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Abstract
Airborne microorganisms from bacterial and fungal species are able to

act as ice nuclei and can affect sensible crops to frost such as coffee trees.

Consequently, frost is one of the major problems in South-Southeastern

coffee crops in Brazil. In this research, it was found three categories of

organisms with ice nuclei activity (INA) in coffee leaves, basing in the

mean freezing point of saline solution, around -17oC. The first category,

with strong INA, it was found the Pseudomonas syringae var. garceae, a

coffee tree pathogenic, as INA+. Pseudomonas syringae var. syringae

behaves with soft less INA+ efficiency, comparing to the var. garceae.

This last variety also causes aureolar spot disease. The second category

presents a partial ice nuclei activity, including two other bacteria, Pantoea

agglomerans (that is known as ice nuclei), and Corynebacterium, with

mean freezing point from -7oC to -10oC. And the third category presents

non-ice nuclei activity (INA-), with freezing point below -11oC, including

all other bacteria and fungi. Additionally, H.vastatrix, acoffee rust disease,

which already causes lots of prejudice to the crops, can be associated

with an INA+ bacterium, causing frost. That result deserves a refined

research, trying to elucidate how this association should be done.
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Therefore, two rust coffee diseases and aureole spot, as well as the presence

of Pantoea agglomerans, can be directly or indirectly associated to ice

nuclei activity, demanding a higher bio-control, particularly during

wintertime, due the possibility of frost damage.

Resumo
Microrganismos na atmosfera de origem bacteriológica e fúngica têm a

habilidade de atuar como nucleadores de gelo e afetar plantações sensí-

veis à geada como o café. Consequentemente, a geada é um dos maiores

problemas para essa cultura no Sul-Sudeste do Brasil. Neste estudo, fo-

ram encontradas três categorias de organismos com atividade de

nucleação de gelo (INA) em folhas de café, tendo por base o ponto de

congelamento da solução salina, cerca de -17oC. Na primeira categoria,

com forte atividade INA, foi encontrada a bactéria Pseudomonas syringae

var. garceae, um patógeno de folhas de café, Pseudomonas syringae var

syringae comportou-se com menor eficiência de INA comparando-a à

var. garceae. Esta última variedade também causa a doença denominada

“mancha aureolada”. A segunda categoria apresentou uma atividade par-

cial de nucleação de gelo, bem como duas outras bactérias: Pantoea

agglomerans (reconhecida na literatura como nucleante de gelo) e

Corynebacterium, ambas com pontos de congelamento entre -7oC e -10oC.

A terceira categoria não apresentou atividade nucleadora (INA-), com

pontos de congelamento abaixo de -11oC, incluindo-se todas as demais

bactérias e fungos. Adicionalmente, Hemileia vastatrix, o fungo respon-

sável pela ferrugem de café, o qual já causa enormes prejuízos aos agri-

cultores, pode estar associado a bactérias INA+, gerando geada. Esses

resultados necessitam de mais estudos, visando a esclarecer como esta

associação poderia ocorrer. Portanto, duas doenças de plantações de café,

a ferrugem e a mancha aureolada, e a presença da bactéria Pantoea

agglomerans, podem estar diretamente e indiretamente associadas à ati-

vidade de nucleação de gelo, demandando maior controle biológico, par-

ticularmente durante o inverno, devido à possibilidade de danos por geada.

Palavras-chave: atividade de nucleação de gelo, plantações de café, fun-

gos, bactérias, Pseudomonas syringae.
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1. Introduction
Airborne microorganisms were found in the atmosphere for the first

time in the XIX century. Since then, many studies on airborne fungi have

been carried out to investigate atmospheric concentrations and

compositions and their impact on the environment such as involvement

in cloud physic processes. Airborne bacteria can act as cloud condensation

nuclei and some airborne bacterial and fungal species are able to act as

ice nuclei and therefore induce rainfall in moderate climates and cause

frost on crops (Schnell & Vali, 1973).

According to Lovelock (1988), if organisms seed clouds there could

be biofeedback that would lead them to further evolve this propensity – as

he proposed in the Gaia processes – but this idea still remains

controversial. Based upon the fact of organisms disperse, and even if they

consequently arrive in a new habitat that is not more advantageous than

the previous habitat (Hamilton & Lenton, 1998), it can be suggested that

some microbes have evolved to seed cloud formation to create local

dispersal vehicles for themselves (Morris et al., 2005). An epiphytic

bacterium, Pseudomonas syringae v. syringae, scattered from decayed

leaves, was the first bacterium discovered to have an ice nucleation activity

(O’Brien & Lindow, 1988 and 1989 and Schnell & Vali, 1973). Therefore,

Schnell & Vali (1973, 1976) came to the conclusion that P. syringae is

active as an ice nucleus because these bacteria produce a protein on their

outer membrane that is one of the most active of the naturally-occurring

ice nuclei (IN), which has compounds capable of catalyzing the freezing

of water, and because freezing of cloud water is a critical step for rainfall

over major parts of the earth (Sattler et al. 2001; Ariya & Amyot 2004;

Diehl et al. 2000 and, Hamilton & Lenton, 1998; Blondeaux et al. (1999)

and, Hazra et al., 2004). These bacteria are widely distributed across the

planet, survive airborne dissemination up to the clouds and fall out with

precipitation. On the other hand, the ice nucleus activity (INA) of fungi

has received little attention. Pouleur et al. (1992) reported that the species

Fusarium can freeze water at around -1.0oC and -2.5oC. The role that these

fungi and bacteria can play in catalyzing the formation of precipitation is

under investigation in view of applications for drought mitigation.

Recently, according to Amato et al. (2005), the total bacterial count in

clouds reached about 3x104 cells.m-3 of cloud volume (1x105 cells L-1 of

cloud water). Most of the isolated micro-organisms, including 12 fungal
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and 17 bacterial strains, were described for the first time in atmospheric

water. Amato et al. (2007) found bacteria mainly in the genera

Pseudomonas, Sphingomonas, Staphylococcus, Streptomyces, and

Arthrobacter and fungi in the genera Cladosporium or Trametes.

Also according to Morris et al. (2005), the body of information on

biological ice nuclei, meteorology and atmospheric microphysics suggests

that vegetation patterns, and agricultural practices in general, have

consequences on cloud and precipitation processes. So, this leads them

to ask: Might the preference of crops and the selection and breeding of

their varieties have been different if we had taken into account the number

of ice nucleation bacteria on plant varieties? These questions could be

expanded toward those related to agricultural policies in general, also

taking into account crop susceptibility to frost damage. There are many

plant crops that are sensitive to frost damage associated to the presence

of IN bacteria (Lindow, 1983; O´Brien & Lindow, 1988 and 1989).

Coffee tree (Coffea arabica) is a species of coffee indigenous to

Ethiopia and Yemen, in Africa, usually cultivated between 1,300 and 1,500

m altitude. However there are plantations as low as sea level and as high

as 2,800 m. The plant can tolerate low temperatures, but not frost, and it

does best when the temperature hovers around 20°C (68°F). The Brazilian

Southern region, where there are many coffee plantations, suffers frost

damage from time to time. Therefore, frost is one of the major problems

in South-Southeastern coffee crops in Brazil where there have been many

frost events, particularly in 1975 when a large number of trees were

destroyed by what has been called the “black frost”.

Additionally, there are some articles that take into account epiphytic

and endophytic fungi and bacteria in Coffea arabica L such as Vega et al.

(2005), which found eighty-seven cultures endophytic bacterial isolates

from 19 genera collected in Colombia (n = 67), Hawaii (n = 17), and Mexico

(n = 3), where the genera Pantoea and Pseudomonas were among them.

On the other hand, Santamaría and Bayman (2005) found some epiphytic

and endophytic microorganisms of coffee for which the ecosystem

interactions are poorly understood.

Consequently,   studies  of   frost   mechanisms   in   coffee   leaves  are

very   important   for   the   protection   of   this  crop.   Therefore,   the   aim

of  this   article  is  to  evaluate  the  ice  nuclei activity (INA+)  of

microbiota (endophytic  and  epiphytic  fungi  and  bacteria)  of  coffe e
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leaves,  either decaying or still attached to the plant.

2. Materials and methods
2.1 Coffea arabica leaf sampling
In order to extract the microbiota (epiphytic and endophytic fungi and

bacteria) from coffee leaves, they were sampled from trees (Coffea

Arabica) and from the debris in commercial plantations. We chose mature

leaves as well as decaying leaves. The material was collected from the

Nossa Senhora farm, near Pinhal City, at about 800 m altitude and 150

km from São Paulo Capital of São Paulo State (see map of Figure 1).

Figure 1. Southern Brazil with São Paulo State showing Garça and Pinhal Cities as

well as São Paulo Capital.
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The leaves were divided in two different treatments. The first group,

for endophytic bacteria and fungi, was cut and cleaned in a 25% sodium

hypochlorite bath during 15 minutes and after that, in three water baths

for rinsing. After cleaning, they were cut in peaces of 1 cm2 and placed in

potato-dextrose-agar (PDA) media, and incubated 3 to 4 days at 27oC.

The PDA media used cooked potato water, 15 g of Agar (Difco) and 15 g

of dextrose. After incubation, all fungi and bacterial colonies were isolated.

The second group was only cut and placed at PDA media without

cleansing in order to analyze epiphytic bacteria and fungi.

2.2 Isolation of bacteria and fungi
2.2.1 Bacteria
The colonies found on PDA media were divided in F categories, plus two

found bacteria from apical leaves.  They were identified according to

Romeiro (1995), based on general colony appearance. After isolation, the

bacterial colonies were placed in five media: a) nutrient agar; b) King’s

Medium B (for Pseudomonas fluorescens, according to King et al., 1954);

c) Yeast Dextrose-Carbonate (to grow yeast); d) to identify Erwinia

herbicola and; e) to identify Corynebacterium. These four media are

described as it follows. a) Nutritive agar: meat extract (8.0 g), soya peptone

(8.0 g), NaCl (5.0 g), Difco agar (15.0 g) and water (1 l); b) B. de King

(pH=7.4): peptone (20.0 g), glycerin (10.0 g), K
2
HPO

4
 (15.0 g),  MgSO

4
 7

(H
2
O) (1.5 g), Difco agar (15.0 g) and water (1 l);c) Y.D.C ( Yeast-Dextrose-

Carbonate: glucose (20.0 g), yeast extract (10.0 g), CaCO
3
 (15.0 g), Difco

agar (15.0 g) and water (1 l); d) to identify Erwinia herbicola:-saccharose

(10.0 g), arabinose (10.0 g), hydrolyzed acid casein ( 5.0 g), LiCl (7.0 g),

NaCl (5.0 g), glycine (3.0 g), MgSO
4
 7(H

2
O) (0.3 g), Na

2
HPO

4
 (0.1 g),

dodecil sodium sulfate (0.05 g), bromotimol blue (0.06 g), acid fucsine

(0.1 g), Difco agar 95.0 g) and water (1 l); e) to identify Corynebacterium:

glucose (10.0 g), hydrolyzed casein (4.0 g), yeast (2.0g), NH
4
Cl( 1.0 g),

MgSO
4
 7(H

2
O) (0.3 g), LiCl (5.0 g), sodic azide (0.002 g), Li sulfite (1.2 g),

Difco agar (15.0 g) and water (1 l).

All isolated bacteria were suspended in a sterile saline solution 0.85%

and plated on nutrient agar at 27oC.

Two additional strains of bacteria from culture collections were also

evaluated: Pseudomonas syringae pv. syringae and Pseudomonas syringae

pv. garceae. The first one is well known as being INA+. The latter was
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found in coffee leaves in Garça City, in 1955, Center-West of São Paulo

State (see Figure 1). This bacterium causes also a disease in coffee leaves,

called “aureolar spot”. The two strains were classified as SDPABO-IB/

281 (P. syringae pv. syringae) and SDPABO-I/158 (P. syringae pv. garceae),

obtained from the Instituto Biologico Data Bank. Both bacteria were grown

in nutrient agar, around 27oC, and afterwards suspended in saline 0.85%,

as described above.

The suspended concentration in saline solution (0.85%) was 1.5 x 108

cells /ml for all bacteria.

2.2.2 Fungi
The isolation methodology for fungi was based on Schnell & Vali (1973).

These authors sampled fungi from intact leaves as well as decaying leaves.

PDA was used for isolation and identification as described above.

An additional test was also performed using urediospores of coffee

rust: Hemileia vastatrix Berk. & Broome, as described in Section 2.3.2.

This fungus causes “rust” disease over coffee leaves, generating a great

damage in coffee crop production. They were sampled from intact

infected leaves from the Nossa Senhora farm where they were scraped

with a sterile scalpel from sporulating clusters under coffee leaves.

All fungi were suspended in saline solution 0.85%, from 18.0 ± 0.05

mg to 20.0 ± 0.05 mg / ml.

2.3 Freezing tests
2.3.1 Lyophilizer tests
Freezing tests were performed using a lyophilizer (Schnittzeichnungen,

Delta 1-A, type 336 Osteröde/harz) in order to freeze the water (saline)

droplets with suspended fungi and bacteria. Therefore, both types of

microorganisms were analyzed with the purpose of identifying INA+ as

follows:  30 droplets of 20 ìl of bacterial and fungal suspensions were

subjected to freezing in the lyophilizer. The freezing point was observed

for each droplet. Two tests were performed for a total of 60 droplets. A

curve of droplet freezing distribution was calculated for each strain. Tests

on sterile saline solution 0.85%, saturated NaCl and glucose (0.48 M)

were also performed as controls. Temperatures were obtained from the

mean of two thermometers, one placed beside the droplets and the other

one from the lyophilizer freezer indicator.
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2.3.2  Freezing test for H.vastatrix
Urediospores of Coffee rust (Hemileia vastatrix), previously submitted

to the tests above (Section 2.3.1), was also sent frozen to the INRA Research

Center in Montfavet, France in Oct 2008, in order to analyze their INA.

At the time, the samples had 40% viability. These spores were suspended

in sterile distilled water, rinsed and filtered across polycarbonate filters

(8 m m pore diameter) and then re-suspended in sterile distilled water

free of ice nuclei at -9° C.  The concentration of the suspension was 4 x

104 spores /ml as determined under the microscope with a

haemocytometer.

Their INA evaluation is described as it follows: the capacity of the

spores to induce freezing of water at temperatures from -2° C to -9° C

was determined for droplets of the spore suspensions placed on a metal

surface floated on a cooling bath as described in Morris et al. (2008).

3. Results
3.1 Bacteria and fungi isolation results
Fifteen bacterial strains (F1 – F13, M14 and  M15) were isolated. F4 and

F5 colonies were identified as Corynebacterium and M14 as Pantoea

agglomerans (former Erwinia herbicola). The others could not be correctly

classified and strains F3 and M15 were not used herein.

Seven fungi strains were isolated and identified as: Mucor sp.,

Cephalosporium sp., Chlamidomyces sp., Streptomyces sp.,

Chladophyarola sp., Melanospora sp. and Penicillium sp.

Tables 1 and 2 as well as Figure 2 to 17 present all results as it follows:

3.2.1- blank tests; 3.2.2. Bacteria tests; 3.2.3. Fungi tests and 3.2.4

H.vastatrix test. Figures 2 to 4 show the tests performed with saline

water 0.85% (Figure 2), saturated NaCl (Figure 3) and glucose 0.48 M

(Figure 4).

First of all, the overall temperature distribution shows a reasonable

Gaussian distribution. The freezing droplet temperature means from all

Figures (2 to 4) present temperatures below -10oC, as expected, which

saturated NaCl presenting the coldest mean temperature (-17.9oC). The

overall results are also shown in Table 1 and 2.
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Figure 2. Tests with saline solution 0.85%, showing their freezing points

Figure 3. Tests with saturated NaCl, showing their freezing points.

Figure 4. Tests with glucose 0.48M, showing their freezing points.
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Pseudomonas syringae v. syringae
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Pseudomonas syringae v. garceae
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BACTERIA F6
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Figure 5. Tests with Pseudomonas syringae var. syringae, showing their freezing points.

Figure 6. Tests with Pseudomonas syringae var. garceae, showing their freezing points.

Figure 7. Tests with non-identified Bacteria F6, showing their freezing points.
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CORYNEBACTERIUM
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CEPHALOSPORIUM SP.

0

5

10

15

-13 -14 -15 -16 -17 -18 -19 -20 -21 -22 -23 -24

Temperture (oC)

a
m

o
u

n
t

o
f

fr
e
e
z
in

g

d
ro

p
le

ts

Figure 8. Tests with Corynebacterium (Figure 8), showing their freezing points.

Figure 9. Tests with Pantoea agglomerans (former Erwinia herbicola), showing their

freezing points.

Figure 10. Tests with Cephalosporium sp., showing their freezing points.
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MUCOR SP.
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Figure 11. Tests with Mucor sp., showing their freezing points.

Figure 12. Tests with Streptomyces sp., showing their freezing points.

Figure 13. Tests with Chlamidomyces sp., showing their freezing points.
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CHLADOPHIALOPHORA SP.
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MELANOSPORA SP.
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PENICILLIUM SP.
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Figure 14. Tests with Chladophyarola sp., showing their freezing points.

Figure 15. Tests with Melanospora sp., showing their freezing points.

Figure 16. Tests with Penicillium sp., showing their freezing points.
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Hemileia vastatrix (Coffee rust) test
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Figure 17. Tests with Hemileia vastratrix, showing their freezing points.

First of all, the overall temperature distribution shows a reasonable

Gaussian distribution. The freezing droplet temperature means from all

Figures (2 to 4) present temperatures below -10oC, as expected, which

saturated NaCl presenting the coldest mean temperature (-17.9oC). The

overall results are also shown in Table 1 and 2.

Figures 5 to 9 show the tests with Pseudomonas syringae pv. syringae

(Figure 5);   with Pseudomonas syringae pv. garceae (Figure 6); with F4

and F5, which were identified as Corynebacterium in Figure 8; and with

M14, identified as Pantoea agglomerans in Figure 9. The overall results

are also shown in Table 1 with all bacteria. Figure 7, for non-identified

bacterium F6, clearly shows intermediate ice nucleation activity. F7 shows

the same behavior as F6, and it is shown only in Table 1.

From those figures, it is clearly seen that both Pseudomonas strains

present a higher (warmer) freezing point, and are clearly ice nucleation

active bacteria (INA+), with activity far warmer than the other two bacteria

and blank tests and the temperature freezing points are also in accordance

with the literature, around -4o C and -5o C. Particularly pv. garceae presents

the warmest freezing point mean, even compared to var. syringae.

Additionally, the other two bacteria, including Pantoea agglomerans,

present also warmer freezing point means than the blank tests, around -

8o C (see Table 1) as expected. The presence of Pantoea agglomerans, with

known ice nuclei activity, is rather important to coffee crops, due to frost

damage as discussed below.
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Table 1. Blank and bacteria overall test results, including number of droplets and T

(90), temperature which 90% of droplets are frozen. Obs. F3 is not considered. The

suspended concentration in saline solution (0.85%) was 1.5 x 108 cells per milliliter for

all bacteria.

Table 2.Fungi test results, including number of droplets and T (90). All fungi were

suspended saline solution 0.85%, from 18.0 ± 0.05 mg to 20.0 ± 0.05 mg per ml.

stseT forebmuN
stelpord

(09T o )C gnizeerfnaeM
(serutarepmet o )C

%58.0retawenilaS 06 0.91- 2.6±6.61-

detarutaslCaN 06 0.22- 9.4±9.71-

M84.0esoculG 06 0.61- 3.6±1.31-

eaecrag.rveagniryssanomoduesP 06 0.6- 0.5±0.4-

eagnirys.rveagniryssanomoduesP 06 0.8- 4.4±2.5-

airetcab-1F 06 0.21- 0.5±8.9-

airetcab-2F 06 0.21- 7.4±1.8-

)5F/4F(muiretcabenyroC 06 0.7- 5.5±0.7-

airetcab-6F 06 0.01- 9.4±1.8-

airetcab-7F 06 0.01- 2.4±1.7-

airetcab-8F 06 0.81- 7.5±6.51-

airetcab-9F 06 0.91- 5.5±2.61-

airetcab-01F 06 0.91- 1.5±6.51-

airetcab-11F 06 0.81- 5.5±2.51-

airetcab-21F 06 5.12- 3.5±6.71-

airetcab-31F 06 0.12- 5.5±9.71-

)41M(snaremolggaaeotnaP 06 0.11- 1.4±1.8-

stseT forebmuN
stelpord

(09T o )C gnizeerfnaeM
(serutarepmet o )C

)lanigiro(.xirtatsavaielimeH 25 0.8- 1.1±4.7-

.psmuillicineP 16 5.22- 5.2±8.91-

.psalorayhpodalhC 06 0.32- 1.6±1.91-

.psmuiropsolahpeC 85 0.22- 5.2±5.02-

,.pssecymodimalhC 65 0.71- 9.2±6.31-

.pssecymotpertS 16 5.91- 9.4±4.71-

.psrocuM 85 5.12- 6.4±5.81-

.psaropsonaleM 85 0.02- 3.4±6.91-
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Figures 10 to 16 present the tests with Mucor sp. (Figure 10),

Cephalosporium sp. (Figure 11), Chlamidomyces sp. (Figure 12),

Streptomyces sp. (Figure 13), Chladophyarola sp. (Figure 14), Melanospora

sp. (Figure 15) and, Penicillium sp. (Figure 16). Table 2 shows the overall

results for fungi.

From those figures, it is clearly seen that none of the fungi act as ice

nuclei. On the other hand, Chlamidomyces is the only fungus whose spores

present a result similar to that of the glucose (0.48 M) freezing point

mean, around -14o C. The others fungi present results similar to saturated

NaCl, with freezing points below -17o C.

Figure 17 presents the test results with rust spores, using the

methodology described in Section 2.3.2. Preliminarily, the tests with the

previous methodology using urediospores of H.vastatrix  clearly show

INA+ behavior, with similar freezing point mean, around -4o C, as both

Pseudomonas strains. No results for INA of obligate parasitic fungi have

been presented previously in the literature. Figure 18 shows the spore of

H.vastatrix.

Figure 18. Hemileia vastatrix urediospore (extracted from http://www.scielo.br/

revistas/fb/iinstruc.htm).
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The results suggest that rust spores not only contribute to the diseases

but might also be involved in frost damage to coffee.

4. Discussion
The overall results are shown in Table 1 and Table 2 with the freezing

point mean and T 90 (temperature which 90% of droplets are frozen.)

From both tables, it is possible to classify ice nucleation behavior in three

different categories: a) truly ice nucleation active or INA+ strains which

includes both Pseudomonas strains, with freezing point means between -

4o C and -5o C; b) partially ice nucleation active strains with freezing

point means around -7o C and -10o C,  including a group of non-identified

bacteria (F1, F2, F6 and F7), Pantoea agglomerans  (Erwinia herbicola)

and Corynebacterium, as well as, H.vastatrix,; and c) non-ice nuclei active

(INA-) strains, with freezing points below -11o C, which includes all other

fungi and bacteria, as well as saline, salt and glucose solutions. This

group includes bacteria (F8 to F13) and all fungi (Mucor sp.,

Cephalosporium sp., Streptomyces sp., Chladophyarola sp., Melanospora

sp.  and, Penicillium sp.) with freezing point means around NaCl satured,

at -18o C or below, except by Chlamidomyces, around -14o C . Saline solution

0.85% and glucose 0.48 M present freezing points around -17o C and -13o

C, respectively.

The T 90 index shows similar distributions, but in two categories:

presenting INA+, warmer or equal to -11o C including both Pseudomonas

strains, Pantogea agglomerans, Corynebacterium and two non-identified

bacteria (F6 and F7). Bacteria F1 and F2 could also be classified here (T

90 = -12o C), all warmer than saline solution (T 90= -19o C) or glucose (T

90 = -16o C). The INA- category includes all other bacteria and fungi with

T 90 below -17o C, reaching -23o C with Chladophyarola sp.

5. Conclusions
In this research, we found three categories of INA among coffee leave

microbiota. The first group, truly INA+, included Pseudomonas syringae

pv. garceae, a pathovar of coffee leaves. That result is a possible new,
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because this pathovar is not cited as INA+ in the literature. It must be

notified that this pathovar also causes aureolar spot disease. The second

category presents a partial ice nucleation activity, including some bacteria

such as Pantoea agglomerans, which is known in the literature as INA+,

and Corynebacterium. And the third category presents non-ice nucleation

active (INA-) strains and includes all other bacteria (F8 to F13) and fungi

(Mucor sp., Cephalosporium sp.,  Streptomyces sp., Chladophyarola sp.,

Melanospora sp.  and Penicillium sp.).

Additionally, Hemileia vastatrix, the coffee rust, which already causes

lots of prejudice to these crops, seems to be INA.  But our spores were

isolated directly from diseases leaves and might be contaminated with

other micro-organisms. In any case, it suggests an additional problem

for farmers. That result deserves a refined research, trying to elucidate

how this ice nucleation activity is possible.

Therefore, two coffee pathogens - rust and P. syringae pv. garceae

- and in addition to the presence of Pantoea agglomerans, are directly or

indirectly associated with ice nucleation activity on the coffee leaves,

demanding a higher effort for control by the coffee farmers, particularly

during wintertime, due the frost damage.
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