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Modal waves in multiconductor transmission lines by using
fundamental matrix response

Julio Ruiz Claeyssen, Daniela de R. Tolfo and Rosemaira Dalcin Copetti

Abstract

The differential equations that model voltage and current for a multiconductor transmission line are written in matrix form.
Supposing a time exponential solution through of the modal analysis the modal waves are obtained and solution of a ordinary
matrix differential equation, thus determining the amplitude for voltage and current. The modal waves are given in terms of the
fundamental matrix solution associated to the ordinary matrix differential equation. The decomposition of the modal waves in
forward and backward propagators are used for determine the reflection and transmission matrices for junction in transmission
lines. Circulant symmetric transmission lines are discussed, case in that the values for the self-impedance are the same as well as
the mutual-impedance values and the same considerations to the admittance matrix. In particular, for these transmission lines
are characterized the propagation constants and is observed that the number of multiconductors has effects only on a specific
propagation constant. Numerical example of one multiconductor transmission line is presented allowing to observe important
aspects of the methodology developed.

Keywords: Multiconductor transmission lines, fundamental matrix solution, junction in transmission lines, circulant matrix,
impedance and admittance matrices.
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1 Introduction
The equations that determine voltage and current in multiconductor transmission lines are frequently presented as two first order
matrix differential equations Paul (2008). In this work these two differential equations are written as only one matrix differential
equation of same order. This approach allowed obtain the solutions of current and voltage simultaneously. The modal analysis is
realized for to determine the solution, modal wave, using the basis generated by fundamental matrix solution associated with
matrix differential equation. The basis considered is given in terms of a scalar function that is solution of a scalar initial value
problem.

Discontinuities in transmission lines generate reflected and transmitted waves , these waves are associated to incident wave in
the discontinuity through a reflection and transmission matrix, respectively. The methodology development in this paper propose
to obtain these matrices using the decomposition of the scalar function and consequently of the fundamental matrix solution.
The procedure realized decomposes the modal solution in forward and backward waves. The incident and transmitted waves
are associated with forward waves while the reflected wave is associated with a backward wave. The junction between two
transmission lines with different impedance and admittance parameters is presented and for this discontinuity are determined
reflection and transmission matrices providing the reflected and transmission waves in term of incident waves.

Transmission lines whose impedance and admittance matrices are circulant symmetric (circulant pattern) are used in the
study of multiphase networks Heydt e Pierre (2016); Amirhosseini e Cheldavi (2003). Here, in particular the case of a polyphase
transmission line with the same value for the self-impedance and same consideration for mutual-impedance parameters as well as
admittance values are studied using circulant matrix theory Davis (1979). It is observed that such systems are non-defective and
that one propagating constant depend upon the two self and mutual impedance and admittance and of the number of conductors
while the remaining propagating constants have the same value and they are independent upon the number of conductors.

A example for a multiconductor transmission line whose impedance and admittance matrices are cyclic symmetric is considered,
for mutua and self impedance values equals and same consideration for admittance values. The simulation presented allowed to
observe the decomposition proposed.

2 Multiconductor Transmission Lines
The multiconductor transmission line equations comprising n+ 1 parallel conductors, 0 being the reference conductor following
Paul (2008) are

L∂I(t,z)
∂t + ∂V(t,z)

∂z +RI(t,z) = 0,

C ∂V(t,z)
∂t + ∂I(t,z)

∂z + GV(t,z) = 0
(1)

where

V(t,z) =




v1(t,z)
v2(t,z)

...
vn(t,z)


 , I(t,z) =




i1(t,z)
i2(t,z)

...
in(t,z)


 ,

with the components vk(t,z) and ik(t,k) being the voltages and currents at each of the k−th line, respectively. The coefficients
L = [Lij ], R = [Rij ], C = [Cij ] and G = [Gij ] are n× n constant parameter matrices representing the measured per-unit-length
inductance (H/m), resistance (Ω/m), capacitance (F/m) and conductance (S/m) between the i-th and j-th conductors, respectively,
and 0 in (1) is the null vector n× 1. In the sequel, it is assumed uniform electromagnetic fields along the z-axis and frequency
independent per-unit-length parameters.

Alternatively, the multiconductor transmission line equations in matrix form is given by

A
∂U(t,z)

∂t
+B

∂U(t,z)

∂z
+DU(t,z) = 0 (2)

being the matrix coefficients in block form

A =

(
0 L
C 0

)
, B =

(
I 0
0 I

)
, D =

(
0 R
G 0

)
, (3)

and the solution vector is

U(t,z) =

(
V(t,z)
I(t,z)

)
.
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The matrices A, B and D are 2n× 2n, the vector U(t,z) is 2n× 1, in this moment I is the identity matrix n× n, 0 in matrices
(3) is the null matrix n× n while 0 in (2) is the null vector 2n× 1. For simplicity going forward I and 0 are the identity and null
matrices and 0 is the null vector whose order is as appropriate in referred equation.

2.1 Modal analysis
In order to obtain modal wave solutions, are considered in (1) solutions of type

V(t,z) = eλtV (z), I(t,z) = eλtI(z) (4)

where V (z) and I(z) are the voltage and current vector amplitudes, respectively, and λ is the eigenvalue associated. The
substitution of (4) in (1) results in the system

dV (z)

dz
+ (λL+R)I(z) = 0, (5)

dI(z)

dz
+ (λC + G)V (z) = 0, (6)

that in matrix form is
W′(z) + C(λ)W(z) = 0, (7)

where

W(z) =

(
V (z)
I(z)

)
, C(λ) = λA+D =

(
0 λL+R

λC + G 0

)
.

Following Claeyssen et al. (1999), the general solution of the equation (7) can be given by

W(z) = h(z)a (8)

where a is a 2n× 1 constant vector and h(z) is the fundamental matrix solution that is solution of the initial value problem

h′(z) + C(λ)h(z) = 0, h(0) = I. (9)

The fundamental matrix solution can be written as

h(z) =

2n−1∑
l=0

d(l)(z)Bl, (10)

where the scalar function d(z) satisfies the scalar initial value problem

c0d
(2n)(z) + c2d

(2n−2)(z) + · · ·+ c2nd(z) = 0, (11)
d(0) = 0, · · · , d(2n−2)(0) = 0, c0d

(2n−1)(0) = 1, (12)

with the ci, for i = 0, ...,2n being the coefficients of the characteristic polynomial

P (γ) = det(γI+ C) = det(γ2I−ZY), (13)

where γ is the propagation constant, Z = λL + R, Y = λC + G are the block local impedance and admittance matrices,
respectively, and

B2k+1 =

(
Fk 0
0 Gk

)
,B2k =

(
0 ZGk

YFk 0

)
,

where

Fk =

n−1−k∑
i=0

c2i(ZY)n−i−1−k, Gk =

n−1−k∑
i=0

c2i(YZ)n−i−1−k.

The scalar function d(z) is given by

d(z) =
n∑

k=1

e−γiz

P ′(−γi)
+

n∑
k=1

eγiz

P ′(γi)
=

n∑
k=1

2 sinh (γiz)

P ′(γi)
, (14)
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for the case in that ±γi simple roots of (13), for , i = 1, 2, · · · , n. While for repeated roots

d(z) =
∑k

l=1 pl(z)e
−γlz + ql(z)e

γlz , (15)

where pl(z) and ql(k) are polynomials of degree ml − 1 and k is the number different roots γl with algebraic multiplicity ml in
according with Heaviside expansion theorem in Carrier et al. (2005)..

Alternatively the matrix form presented in (7) by a first order matrix differential equations the systems of equations can be
decoupled in two second order matrix differential equations. By differentiating the modal system (5) and substituting in (6), and
similarly differentiating the modal system (6) and substituting in (5) results in

d2V (z)

dz2
− Γ2

ZYV (z) = 0, (16)

d2I(z)

dz2
− Γ2

YZI(z) = 0 (17)

with Γ2
ZY = ZY and Γ2

YZ = YZ .
Again using the theory developed by Claeyssen et al. (1999), the solutions of the equations (16) and (17) can be given using

the fundamental matrix solution for each one of the differential equations

3 Decomposition of modal waves

The scalar function d(z) solution of the (12) can be rewritten as

d(z) = d+(z) + d−(z), (18)

the terms d+(z) and d−(z) are the called the forward and backward terms of the function d(z), respectively. For case the simple
roots of polynomial characteristic (13), with d(z) given in (14), results

d+(z) =

n∑
k=1

e−γkz

P ′(−γk)
, d−(z) =

n∑
k=1

eγkz

P ′(γk)
.

For repeated roots
d+(z) =

∑k
l=1 pl(z)e

−γlz, d−(z) =
∑k

l=1 ql(z)e
γlz, (19)

where pl(z) and ql(z) of according with (15).
By considering the decomposition of the d(z) given in equation (18) a decomposition is obtained for h(z) in (10), given by

h(z) = h+(z) + h−(z),

with

h+(z) =

2n−1∑
l=0

d
(l)
+ (z)Bl, h

−(z) =

2n−1∑
l=0

d
(l)
− (z)Bl.

that allowed identify the corresponding forward and backward terms in h(z). Consequently, the general solution given in equation
(8) can be written

W(z) = W+(z) +W−(z) (20)

where the terms of amplitude are

W+(z) = h+(z)a, W−(z) = h−(z)a. (21)

In particular for a transmission line with two conductors and one reference conductor the conductance, inductance, capacitance
and resistance matrices turn out constants G, L, C, R, and the fundamental matrix solution in (10) is

h(z) =

(
d′(z) −(λL+R)d(z)

−(λC +G)d(z) d′(z)

)
= h+(z) + h−(z), (22)

where

h+(z) =

(
1 Z0

Y0 1

)
d′+(z), h−(z) =

(
1 −Z0

−Y0 1

)
d′−(z), (23)
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being Z0 =
√

λL+R
λC+G and Y0 = 1

Z0
the impedance and admittance characteristics, respectively. The scalar function d(z) is given

by

d(z) =
eγz − e−γz

2γ
= d−(z) + d+(z), (24)

that satisfies

d′′(z)− (λL+R)(λC +G)d(z) = 0,

d(0) = 0, d′(0) = 1,

being d−(z) =
eγz

γ and d+(z) = − e−γz

γ , where γ =
√
(λL+R)(λC +G).

Using the decomposition of matrix h(z) it is possible to express voltage and current separately as

V ±(z) = eT1 h
±(z)a, I±(z) = eT2 h

±(z)a,

where eT1 =
(
1 0

)
, eT2 =

(
0 1

)
. From (23) in (21) is obtained the relation between voltage, current and impedance

characteristic

V +(z)
I+(z) = Z0,

V −(z)
I−(z) = −Z0. (25)

4 Discontinuities in transmission lines - Junction

By working in the modal domain, impedance methods does not only simplify calculations because voltage and currents through
passive devices become relations of algebraic nature in the sinusoidal steady state. They are convenient in dealing with complicated
junctions or terminations. In what follows are obtained the matrices related to the reflected and transmitted waves due to an
incident wave at a junction of two transmission lines of different impedance and admittance characteristic. For simplicity, we
shall restrict ourselves to the case of transmission line with two conductors for which closed-form expressions are common in the
literature.

Let us consider a junction at z = z0 of two transmission lines with different characteristic impedances, King (1965),

represented in Figure 1. The line 1 has characteristic impedance Z01 =
√

λL1+R1

λC1+G1
while the line 2 has characteristic impedance

Z02 =
√

λL2+R2

λC2+G2
. Here Li, Ri, Ci, Gi, i = 1, 2, denote the inductance, resistance, capacitance and conductance at each line,

respectively.
In what follows, we assume that a traveling incoming wave at a junction generates a reflected and a transmitted wave as

illustrated in Figure 1. By using the wave decomposition (20) results that the incident and reflected waves in line 1 are

Line�1 Line�2

Junction

z z= 0

W ( )i z

W ( )R z

W ( )T z

Figura 1: Junction of transmission lines with different impedance and admittance characteristics.

Wi(z) = W+
1 (z) = h+

1 (z)a, WR(z) = W−
1 (z) = h−

1 (z)a, (26)

respectively, while the transmitted wave in the line 2 is given by

WT (z) = h+
2 (z)b. (27)

Here h1(z) and h2(z) are the fundamental matrix solutions in line 1 and line 2, respectively, as given in (22). From (23) follows

h±
1 (z) =

1

2
e∓γ1z

(
1 ±Z01

±Y01 1

)
, h+

2 (z) =
1

2
e−γ2z

(
1 Z02

Y02 1

)
, (28)
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where γi =
√
(λLi +Ri)(λCi +Gi), i = 1,2. The reflected and transmitted waves are considered proportional to the incident

wave by a matrix factor, that is,

WT (z0) = h+
2 (z0)b = TWi(z0),

WR(z0) = h−
1 (z0)a = RWi(z0),

where T and R are transmission and reflection matrices to be determined. The the continuity conditions for the voltage and
current at the junction point z = z0, are

Wi(z0) +WR(z0) = WT (z0) (29)

and the characteristic impedances at each line by (25) are

VR(z0) + Z01IR(z0) = 0, VT (z0)− Z02IT (z0) = 0. (30)

From (26) and (27), the conditions (29) and (30) can be written

h+
2 (z0)b− h−

1 (z0)a = h+
1 (z0)a, (31)

Θh−
1 (z0)a = 0, Λh+

2 (z0)b = 0 (32)

where Θ and Λ are the 2× 1 vectors

Θ = (eT1 + Z01e
T
2 ) = (1 Z01), Λ =

(
eT1 − Z02e

T
2

)
= (1 − Z02).

In matrix form, the conditions (31) and (32) for determining the incident and transmitted waves become




I −I

0 −Θ

Λ 0




(
h+
2 (z0)b

h−
1 (z0)a

)
=

(
h+
1 (z0)a
0

)
. (33)

By solving (33) and considering (26)-(27), the incident and transmitted waves are

WT (z0) = h+
2 (z0)b = Th+

1 (z0)a = TWi(z0),

WR(z0) = h−
1 (z0)a = Rh+

1 (z0)a = RWi(z0),
(34)

where

T =
1

Z02 + Z01

(
Z02 Z02Z01

1 Z01

)
,R =

1

Z02 + Z01

(
−Z01 Z02Z01

1 −Z02

)

are the transmission and reflection matrices, respectively.
The use of relations (25) allow to obtain h+(z)a in terms of the voltage or the current as follows

h+(z)a =

(
1
Y0

)
V +(z), h+(z)a =

(
Z0

1

)
I+(z). (35)

In (34) the voltage and current transmitted are linear combination of voltage and current incidents, using (35) these can be
rewritten only as multiple of voltage or current incidents. From modes in (34) and with h+(z0)a given in (28) and (35) for the
characteristic impedance of line 1, results

WT (z0) = h+
2 (z0)b =

1

Z01 + Z02

( (
Z02 Z02Z01

)
h+
1 (z0)a(

1 Z01

)
h+
1 (z0)a

)

=
1

Z01 + Z02

(
2Z02 0
0 2Z01

)(
V +
1 (z0)
I+1 (z0)

)
,

with V1(z) and I1(z) voltage and current for line 1, thus

WT (z0) = h+
2 (z0)b = TJh

+
1 (z0)a = TJWi(z0),
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with TJ =

(
TV 0
0 TI

)
, where TV , TI are transmission coefficients for the voltage and current, respectively

TV =
2Z02

Z02 + Z01
, TI =

2Z01

Z02 + Z01
.

Analogous reasoning lead us to obtain similar relations for the reflected wave

WR(z0) = h−
1 (z0)a = RJh

+
1 (z0)a = RJWi(z0),

with RJ =

(
RV 0
0 RI

)
, where RV , RI are the reflection coefficients for the voltage and current

RV =
Z02 − Z01

Z02 + Z01
, RI = −RV . (36)

Observe that the matrices TJ and RJ are in agreement with (29), once TJ −RJ = I.

5 Polyphase transmission systems with circulant structure

Multiconductor transmission lines that have brought the attention in the literature are systems that have a circulatory configuration
and circulant symmetric with high phase order, long interconnection and microstrip transmission lines, Heydt e Pierre (2016);
Amirhosseini e Cheldavi (2003); Triverio et al. (2010); Dmitriev et al. (2018); Willems (1989); Papaleonidopoulos et al. (2013);
Wagenaars et al. (2010); Knockaert et al. (2009); Nitsch et al. (1992), among others. In those systems, impedance and admittance
matrices are circulant matrices, Davis (1979), whose pattern has a symmetry insensitive to a circular permutation at its terminals.
This kind of matrix structure is amenable for analytical discussion once N ×N circulants can be simultaneously decoupled by
using the N ×N Fourier matrix, they commute and the eigenvalues associated with circulants can be simple or repeated and
calculated in straigthfoward manner. Thus the modal transformations involved with the diagonalization of circulants can be related
to the method of symmetric components due to Fortescue.

In this section, will be discussed the scalar function d(z) for the case of a polyphase network with cyclic symmetry such
as N-core cables with common earth screen. The diagonal elements that correspond to the self-impedances in the impedance
matrix Z are assumed to have equal values Zs. By assuming cyclic symmetry with respect to the common earth screen, the
off-diagonal elements have the same mutual impedances values Zm. In Heydt e Pierre (2016), is discussed the case where the
mutual impedance is related to the distance between conductors. For the admittance matrix Y the same considerations are assumed.

Due to its practical importance the case N = 3 is considered first and we look at the modal analysis for decoupling the matrix
ZY where

Z =




Zs Zm Zm

Zm Zs Zm

Zm Zm Zs


 , Y =




Ys Ym Ym

Ym Ys Ym

Ym Ym Ys


 .

Since Z and Y are circulants, the products ZY , YZ are the same once circulants commute, and the also are circulants matrices.
The diagonalization of the matrix ZY is given by F ∗ΓZΓY F , where F is the Fourier matrix, Davis (1979). Moreover their
eigenvalues α = γ2 can be expressed as

αk = (ZsYs + 2ZmYm) + (ZsYm + ZmYs + ZmYm)wk−1 + (ZsYm + ZmYs + ZmYm)w2(k−1)

with w = e
2πj
3 or as the product of the eigenvalues of Z and Y . It turns out that there one simple eigenvalue α1 that differ by a

factor ∆ from a double eigenvalue α2 = α3. More precisely,

α1 = (Zs + 2Zm)(Ys + 2Ym) = (Zs − Zm)(Ys − Ym) + ∆,

α2 = (Zs + Zmw + Zmw2)(Ys + Ymw + Ymw2)
= (Zs − Zm)(Ys − Ym),

α3 = (Zs + Zmw2 + Zmw4)(Ys + Ymw2 + Ymw4)
= (Zs − Zm)(Ys − Ym),

∆ = 3ZmYm + 3ZsYm + 3ZmYs.

The triple eigenvalue is obtained when ∆ = 0.
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Observe that the fact of ZY = YZ implies that the scalar function associated the equations (7), (16) and (17) is the same, thus
is possible only consider from (16)-(17) the second-order matrix differential equation

d2Φ(z)

dz2
−ZYΦ(z) = 0

where characteristic polynomial is
P (γ) = det(γ2I −ZY).

In general, by Davis (1979) for a circulant matrix circ(c1, c2,..., cN ), the order N ×N , has eigenvalues are given by

αk = c1 + c2w
k−1 + ... + cN (wk−1)(N−1), w = e

2π
N j ,. (37)

By considering the case of N ×N impedance and admittance matrices with the same characteristics as above, being N ×N
symmetric circulants

Z =




Zs Zm · · · Zm

Zm Zs · · · Zm

... . . .
...

...
Zm · · · Zm Zs


 , Y =




Ys Ym · · · Ym

Ym Ys · · · Ym

... . . .
...

...
Ym · · · Ym Ys


 .

From (37) with w = e
2πj
N , the eigenvalues α = γ2 of the circulant matrix ZY are

α1 = (Zs + Zm + ...+ Zm)(Ys + Ym + ...+ Ym)
(Zs − Zm)(Ys − Ym) + ∆,

αi =
(
Zs + Zm

(wi−1)n−wi−1

wi−1−1

)(
Ys + Ym

(wi−1)n−wi−1

wi−1−1

)

= (Zs − Zm)(Ys − Ym), i = 2,...,N

∆ = N(ZsYm + ZmYs − 2ZmYm) +N2ZmYm.

Thus for ∆ �= 0, the characteristic polynomial P (γ) = det(γ2I−ZY) has two simple roots, ±γ1 = ±√
α1, and two roots

±γ2 = ±√
α2 with algebraic multiplicity N − 1. Moreover, for a fixed frequency λ, the simple root depends upon N and the

parameters in the impedance and admittance matrices and the repeated roots are independent of the number of conductors.
Since the characteristic polynomial can be then written as

P (γ) = (γ2 − γ2
2)

N−1(γ2
1 − γ2

1),

the scalar function d(z) can be obtained by Heaviside expansion theorem in Carrier et al. (2005) in according with (15) resulting

d(z) =

N−1∑
l=1

Ψl(γ2)

(N − 1− l)!
zN−1−l

(
eγ2z + (−1)N+l−2e−γ2z

)
+

1

P ′(γ1)
eγ1z +

1

P ′(−γ1)
e−γ1z

where the residues

Ψl(γ) =
1

(l − 1)!

d(l−1)

dγ(l−1)

(
1

(γ + γ2)n−1(γ2 − γ2
1)

)
,

can be obtained computationally.
Observe that although d(z) depends upon a finite number of powers of z due to eigenvalue multiplicity.

6 Numerical example
Multiconductor transmission lines with the same mutual and self components in the impedance and admittance matrices has been
considered in the literature, in particular the analysis of three-core power cable with common earth screen is realized by Wagenaars
et al. (2010) and with equivalent networks in high phase order transmission systems Knockaert et al. (2009); Pandya (2008). Here
are presented simulations for a transmission line with 6× 6 impedance and admittance matrices with pattern symmetric circulant.
In particular are observed the behavior and decomposition of scalar function d(z) solution of (11)-(12).

For this example, the impedance and admittance matrices are

Z =




Zs Zm Zm Zm Zm Zm

Zm Zs Zm Zm Zm Zm

Zm Zm Zs Zm Zm Zm

Zm Zm Zm Zs Zm Zm

Zm Zm Zm Zm Zs Zm

Zm Zm Zm Zm Zm Zs




, Y =




Ys Ym Ym Ym Ym Ym

Ym Ys Ym Ym Ym Ym

Ym Ym Ys Ym Ym Ym

Ym Ym Ym Ys Ym Ym

Ym Ym Ym Ym Ys Ym

Ym Ym Ym Ym Ym Ys




,
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(a) Re(d(z)) (b) Im(d(z))

Figura 2: Graphics of (a) Re(d(z)) and (b) Im(d(z)).

(a) Re(ejωtd(z)) (b) Im(ejωtd(z))

Figura 3: Graphics of (a) Re(ejωtd(z)) and (b) Im(ejωtd(z)).

where Zs = 3.5 + j10−6ω, Zm = 0.35 + j0.11 · 10−6ω and Ys = 10 · 10−3 + j1.5 · 10−9ω, Ym = −10−3 − j0.07 · 10−9ω.
The simulations below were performed with λ = jω and f = 2 GHz.

The properties of circulant matrices implies that ±γk = ±√
αk, for i = 1,...,6, being αk given in (37). As previously

guaranteed, in this case exists two roots quintuples thus the scalar function d(z) has real and imaginary parts in Figure 2(a) and
Figure 2(b), respectively, and is composed by combination the functions z4, z3, z and 1 multiplying exponential functions. The
function ejωtd(z) has real and imaginary parts presented in Figure 3.

Using (19) one has
ejωtd+(z) = u+

1 (t,z) + u+
2 (t,z) (38)

where u+
2 (t,z) =

∑5
k=1 φ2kz

5−ke−α2ze−j(β2z−ωt), u+
1 (t,z) =

1
P ′(−γ1)

e−α1ze−j(β1z−ωt), the coefficient φk can be determined
by theoretical Heaviside formula Carrier et al. (2005). Decomposition analogous can be realized with ejωtd−(z) = u−

1 (t,z) +
u−
2 (t,z). The real and imaginary parts of solutions ejωtd+(z) and ejωtd−(z) are given in Figure 4 and Figure 5, where is possible

observe the oscillation of amplitude and attenuation in direction positive z for ejωtd+(z) and negative z for ejωtd−(z).

7 Conclusions
The use of formulation in matrix form allowed obtain the solution modal simultaneously for voltage and current using as basis
the fundamental matrix solution associated to matrix ordinary differential equation. The decomposition of fundamental matrix
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(a) Re(ejωtd+(z)) (b) Re(ejωtd−(z)

Figura 4: Graphics of (a) Re(ejωtd+(z)) and (b) Re(ejωtd−(z)). .

(a) Im(ejωtd+(z)) (b) Im(ejωtd−(z)

Figura 5: Graphics of (a) Im(ejωtd+(z)) and (b) Im(ejωtd−(z)). .

solution in two waves a one traveling forward and other traveling back is used for determine reflection and transmission matrices
in discontinuities as the junction between transmission lines. Multiphase transmission lines with cyclic symmetric pattern are
studied with circulant theory depending. Analytical expressions are derived for the eigenvalues of the product of impedance with
admittance matrices that have a fixed value for the diagonal elements and for off-diagonal elements another fixed value. It is
observed that the number of conductors affect only the propagating structure due to one simple root of a characteristic polynomial.
A transmission line with impedance and admittance symmetric circulant matrices of order 6× 6 is presented as numerical example.
The obtained graphics for decomposition of the scalar function allowed observe the aspects discussed theoretically in this paper, as
repeated propagation constants and different behaviors for decomposition forward and backward waves.

Acknowledgements.

The first author thanks UFSM/Capes for participating at their Visiting Professor Program. This work was partially supported by
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), 141198/2014− 1.



Modal waves in multiconductor transmission...

Ci. e Nat., Santa Maria, v. 42, e38, p. 1-11, 2020

11

11 Autores: Modal waves in transmission lines by using the fundamental matrix solution

Referências
Amirhosseini, M. K., Cheldavi, A. (2003). Time domain analysis of circulant symmetric coupled transmission lines. IEE

Proc-Microw Antennas Propag, 150(5), 325–331.

Carrier, G. F., Krook, M., Pearson, C. E. (2005). Functions of a Complex Variable: Theory and Thechinique. Society for Industrial
and Applied Mathematics.

Claeyssen, J. R., Canahualpa, G., Jung, C. (1999). A direct approach to second-order matrix non-classical vibrating equations.
Applied Numerical Mathematics, 30(1), 65–78.

Davis, P. J. (1979). Circulant Matrices. John Wiley & Sons, Inc., USA.

Dmitriev, V., Portela, G., Martins, L. (2018). Temporal coupled-mode theory of electromagnetic components described by magnetic
groups of symmetry. IEEE Transactions on Microwave Theory and Techniques, 66(3), 1165–1171.

Heydt, G. T., Pierre, B. J. (2016). Sequence impedances for high phase order power transmission systems. Em: 2016 IEEE/PES
Transmission and Distribution Conference and Exposition, pp. 1–5.

King, R. W. P. (1965). Transmission-line Theory. Dover Publications, Inc..

Knockaert, J., Peuteman, J., Catrysse, J., Belmans, R. (2009). General equations for the characteristic impedance matrix and
termination network of multiconductor transmission lines. Em: IEEE International Conference on Industrial Technology, ICIT
2009, pp. 1–6.

Nitsch, J., Baum, C. E., Sturm., R. (1992). Analytical treatment of circulant nonuniform multiconductor transmission lines. IEEE
Transactions on Electromagnetic Compatibility, 34(1), 28–38.

Pandya, A. (2008). Multi-phase power system: performance analysis & design. Thesis, Doctor of Philosophy in Electrical
Engineering, Department of Electrical Engineering, Maharaja Sayajirao University of Baroda.

Papaleonidopoulos, I. C., Theodorou, N. J., Capsalis, C. N. (2013). Travelling-wave modelling of uniform multi-conductor
transmission line networks - part i: Analytical derivation. Progress In Electromagnetics Research B, 52, 253–293.

Paul, C. R. (2008). Analysis of multiconductor transmission lines, 2o edn. John Wiley & Sons, Inc..

Triverio, P., Grivet-Talocia, S., Chinea, A. (2010). Identification of highly efficient delay-rational macromodels of long intercon-
nects from tabulated frequency data. IEEE Transactions on Microwave Theory and Techniques, 58(3), 566–577.

Wagenaars, P., Wouters, P. A. A. F., van der Wielen, P. C. J. M., Steennis, E. F. (2010). Measurement of transmission line
parameters of three-core power cables with common earth screen. IET Science, Measurement & Technology, 4(3), 146–155.

Willems, J. L. (1989). A new approach to the analysis of mixed three-phase and six-phase power systems. International Journal of
Electrical Power & Energy Systems, 11(2), 115–122.


