Validação da velocidade do vento do modelo WRF com uso da velocidade de fricção u, simulada

Diogo N. da S. Ramos¹, Roberto F. da F. Lyra¹, Rosiberto S. da Silva Júnior¹, Allan R. Silva²

¹Instituto de Ciências Atmosféricas – ICAT/UFAL ²Centro de Ciências Exatas e da Terra – CCET/UFRN e-mail: diogonsramos@gmail.com

1. Introdução

Com a expansão da energia eólica no Brasil nestes últimos anos, vários obstáculos ainda dificultam o avanço mais expressivo deste setor. Medições anemométricas são escassas em termos de séries temporais e espaciais. Com isso, é fundamental a disponibilidade de dados de vento consistentes, inclusive com a utilização de modelos atmosféricos calibrados (SILVA JÚNIOR et al., 2010).

O objetivo deste trabalho é validar a velocidade do vento do modelo atmosférico WRF V3.2 (Weather Research Forecasting) obtida pelo perfil logaritmo do vento usando a velocidade de fricção (u_{*}) simulada pelo próprio modelo.

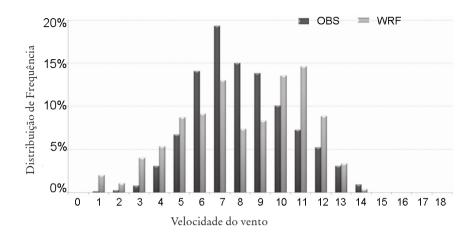
2. Metodologia

Os dados anemométricos foram coletados durante a realização do Atlas Eólico do Estado de Alagoas. O sítio estudado está localizado no município de Girau do Ponciano (9°45'58,50"S; 36°47'6,43" O; 410m), região do agreste alagoano e área com melhor potencial eólico no Estado (ELETROBRAS, 2008). Serão avaliados os padrões da velocidade do vento no nível vertical de 50 metros para os meses de dezembro/2007 (estação seca) e maio/2008 (estação chuvosa).

O modelo WRF foi configurado com dois domínios de resolução de 20 e 5km, ambos com 81x81 pontos, tendo as reanálises do NCEP como dados de entrada e as seguintes parametrizações adotadas: *Purdue Lin* (Microfísica); *Noah LSM* (Superfície do solo); *ACM2 Plein* (Camada Limite Atmosférica); *Grell-Devenyi* (Cumulus). A velocidade do vento a ser validada foi obtida através pelo perfil logaritmo do vento usando a velocidade de fricção u_{*} simulada pelo WRF (eq. 1).

$$u_{50} = \left(\frac{u_*}{k}\right) . \ln\left(\frac{Z}{Z_o}\right) \tag{1}$$

Onde: u_{50} - velocidade do vento do WRF em 50 metros (m/s); u^* - velocidade de fricção do WRF (m/s); k - Constante de von Karman (k=0,4); Z_0 - Comprimento de rugosidade (Z_0 =0,05m).


3. Resultados e conslusões

A distribuição de frequência da velocidade do vento WRF foi bem representativa quando comparada à OBS, tanto na estação seca (Figura 1a) como na chuvosa (Figura 1b). Na estação seca, o WRF teve dificuldade em simular os períodos de máxima velocidade do vento, enquanto na chuvosa ocorreu o inverso. Isso se deve possivelmente a resolução adotada nas simulações, onde os efeitos locais são minimizados (máximos e mínimos). Mas vale ressaltar que o padrão e intensidade do vento foram bem representados nas simulações.

Por fim, o modelo conseguiu representar de forma satisfatória os padrões e intensidade do vento, com erro médio inferior a 0,5 m/s nos meses estudados (Tabela 1). Quando devidamente configurado e calibrado, o modelo torna-se uma ferramenta bastante útil para diversos fins, como estudos eólicos.

Tabela 1. Valores da correlação (R), erro médio (EM), velocidade do vento média (\overline{vv} 50) e desvio padrão (DP).

			50 m/s		50 (DP) m/s	
Mês	R	EM	OBS	WRF	OBS	WRF
Dezembro/07	8,2%	-0,24	8,88	8,64	2,28	2,98
Maio/08	45,4%	-0,47	6,29	5,83	1,99	2,51

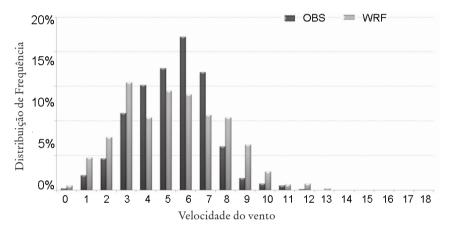


Figura 1. Distribuição de frequência da velocidade do vento OBS e WRF nos meses de DEZ/2007 (a - supeior) e MAI/2008 (b - inferior).

Agradecimentos

Os autores agradecem ao CNPq, CAPES e FAPEAL pelo auxílio financeiro.

Referências

ELETROBRÁS. Atlas Eólico do Estado de Alagoas. V.1, 67p. 2008; SILVA JÚNIOR, R. S.; LYRA, R. F. F.; MARCHI, A. C.; SILVA, A. R.; RAMOS, D. N. S.; RABELO, F. D., Mapeamento do potencial eólico no Estado de Alagoas utilizando o modelo WRF. Anais do I Seminário de Engenharia do Vento (SENEV), Belo Horizonte – MG, 2010.