to 2,200 mm. It has 
a flat to wavy surface, and presence of a Dystrophic Yellow Latosol (COSTA FILHO; COSTA; 
AGUIAR, 1980; ALVARES et al., 2013).

In Tapajós National Forest, especially in the study area, Costa Filho, Costa and Aguiar 
(1980) reported the use of selective harvesting, in the 1940s, for four species with high commercial 
value: Brazilian rosewood (Aniba rosaeodora Ducke), Brazilian redwood (Manilkara huberi 
(Ducke) A. Chev.), Brazilian walnut (Cordia goeldiana Huber) and cedar (Cedrela odorata L.).

In 1979, 64 wood species were intensively harvested in 64 ha of the study area, with mean 
extraction volume of 72.5 m3 ha-1 (REIS et al., 2010).

The species that stood out in terms of harvest volume, at the time, were: Hymenaea courbaril 
L., Carapa guianensis Aubl., Manilkara huberi, Lecythis lurida (Miers) S. A. Mori., Bertholletia excelsa 
Humb. & Bonpl., Astronium lecointei Ducke, Goupia glabra Aubl., Virola michelii Heckel, Erisma 
uncinatum Warm. and Terminalia amazonia (J. F. Gmel) Exell. Together, they accounted for 47.4% 
of the total extraction volume (REIS et al., 2010). Harvesting was based on two treatments: cutting 
all trees with dbh ≥ 45 cm, in 39 ha; and cutting trees with dbh ≥ 55 cm, in 25 ha (COSTA FILHO; 
COSTA; AGUIAR, 1980). However, the treatments were analyzed together, thus creating only 
one community, because of the high level of similarity found in the comparisons (REIS et al., 
2010).

In 1981, 36 permanent plots (50 m x 50 m each) were randomly installed, where all trees 
with dbh ≥ 5 cm were botanically identified on-site. New measurements for these permanent 
plots were made in 1982, 1983, 1985, 1987, 1992, 1997, 2007, 2010, and 2012.

Variables and data used for training and testing neural networks

The permanent plots were divided into two groups: one group with 29 plots for training 
the ANN and one group with 7 plots for the generalization of the trained networks, respectively 
accounting for 80% of data for training and 20% for generalization.

For recruitment modeling purposes, the variables of the target subplot itself and its 
vicinity were taken into consideration, and the input variables used in these subplots were: 
basal area (BA-m2 ha-1), density (N-trees ha-1), time period (years) between measurements (P), time 
period (years) for timber harvest (HP), forest class (FC), periodic annual increment in diameter 
(PAIdbh - mm year-1) and maximum diameter (dbhmax - mm) as a measure of competition.

Forest classes (FC) were defined according to the methodology suggested by Silva et al. 
(2005):

1. Mature forest: the sub-plot shows at least one tree with a diameter equal to or larger 
than 40 cm.

2. Forest under construction: the sub-plot has at least one tree with the diameter equal to 
or larger than 10 cm and smaller than 40 cm.

3. Clearing: there is an opening on the canopy of at least 50% of the area of the sub-plot 
and few or no trees with a diameter larger than 10 cm on the sub-plot. When existing, the crowns 
project outside the limits of the sub-plot.

The definition of vicinity is based on a two-dimensional grid formed from the target 
subplot of 10 x 10 m on a plot of 50 x 50 m (Figure 1); that plot is divided into 25 subplots. Many 
of the variables contained in the zone of influence of recruitment were considered in modeling, 
because recruitment is influenced not only by the characteristics of the target subplot but also 
by the surroundings of this subplot in a given zone of influence.
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Figure 1–  Representation of the zone of influence of the modeled subplot, a 50 x 50 m plot 
divided into 25 10 x 10m subplots. Adapted from Phillips et al. (2004).

Figura 1 – Representação da zona de influência da subparcela alvo da modelagem. Parcela de 50 
x 50 m dividida em 25 subparcelas de 10 x 10 m. Adaptado de Phillips et al. (2004).

Source: Leonardo Pequeno Reis (2017)

ANN Training and evaluation

ANN training is the application of a set of ordered steps to adjust the weights and the 
limits of neurons. Thus, this adjustment process, also known as learning algorithm, is aimed 
at tuning the network so that its answers are similar to the desired values (SILVA; SPATTI; 
FLAUZINO, 2010).

To model the recruitment of the total community, 1,800 ANNs were trained, 300 for each 
composition of variables with the vicinity and 300 ANN without using the adjacent area. This 
was the simplest ANN in the modeling process (Table 1).

Table 1 –  Variables used for training artificial neural networks (ANN) in a forest after 
harvesting.

Tabela 1 –  Variáveis utilizadas no treinamento das redes neurais artificias (RNA) em uma 
floresta após colheita.

ANN Input variables
Number 

of training 
sessions

Output

1

 BA, N, P, PC, FC, PAIdbh, dbhmax, BA1, BA2, BA3, BA4, BA5, BA6, BA7, 
BA8, N1, N2, N3, N4, N5, N6, N7, N8, PAIdbh1, PAIdbh2, PAIdbh3, PAIdbh4, 
PAIdbh5, PAIdbh6, PAIdbh7, PAIdbh8, dbhmax1, dbhmax2, dbhmax3, dbhmax4, 

dbhmax5, dbhmax6, dbhmax7, dbhmax8

300 NR

2 BA, N, P, PC, FC, PAIdbh, dbhmax 300 NR

3  BA, N, P, PC, FC, PAIdbh, dbhmax, BA1, BA2, BA3, BA4, BA5, BA6, BA7, 
BA8

300 NR

Continued...
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ANN Input variables
Number 

of training 
sessions

Output

4 BA, N, P, PC, FC, PAIdbh, dbhmax, N1, N2, N3, N4, N5, N6, N7, N8 300 NR

5  BA, N, P, PC, FC, PAIdbh, dbhmax, PAIdbh1, PAIdbh2, PAIdbh3, PAIdbh4, 
PAIdbh5, PAIdbh6, PAIdbh7, PAIdbh8

300 NR

6  BA, N, P, PC, FC, PAIdbh, dbhmax, dbhmax1, dbhmax2, dbhmax3, dbhmax4, 
dbhmax5, dbhmax6, dbhmax7 dbhmax8

300 NR

Total   1800  

Continuous input variables: BA = basal area (m2 ha-1); N = number of trees ha-1; P = period in years between 
measurements; PC = period in years after the harvest; PAIdbh = Annual Periodical Increase on dbh, in mm 
year-1; dbhmax: Maximum diameter found in the subplot (mm); Categorical input variables: FC = forest class, 
composed of Mature Forest, Forest under Construction and Clearings; Continuous output: NR = number 
of recruited trees; 1, 2, 3, ..., 8: Variables of the adjacent subplots.

In the training sessions, the multilayer feedforward architecture was used, i.e., the Multilayer 
Perceptron (MLP). The Intelligent Problem Solver (IPS) tool of the software Statistica 13 (STASOFT 
INC, 2016) was used to choose the activation functions (Identity, Logistics, Hyperbolic tangent and 
Exponential Linear Unit) of the intermediate layer and of the output. In the training sessions, only 
one hidden layer was used, and the interval of the number of neurons in this layer was set through 
the Fletcher-Gloss method (SILVA; SPATTI; FLAUZINO, 2010). The interval of the number of 
neurons according to the number of input and output variables was given by the following equation:

   (2.√n + n2) ≤ n1 ≤ (2 . n + 1)      (1)
where n is the number of network inputs, n1 is the number of neurons in the hidden layer while n2 is the 
number of neurons in the output layer.

The maximum defined by the method was to avoid storing the input data (overfitting) or 
to insufficiently extract information during training (underfitting).

For each training session, five networks were retained. One network was chosen for 
each training session based on the correlation among the estimated and observed values. For 
the selection and comparison of the ANNs to be used in the prognosis, evaluations were made 

where:Ŷ= values estimated by ANNs; Y = values observed on the permanent plots, S2 = variance, Cov. = 
covariance, and n = number of observations.

(2)

(3)

(4)

Table 1 – Conclusion...
Tabela 1 – Conclusão...
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of the statistical correlation between the estimated and actual values (rYŶ) and the root mean 
square error (RMSE) in training and generalization. A graphical analysis was also made on the 
dispersion of percentage errors (Error %) as compared to the observed values: 

Results and discussion

The input variables that correlate the most with recruitment were period of time between 
measurements (P) and period of time after the timber harvest (PC), above 25% (Table 2). The 
only variable that showed no significant correlation was maximum dbh of the subplot. Number 
of trees ha-1 and basal area (BA) showed negative correlations while PAI in diameter showed a 
positive correlation. Even though they all had significant correlations, they were below 20%.

Table 2 –  Linear correlation between the input and output variables used for training and 
testing the ANNs.

Tabela 2 –  Correlação linear entre as variáveis de entrada e saída usadas no treinamento e teste 
das RNA.

Variables NR PC P N BA PAIdbh dbhmax

NR 1.0000            

PC 0.2682* 1.0000          

P 0.3468* 0.8050* 1.0000        

N -0.1743* -0.0150ns -0.0339* 1.0000      

BA -0.0469* 0.1448* 0.1138* 0.2632* 1.0000    

PAIdbh 0.2008* -0.3636* -0.3483* -0.1455* -0.1257* 1.0000  

dbhmax -0.0181ns 0.1201* 0.0968* 0.0701* 0.8957* -0.1056* 1.0000

* = Significant at 5%; non-significant. NR = number of recruited trees; BA = basal area (m2 ha-1); N = number 
of trees ha-1; P = period in years between measurements; PC = period in years after harvesting; PAIdbh = 
annual periodic increase in diameter (mm year-1) and dbhmax = Maximum diameter found in the subplot 
(mm).

All of the tested ANNs, with different inputs and architectures, presented simple 
correlations above 80% and a square root of the mean squared error below 45% (Table 3). The 
ANN that had the best performance to estimate recruitment (ANN 1, Figures 2 and 3) was ANN 
1 with the highest correlation and the lowest RMSE in the test. This network used all of the 
structural and dynamic variables of the subplots. The ANN that had the worst result was ANN 6, 
with the lowest correlation and the highest RMSE. This network used the maximum diameter of 
the subplot as an input variable for infer about the competition in the subplot. 

Despite some outliers in the recruitment, the estimated recruitment of the ANN was set 
with the observed recruitment (Figure 2), represented by the most distant points of the trendline. 
ANN 1 showed the best fit and the estimated and observed data follow the same trend, both in 
training and in the test.
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Table 3 – Training precision measurements and artificial neural network (ANN) testing for 
the estimation of tree recruitment

Tabela 3 – Medidas de precisão do treinamento e teste das redes neurais artificiais (RNA) na 
estimativa de recrutamento de árvores

ANN Index
Architecture 

MLP
RMSE RMSE

Activation functions

Intermediate 
layer

Output layer

1 2 41-61-1 34.8791 0.9027 35.6462 0.8932
Hyperbolic 

tangent
Exponential

2 1 9-18-1 43.1114 0.8489 38.4479 0.8723 Logistic Exponential

3 5 17-33-1 46.6002 0.8177 38.5054 0.8732 Logistic Logistic

4 5 17-32-1 41.4371 0.8621 35.9185 0.8908 Logistic Exponential

5 3 17-28-1 38.1384 0.8825 36.0299 0.8900
Hyperbolic 

tangent
Logistic

6 3 17-35-1 43.0030 0.8493 39.0262 0.8692 Logistic Exponential

rYŶ = correlation coefficient; RMSE = root mean square error (%)

Figure 2 – Distribution of the number of estimations of recruited trees (NR) in comparison 
to the values observed during training and testing of artificial neural networks (ANN).

Figura 2 – Distribuição do número de árvores recrutadas (NR) estimadas em relação aos valores 
observados no processo de treinamento e teste de redes neurais artificiais (RNA).

Source: Leonardo Pequeno Reis (2017)
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Figure 3 – Distribution of the number of estimations of recruited trees (NR) in comparison 
to the residues during training and testing of artificial neural networks (ANNs).

Figura 3 – Distribuição do número de árvores recrutadas (NR) estimadas em relação aos 
resíduos no processo de treinamento e teste de redes neurais artificiais (RNA).

Source: Leonardo Pequeno Reis (2017)

For ANN 1, which had the best estimates of recruitment over time after harvesting, the 
estimated data followed the observed recruitment trend (Figure 4), with a small deviation in the 
first periods (1981-1987).

Source: Leonardo Pequeno Reis (2017)

Figure 4 – Observed and estimated recruitment after forest harvesting (A) and observed and 
estimated recruitment rate after forest harvesting (B).

Figura 4 – Recrutamento observado e estimado após a colheita florestal (A) e taxa de 
recrutamento observado e estimado após a colheita florestal (B).
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After using all of the structural and dynamic variables, ANN 1 showed the best estimates 
of recruitment, even though the difference in correlation and RMSE is less than 3% when 
comparing ANN 1 to the other networks. This showed the great learning ability of the ANN 
to extract information with a small number of variables (HAYKIN, 2001; SILVA; SPATTI; 
FLAUZINO, 2010).

ANN 2, a simpler network that only used the variables of its own subplot without using 
the adjacent subplots, also produced very similar results to those of ANN 1, which used all of the 
variables of the adjacent subplots (Table 3), with a difference in correlation of 0.02% and of 3% 
in RMSE, with a higher bias towards overestimating the recruitment on the test data (Figure 3). 
This may be due to the lack of influence of the variables of the vicinity.

The most influential adjacent variable was tree density, estimated by ANN 3, which 
showed the lowest difference, with less than 1% in RMSE compared with ANN 1 (Table 3). This 
may be due to the negative and significant correlation of trees ha-1 in comparison to recruitment 
(Table 2). The higher the number of trees settled in the subplot, the greater the competition for 
space, nutrients, water and light in terms of recruitment.

The second and third variables with the highest influence were Periodic Annual 
Increment in dbh (PAIdbh) and basal area (BA), respectively, estimated by ANN 5 and ANN 4. 
Basal area and PAI are the most used variables for estimating recruitment in several studies 
on forest modeling (PHILLIPS et al., 2004; KLOPCIC; POLJANEC; BONCINA, 2012)data from 
a Slovenian forest inventory (67,563 plots, 200m2 each. The first one is a measure of density; 
it represents occupation in terms of biomass and has a significant negative correlation with 
recruitment (KLOPCIC; POLJANEC; BONCINA, 2012). The larger the basal area, the greater 
the competition and the canopy closure, thus reducing recruitment over time after harvesting 
(Figure 4B).

PAIdbh represents increased productivity of the subplots, and it is positively correlated 
(Table 2) with recruitment (PHILLIPS et al., 2004). The subplots with higher PAIdbh are formed 
by clearings and forests under construction, the same ones that have higher recruitment levels 
as a result of lower competition and higher solar radiation input by the activation of the seedling 
and seed bank (REIS et al., 2014).

ANN 6 had the worst performance in recruitment estimation, with lower correlation and 
higher RMSE than ANN 2, the simplest network. This was due to the low representativeness and 
influence of maximum diameter, as competition measurement, with a non-significant correlation 
with influence of recruitment (Table 2). Also, it is a redundant variable since the categorical 
variable (Forest Class), which is influenced by the maximum diameter of the subplots, was part 
of the whole training.

The bias shown in the estimate of recruitment was due to its highly stochastic process 
in the subplots, represented by an excess of zero count, without recruitment, which complicates 
modeling (ZHANG et al., 2012). Moreover, the high biodiversity of the area provides great 
variability of recruitment strategies, e.g., existence of species that regenerate through seed or 
seedling banks, which can impair modeling (RIVETT; BICKNELL; DAVIES, 2016). Different 
periods between measurements also interfere with modeling (VANCLAY, 1994); the shortest 
period was one year and the longest, 10 years (Figure 4A).

Recruitment may be observed in short periods in the less dynamic subplots or it may have 
few recruited individuals. This may be the cause of overestimation in the period from 1982 to 
1983, when the forest showed an increase in growth and recruitment because of canopy opening 
resulting from forest harvesting. Nevertheless, after reduced-impact logging, recruitment is not 
significantly affected over time (RIVETT; BICKNELL; DAVIES, 2016). This can be observed in 
the best estimates in other periods as of 1987, despite high recruitment from 1997 to 2007, in 
which one of the factors was a long interval between measurements.

Although the effect of the interval between measurements interfered with recruitment 
rates, when there was a decline in rates with increased interval (ROSSI et al., 2007), ANN 1 
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followed the trend of decelerating the recruitment rate after forest harvesting (Figure 4B). This 
may be due to the inclusion of time variables (period between measurements and period after 
logging), which explains this variation in recruitment. These variables are the ones most closely 
correlated with recruitment (Table 2).

Recruitment is highly stochastic over time because it has different regeneration mosaics 
(Mature Forest, Forest under construction and clearings), which may affect estimates. This 
mosaic is represented as a categorical input variable in an attempt to capture this dynamic after 
harvesting, and plot measurements have different periods; however, ANN 1 followed the trend 
of recruitment over time (Figure 4 A and B). Thus, as a tool for prediction of recruitment, it is 
highly suitable to tropical forests. The smallest difference in the comparison of observed and 
estimated recruited trees was 0.01%, in the 1997-2007 period while the highest was 17.6% in the 
1985-1987 period (Figure 4 A and B).

As the estimate of recruitment through the ANNs did not use groups of species separately, 
recruitment allocation can be determined in groups of species by the average probability of 
recruitment (VANCLAY, 1994; NASCIMENTO et al., 2013), and it serves as a basis for forest 
management.

Conclusion

The trained artificial neural networks followed the trend of tree recruitment over 31 years, 
using variables of horizontal structure, forest dynamics and site situation. They can be used in 
forest management areas in the Amazon. This allows estimating the most accurate regeneration 
of the forest growth stock over the planned cutting cycle.
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