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ABSTRACT

Monitoring chlorophyll-a concentrations (Chl-a) is essential for managing water quality and mitigating 
eutrophication risks. Traditional in situ monitoring methods often suffer from data gaps, making 
remote sensing a valuable complementary tool. This study evaluates data from two remote sensing 
platforms (SNAP and AlgaeMap), the Delft3D hydrodynamic model, and in situ observations (CETESB) 
to analyze Chl-a in the Billings Reservoir, São Paulo, from 2017 to 2021. Chl-a behavior was assessed 
under different seasonal conditions. Results show that during the dry season, SNAP and AlgaeMap 
provided similar Chl-a estimates, though with some quantitative differences, particularly in marginal 
areas. AlgaeMap produced higher Chl-a concentrations in upstream regions during the rainy season. A 
67.13% agreement was observed between SNAP and Delft3D, indicating challenges in aligning modeled 
and satellite-derived data. SNAP’s seasonal sensitivity was stronger, showing improved correlation with 
CETESB data in the dry season. With Chl-a below 100 µg/l, the correlation strengthened, reaching R² 
values of 0.71 for SNAP and 0.75 for AlgaeMap. The integration of Delft3D provided valuable spatial 
information, complementing satellite data and capturing temporal dynamics. The combined approach 
of remote sensing and hydrodynamic modeling enhances the accuracy of Chl-a assessments, offering a 
comprehensive strategy for reservoir management and eutrophication prevention.
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RESUMO

O monitoramento da concentração de clorofila-a (Chl-a) é fundamental para a gestão da qualidade da 
água e mitigação dos riscos de eutrofização. Métodos de monitoramento in situ frequentemente sofrem 
com lacunas de dados, tornando o sensoriamento remoto (SR) uma ferramenta complementar valiosa. 
Este estudo avalia dados de Chl-a obtidos por SR (SNAP e AlgaeMap), modelo hidrodinâmico (Delft3D) 
e observações in situ (CETESB) no Reservatório Billings, São Paulo, de 2017 a 2021. Os resultados 
mostram que, durante a estação seca, SNAP e AlgaeMap forneceram estimativas semelhantes de Chl-a, 
embora com algumas diferenças quantitativas, principalmente nas margens. AlgaeMap apresentou 
concentrações mais altas de Chl-a nas regiões a montante na estação chuvosa. Observou-se uma 
concordância de 67,13% entre SNAP e Delft3D, indicando desafios na correspondência entre modelagem 
hidrodinâmica e SR. A sensibilidade sazonal do SNAP foi maior, com melhor correlação com os dados 
CETESB na estação seca. Considerando Chl-a abaixo de 100 µg/l, a correlação aumentou, alcançando 
R² de 0,71 para SNAP e 0,75 para AlgaeMap. A integração do Delft3D complementou dados de satélite 
com informações espaciais relevantes. A abordagem combinada das diferentes metodologias aprimora 
a precisão das avaliações de Chl-a, oferecendo uma estratégia abrangente para gestão de reservatórios 
e prevenção da eutrofização.

Palavras-chave: Sensoriamento remoto; Modelagem hidrodinâmica; Dados in situ; Monitoramento da 
qualidade da água

1 INTRODUCTION

Reservoirs play a fundamental role in providing a diverse range of water uses, 

including drinking water supply, irrigation, hydropower generation, and recreational 

activities (Jesus 2006). But the indiscriminate exploitation of this vital resource can 

have significant repercussions on both the volume and quality of water within these 

systems (Amorim 2020; Gurski et al. 2021). 

According to CONAMA Resolution No. 357/2005, it is essential that water quality 

adheres to specific classifications to safeguard aquatic ecosystems and ensure public 

health. Traditional monitoring approaches, which often rely on field sampling at 

discrete points, frequently lack the necessary spatial and temporal representativeness 

required to capture the dynamic nature of reservoir systems (Barbosa et al. 2019; 

Gurski et al. 2021; Lobo et al. 2021).

Considering these limitations, remote sensing has emerged as a powerful 

alternative for the comprehensive spatiotemporal analysis of water bodies (Machado & 
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Baptista 2016; Neves et al. 2021). Remote sensing technologies facilitate the acquisition 

of extensive datasets over large areas and varying temporal scales, thereby enhancing 

our understanding of water quality dynamics (Pompêo et al. 2021; Neves et al. 2021). 

By utilizing satellite imagery and other remote sensing tools, researchers can 

monitor key water quality parameters, identify trends, and detect anomalies that 

may not be observable through conventional sampling methods (Barbosa, Novo, and 

Martins 2019; Neves et al. 2021).

Despite its numerous advantages, remote sensing encounters several challenges 

that can hinder effective monitoring, particularly the frequent occurrence of cloud 

cover in satellite images (Barbosa, Novo, and Martins 2019), which compromises data 

acquisition in the study area. Furthermore, the dynamic nature of water bodies can 

significantly affect the spectral range utilized for water quality assessments, especially 

in the infrared spectrum (Barbosa, Novo, and Martins 2019). 

In their investigations, Pompêo et al. (2021) and Neves et al. (2021) evaluated 

multiple parameters indicative of water quality, with a particular focus on chlorophyll-a 

concentration (Chl-a). Utilizing the Sentinel-2 satellite in conjunction with the Sentinel 

Application Platform (SNAP) software, both studies concluded that this satellite-based 

approach offers valuable information into water quality dynamics in reservoirs.

Chlorophyll-a is a critical indicator of the health and functioning of aquatic 

ecosystems. This pigment, essential for photosynthesis in plants, algae, and 

cyanobacteria, plays a vital role in oxygen production and forms the base of the aquatic 

food chain (Neves et al. 2021; Pompêo et al. 2021; Gurski et al. 2021). According to 

Gurski et al. (2021), the monitoring of Chl-a enables the detection of temporal changes 

in ecosystem health, facilitates the identification of emerging issues, and supports the 

formulation of effective management strategies to mitigate potential risks.

However, elevated concentrations of chlorophyll-a may indicate a proliferation of 

algae, raising concerns about potential eutrophication (Amorim 2020). Eutrophication 

is characterized by the excessive enrichment of water bodies with nutrients, primarily 
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due to anthropogenic activities, such as the discharge of nitrogen and phosphorus 

from sewage and agricultural fertilizers (Machado and Baptista 2016). This nutrient 

overload can stimulate algal blooms, which subsequently lead to various issues, 

including the degradation of water quality (Gurski et al. 2021).

Comparing methodologies for assessing Chl-a is important, as different methods 

can yield varied results. This comparison is essential for validating the accuracy and 

reliability of each method, ensuring the representativeness of the collected data. To 

evaluate the potential of integrating remote sensing within situ measurements, this 

study focused on the Billings Reservoir, situated within the sub-basin of the Upper 

Tietê Basin in the southwestern region of São Paulo Metropolitan Area.

The Billings Reservoir is confronted with significant challenges stemming from 

pollutant discharges, which have accelerated the process of eutrophication. A notable 

intervention occurred in 1928 when the flow of the Tietê River was redirected into the 

Billings Reservoir to mitigate flooding during periods of heavy rainfall (Jesus 2006). 

Although, this intervention subsequently began to adversely affect various water 

quality parameters (Jesus 2006). As highlighted by Jesus (2006) and Amorim (2020), the 

reservoir is compartmentalized into distinct sections, with the Pedreira area designated 

for flood control and the Rio Grande section serving primarily for water supply.

In this context, the dam on the Rio Grande plays a crucial role in regulating the 

exchange of water mass between the Rio Grande Reservoir and the main body of the 

Billings Reservoir. This study aimed to compare two remote sensing methodologies: 

(1) the Sentinel Application Platform (SNAP) software and (2) the AlgaeMap application. 

Additionally, in situ data provided by the Environmental Company of the State of São 

Paulo (CETESB) were incorporated into the analysis, along with data derived from 

mathematical modeling using Delft3D software, as reported by Amorim (2020).

This study was conducted from 2017 to 2021, facilitating a comprehensive analysis 

of three tools: AlgaeMap, SNAP, and Delft3D, in conjunction with field measurements. 

Given the intricate configuration of the Billings Reservoir, the environment exhibited 
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a diverse array of hydrodynamic characteristics. This variability permitted thorough 

monitoring and interpretation across the entire water body, enhancing the robustness 

of the findings.

2 MATERIALS AND METHODS

The Billings Reservoir (Figure 1) encompasses a maximum flooded area of 

127 km², a storage volume of 1,200 hm³, and an average retention time of 600 days 

(Amorim 2020). It is characterized by an estimated average natural inflow of 12.5 m³/s 

and an average depth of 18 m (Amorim 2020). According to studies by Jesus (2006) and 

Amorim (2020), the Billings Reservoir is divided into eight distinct units, referred to 

as arms, which contribute to the complexity of its hydrodynamic behavior and water 

quality characteristics.

Hydrodynamic processes within the Billings Reservoir are influenced by a variety 

of factors, including energy generation, water pumping from the Pinheiros River, 

nutrient inflow, and pollution (Jesus 2006; Gargiulo et al. 2022). Moreover, the water 

body is affected by urban water supply demands, prevailing wind patterns, diffuse 

pollution sources, and sewage discharge from the surrounding population (Gemelgo et 

al. 2009; Amorim 2020). These interrelated factors contribute to the reservoir’s overall 

water quality dynamics and highlight the need for integrated management strategies 

to mitigate adverse environmental impacts.

The monitoring points selected for this study are strategically located 

throughout the Billings Reservoir and its sub-regions, as detailed below: BILL02030 - 

situated in the central body sub-region, approximately 15 km from the Pedreira dam; 

BILL02100 - located near the Pedreira dam and oriented towards the Bororé arm; 

BILL02500 - positioned beneath the Imigrantes Highway bridge; BILL02900 - found in 

the Capivari sub-region, adjacent to the Summit Control dam; BITQ00100: - located in 

the Taquacetuba arm within the Bororé sub-region; and RGDE02900 - situated in the 

Rio Grande Reservoir, specifically within the public water supply intake region.
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The locations of these monitoring points are illustrated in Figure 1. All monitoring 

sites are part of CETESB’s Basic Network, with BILL02900 and BITQ00100 undergoing 

automatic monitoring. Furthermore, CETESB employs a range of data collection 

methodologies, encompassing both shoreline sampling and in-water column sampling 

(CETESB 2011).

Figure 1 – Map of the Billings Reservoir illustrating the monitored points and the 

sub-regions of the drainage basin, including Central Body I, Central Body II, Bororé/

Taquacetuba, Capivari/Pedra Branca, and Rio Grande

Source: the authors (2025)

For satellite image analysis, two tools were utilized: (1) SNAP 8.0.0 software, 

developed by the European Space Agency, specifically for processing Sentinel images; 

and (2) the AlgaeMap application, implemented on Google Earth Engine (GEE), which 

offers interactive functionalities (Lobo et al. 2021). Both tools are designed to process 

Sentinel-2 satellite images, which are central to this study.

Atmospheric correction in SNAP was conducted using the Case-2 Regional Coast 

Color (C2RCC) plugin, recognized for its effectiveness in aquatic studies (Pompêo et al. 

2019). As highlighted by Pompêo et al. (2021) and Brockmann et al. (2016), the C2RCC 
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atmospheric correction method employs a neural network trained on a comprehensive 

database of reflectances and radiative simulations derived from radiative transfer models, 

specifically utilizing band B1 (443 nm). Following the processing in SNAP, the resulting 

product included the Chl-a estimated by the model outlined in Brockmann et al. (2016).

AlgaeMap, as outlined by Lobo et al. (2021), employs the Satellite Invariant 

Atmospheric Correction (SIAC) within GEE. This tool has been calibrated and validated 

using in situ data collected by the CETESB, which spans from August 2015 to November 

2020. For the SNAP analysis, satellite images were selected based on a criterion of cloud 

cover not exceeding 15%. It is important to note that no specific thresholds for cloud 

cover were identified in the existing literature. 

Consequently, a total of 37 images were processed for the period from January 

2017 to December 2021. Among these, only two Sentinel-2 images aligned with the 

CETESB data collection dates, specifically on May 22, 2019, and May 26, 2021. The 

remaining images exhibited a temporal gap of 3 to 15 days between the CETESB data 

collection and the corresponding satellite overpass.

In contrast, AlgaeMap analyzed Sentinel-2 images even when cloud cover reached 

up to 100%, thereby enabling a greater number of matches with field collection dates. 

As a result, during the same study period, AlgaeMap processed data from 209 images, 

whereas SNAP utilized less than 20% of the available images.

The interpretation of data obtained from these tools was compared against in 

situ measurements from CETESB, accessible via the InfoÁguas platform (https://cetesb.

sp.gov.br/infoaguas/), covering the period from 2017 to 2021. This comparison included 

both temporal and spatial analyses. To assess the strength and direction of the linear 

relationship between the variables, Pearson correlation was employed as the statistical 

method.

As proposed by Santos et al. (2018), a coefficient value approaching -1 or 1 

indicates a perfect negative or positive correlation, respectively. Conversely, a value of 

0 denotes no linear relationship, while intermediate values suggest varying degrees of 



Ci e Nat., Santa Maria, v. 47, spe.2, e91411, 2025

Comparative analysis of methodologies for assessing...8 |

partial correlation. To further support the interpretation of results, linear regression 

analysis was also conducted. According to Cadorin et al. (2023), a linear equation can 

be derived to predict the dependent variable based on the values of the independent 

variable.

In a related study, Amorim (2020) developed a water quality assessment project 

utilizing hydrodynamic modeling through the Delft3D software. The comparison 

between remotely sensed data and modeled outputs was viable for the monitoring 

point BILL02030, situated in the upstream region. Still, this comparison was limited 

to the period for which modeled data was available, specifically from October 2018 to 

January 2019. 

Figure 2 – Historical precipitation series based on rainfall data obtained from the 

National Institute of Meteorology (INMET) platform (https://bdmep.inmet.gov.br/). The 

data were collected from rain gauge station A771, situated in proximity to the Billings 

Reservoir

Source: the authors (2025)

For the evaluation of Chl-a, two distinct periods were analyzed: (1) the dry period, 

encompassing April to September, and (2) the rainy period, spanning October to March. 

The interpretation of results was grounded in the monthly averages for each year, with 

the objective of identifying potential monthly similarities. Historical precipitation data 
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were sourced from the National Institute of Meteorology (INMET), while average air 

temperature data for the same period were provided by CETESB.

Figure 2 illustrates the precipitation data, emphasizing the maximum rainfall 

indices across all months of the year along with the corresponding monthly averages. 

Additionally, the average air temperature data, estimated for the years 2017 to 2021, 

pertains specifically to the monitoring point RGDE02900 (CETESB).

Analysis of Figure 2 reveals that the rainy season (October to March) is 

characterized by significantly higher rainfall indices, a trend consistent with historical 

averages from 1933 to 2002. Differently, the dry season (April to September) experiences 

markedly lower precipitation levels. Additionally, the air temperature data presented 

in Figure 2 indicates that higher temperature averages, around 25ºC, are observed 

during the rainy season, aligning with the spring and summer months. Conversely, 

during the dry season, air temperatures decrease to approximately 20ºC.

3 RESULTS

The spatial variation analysis conducted using SNAP and AlgaeMap, as illustrated 

in Figure 3, revealed comparable results during the dry period. While the initial 

comparison on May 21, 2020, indicated spatial similarities between the two tools, a more 

detailed examination uncovered significant quantitative discrepancies. For instance, 

at the Taquacetuba arm (BITQ00100), AlgaeMap recorded a Chl-a concentration of 

71.5 µg/l, whereas SNAP reported only 8.2 µg/l. Similarly, on May 26, 2020, AlgaeMap 

indicated 96.4 µg/l for the same monitoring point, compared to SNAP’s 52.1 µg/l. These 

findings suggest that the discrepancies in Chl-a values between the two tools do not 

follow a consistent pattern.

It is important to note that there were no CETESB measurements available for 

May 21 and May 26, 2020. The closest available measurement was taken on March 5, 

2020, which recorded a Chl-a of 55.24 µg/l. While this value aligns more closely with 

the SNAP data from May 26, it remains unreliable due to the nearly three-month gap. 
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Without direct measurements during the corresponding dates, it is difficult to validate 

the remote sensing data.

Conversely, the measurement closest to AlgaeMap’s data was taken on March 

7, 2020, which indicated a Chl-a concentration of 30.11 µg/l. This value closely 

approximates the CETESB measurement but still demonstrates a significant difference. 

Additionally, SNAP did not process any images during March 2020, which means a 

direct comparison between the satellite imagery and CETESB measurements for that 

month was not possible.

Figure 3 – Spatial comparison of Chl-a concentrations during the dry period 

between SNAP (left) and AlgaeMap (right) on May 21, 2020. The colored areas indicate 

varying concentrations, measured in µg/l, across the Billings Reservoir

Source: the authors (2025)

Upon analyzing the daily data point by point, it was observed that the central 

body sub-region, particularly the monitoring point BILL02030, exhibited the greatest 

differences in Chl-a. In contrast, the points BILL02500, BILL02900, and RGDE02900 

showed SNAP values that were closer to those recorded by AlgaeMap. On May 21, 

2020, for instance, the point BILL02500 displayed remarkably similar Chl-a levels, with 

AlgaeMap reporting 23.2 µg/l and SNAP recording 22.5 µg/l.

Similarly, in the Rio Grande reservoir (RGDE02900), the Chl-a values remained 

close for both methodologies, with SNAP indicating 19.2 µg/l and AlgaeMap showing 

14.0 µg/l. This suggests that the central monitoring points obtained through SNAP 
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exhibited a stronger correlation with AlgaeMap compared to the points located at the 

edges of the reservoir.

This quantitative analysis reinforces the spatial interpretation illustrated in 

Figure 3, where both AlgaeMap and SNAP yielded similar results in the central region 

of the reservoir. In the Rio Grande Reservoir, the data from both tools indicated that 

Chl-a concentrations are lower in the upstream region and progressively increase 

downstream, as shown in the same figure.

In the analysis of spatial variation during the rainy period, represented by Figure 

4 from January 27, 2019, it was noted that AlgaeMap reported higher Chl-a values at 

the headwaters compared to SNAP. Specifically, at the monitoring point BILL02030, 

located in the upstream region, AlgaeMap recorded a Chl-a of 374.6 µg/l, while SNAP 

indicated a value of 265.7 µg/l on the same date. However, the closest measurement 

conducted by CETESB was on January 22, 2019—just five days prior to the modeled 

data—where it recorded a significantly higher value of 574.7 µg/l. 

This measurement is notably above both the remote sensing data and the 

modeled value from Delft3D, which was only 49.9 µg/l at that point. The observed 

decrease in Chl-a values from CETESB to the remote sensing and modelling data may be 

attributed to several factors, such as temporal variations in algal blooms or differences 

in measurement techniques and timing (Pompêo et al. 2021; Gurski et al. 2021).

When examining the monitoring point BILL02500, located in the central body of 

the reservoir, the Chl-a values obtained from both tools were quite similar during the 

rainy period, mirroring the consistency observed in the dry period. AlgaeMap recorded 

a Chl-a concentration of 52.4 µg/l, while SNAP indicated a value of 49.2 µg/l. 

Contrarily, the measurement taken by CETESB at this monitoring point was 

significantly lower, at just 16.04 µg/l, suggesting that the remote sensing data may have 

overestimated the Chl-a compared to field measurements. Additionally, no Delft3D 

model data was extracted for this point, which hindered the ability to compare the 

remote sensing results with hydrodynamic modeling.
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Figure 4 – Spatial comparison of Chl-a concentrations during the rainy period on January 

27, 2019, illustrating the results from Delft3D (left), SNAP (middle), and AlgaeMap (right). 

The colored areas indicate varying concentrations in µg/l across the Billings Reservoir

Source: the authors (2025)

From Figure 4, it is evident that in the headwater region, all three methodologies 

(Delft3D, SNAP, and AlgaeMap) displayed similar trends, with elevated Chl-a levels. 

Alternatively, the Taquacetuba arm recorded lower Chl-a in Delft3D compared to the 

remote sensing tools. But, in the upstream region of the Rio Grande Reservoir, Delft3D 

and AlgaeMap yielded comparable results. Notably, at the location of point BILL02900, 

Delft3D indicated Chl-a values around zero, rendering a comparison with satellite 

images unfeasible. In this instance, SNAP and AlgaeMap produced similar values.

In evaluating the tools SNAP, AlgaeMap, and Delft3D alongside precipitation data, 

it was observed that during the dry months, characterized by low rainfall, there was a 

corresponding decrease in Chl-a levels. For instance, in June 2018, which recorded 40.2 

mm of rain, the monthly average Chl-a concentration was 39 µg/l according to SNAP, 

while AlgaeMap reported a slightly higher value of 50 µg/l. Conversely, an increase in 

precipitation was associated with a rise in Chl-a levels.

Additionally, the analysis of the last three months of the evaluated period 

(November 2018, December 2018, and January 2019) revealed that November 

exhibited the closest agreement, with an average monthly concordance of 2.15% 

between AlgaeMap and CETESB, making it the best match among the three months. 

In December, the agreement rate between the remote sensing tools and the modeled 

data increased to 10.84%. 
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However, in January 2019, a significant discrepancy emerged, with Delft3D 

reporting a Chl-a of 49.9 µg/l while AlgaeMap indicated a much higher value of 257.8 

µg/l. When comparing SNAP and Delft3D for January, the proximity rate was 67.13%, 

indicating a substantial difference between the modeled and orbital data.

In the analysis of the monthly averages for the RGDE02900 monitoring point 

(Figure 5), it was noted that, on the other hand to the upstream points in the Billings 

Reservoir, which exhibited Chl-a exceeding 100 µg/l, the Chl-a values in the Rio Grande 

Reservoir remained below 30 µg/l. Furthermore, the Pearson correlation analysis for 

this monitoring point indicated a moderate correlation between SNAP and AlgaeMap, 

yielding a coefficient of 0.46.

Figure 5 – Monthly average Chl-a concentrations at monitoring point RGDE02900, 

located at the water intake, from 2017 to 2021

Source: the authors (2025)

Additionally, a moderate negative correlation was observed between the orbital 

data and the field measurements. Notably, the correlation between AlgaeMap and 

CETESB (-0.21) was stronger than that between SNAP and CETESB (-0.05). Figure 5 

further illustrates that, generally, during the dry period, remote sensing tools tend to 

underestimate in situ data, whereas in the rainy period, they tend to overestimate field 
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data. Nonetheless, it’s important to highlight that in some months of the rainy season, 

field data were not collected, which limits the ability to confirm whether remote sensing 

consistently overestimates in situ measurements throughout all months.

Figure 6 presents the boxplot results for two monitoring points in the central 

body sub-region of the Billings Reservoir, identified as BILL02030 and BILL02100. When 

analyzing the point BILL02030 during the dry period, it was noted that the medians for 

SNAP and CETESB were relatively close. However, the Pearson correlation between 

these two tools was low, at 0.26. In contrast, during the rainy period, the median value of 

AlgaeMap was closer to that of CETESB, resulting in a higher Pearson correlation of 0.64

Regarding the monitoring point BILL02100, during the dry period, the median value 

from AlgaeMap was closer to that of CETESB, with a correlation of 0.52 between the two. 

In the rainy period, both the median and mean values of AlgaeMap approached those 

of CETESB, resulting in a correlation of 0.61. Analyzing the correlation matrices across all 

monitoring points, it was observed that relationships exceeding 0.70 occurred during the 

dry period. Specifically, for BILL02030, the correlation between AlgaeMap and SNAP was 

0.75, while for BILL02100, the correlation between SNAP and CETESB reached 0.88.

Figure 6 – Boxplot comparing SNAP, AlgaeMap, and CETESB methodologies during the 

dry and rainy periods for monitoring points BILL02030 and BILL02100, covering the 

years 2017 to 2021

Source: the authors (2025)



Ci e Nat., Santa Maria, v. 47, spe. 2, e91411, 2025

Ferreira, B. C, Bleninger, T., Ishikawa, M., Jesus, J. A. de, & Amorim, L. |15

When analyzing two additional monitoring points—one in the Taquacetuba 

sub-region (BIT00100) and another in the Capivari sub-region (BILL02500)—it was 

found that during the dry period, the median Chl-a reported by CETESB at BIT00100 

was lower than that of AlgaeMap. The Pearson correlation coefficients for this period 

were weak: 0.27 for the relationship between AlgaeMap and CETESB, and 0.29 for 

SNAP and CETESB.

In opposition, at BILL02500 during the dry period, the median and mean Chl-a 

values for AlgaeMap and CETESB were similar, resulting in a Pearson correlation of 

0.61. During the rainy period, CETESB’s mean value exceeded that of AlgaeMap, causing 

the correlation to drop to 0.12. Notably, the strongest correlations between the two 

remote sensing tools were observed at BILL02500 in both periods, with values of 0.72 

in the dry period and 0.78 in the rainy period.

Figure 7 illustrates the monitoring points in Capivari (BILL02900) and the Reservoir 

Rio Grande (RGDE02900). Analyzing BILL02900 individually, it was found that during 

the dry period, the median and mean Chl-a values for AlgaeMap and CETESB were very 

similar, resulting in a Pearson correlation of 0.47. Conversely, during the rainy period, 

AlgaeMap’s median was higher than that of CETESB, leading to a correlation of -0.50.

For the monitoring point RGDE02900, both the median and mean values of Chl-a 

from AlgaeMap and CETESB were similar during the dry period. SNAP also displayed 

mean and median values close to those of CETESB. The Pearson correlation for this 

period revealed a weak correlation in magnitude, with AlgaeMap and CETESB at -0.004, 

indicating a relationship closer to zero.

During the rainy period for RGDE02900, the mean and median values of Chl-a 

from AlgaeMap and SNAP were similar, with a Pearson correlation of -0.17 between 

the two remote sensing tools. However, separate analyses revealed that AlgaeMap 

and CETESB exhibited a correlation of -0.42, while SNAP and CETESB demonstrated a 

strong correlation of 0.96.
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Figure 7 – Boxplot comparing Chl-a values during dry and rainy periods across different 

methodologies (SNAP, AlgaeMap, and CETESB) for monitoring points BILL02900 and 

RGDE02900 from 2017 to 2021

Source: the authors (2025)

The Pearson correlation analysis, encompassing all monitoring points and dates 

evaluated, is presented in Figure 8. The results indicate a moderate positive correlation 

between AlgaeMap and SNAP during the rainy period, suggesting a significant 

association between these two variables. This finding implies that as AlgaeMap values 

increase, SNAP values also tend to rise, and vice versa, though the relationship is not 

perfectly linear. Conversely, the correlation between AlgaeMap and CETESB was found 

to be virtually zero (-0.03), indicating a lack of linear relationship between these two 

variables during the rainy period.

Furthermore, Figure 8 illustrates the correlation behavior during the dry period, 

revealing distinct patterns among the AlgaeMap, SNAP, and CETESB variables compared 

to the rainy period. While the correlation between AlgaeMap and SNAP remains 

positive, indicating some level of association, its magnitude significantly decreases to 

0.30, suggesting a less robust relationship during the dry period. 

In contrast, the correlation between SNAP and CETESB increases substantially to 

0.63, indicating a strong positive association between these variables. The correlation 
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between AlgaeMap and CETESB remains close to zero, reflecting an absence of a linear 

relationship during the dry period, consistent with the findings from the rainy period.

Figure 8 – Pearson correlation analysis for all monitoring points across the three 

methodologies: SNAP, AlgaeMap, and CETESB during the years 2017 to 2021. The left 

side displays correlations for the dry season, while the right side illustrates correlations 

for the rainy season

Source: the authors (2025)

In the linear regression analysis between SNAP and CETESB, as illustrated in 

Figure 9, the coefficient of determination (R²) was found to be 0.36 for the dry period. 

In comparison, the linear regression between AlgaeMap and CETESB yielded an R² of 

0.25 for the same timeframe. 

Notably, a closer examination revealed that both SNAP and AlgaeMap data were 

more aligned with CETESB values when Chl-a were limited to 100 µg/l. Based on this 

observation, data points with Chl-a values exceeding this threshold were excluded to 

better evaluate the relationship between the datasets under this condition.

After applying this exclusion, the analysis in Figure 9 (right side) revealed 

that the R² for SNAP increased to 0.71, while the R² for AlgaeMap rose to 0.75 in 

relation to CETESB data. This adjustment demonstrated a significant enhancement 
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in the correlation between Chl-a values obtained through SNAP and AlgaeMap when 

considering only data below 100 µg/l.

Figure 9 – Linear regression analysis for the dry period (April to September) comparing 

SNAP and CETESB, as well as AlgaeMap and CETESB, across all monitoring points from 

2017 to 2021. Left: All data. Right: Data limited to Chl-a values up to 100 µg/l

Source: the authors (2025)

Figure 10 – Linear regression analysis for the wet period (October to March) comparing 

SNAP versus CETESB and AlgaeMap versus CETESB across all monitoring points from 

2017 to 2021. The left side displays results using all data, while the right side focuses 

on data with Chl-a values up to 100 µg/l

Source: the authors (2025)
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Figure 10 presents the results for the wet period. Analyzing data from all 

monitoring points, the coefficient of determination for the correlation between SNAP 

and CETESB was 0.54, while for AlgaeMap and CETESB, it was 0.58. Both correlations 

indicate a moderate relationship, suggesting that while the results are associated, they 

are not strongly interlinked.

Applying the 100 µg/l Chl-a restriction revealed that SNAP exhibited a weaker 

relationship with CETESB, yielding an R² of 0.50, while AlgaeMap showed a stronger 

association with an R² of 0.69. Thus, during the wet period, AlgaeMap provided better 

results under this Chl-a limit, whereas SNAP showed minimal change.

Figure 11 – Linear regression analysis comparing SNAP and AlgaeMap methodologies 

across all monitoring points from 2017 to 2021. Left side: All data. Right side: Data 

limited to chlorophyll-a concentrations up to 100 µg/l

Source: the authors (2025)

Figure 11 shows the linear relationship between the two remote sensing 

tools (SNAP and AlgaeMap), as both use the same satellite to assess chlorophyll-a 

concentration. Analysis of all monitoring points reveals that the relationship between 

AlgaeMap and SNAP had a coefficient of determination of 0.46, indicating a weak 

relationship between the variables.
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When restricting the chlorophyll-a value to 100 µg/l, the relationship between 

SNAP and AlgaeMap improved, yielding a coefficient of determination of 0.64 across 

all monitoring points. This increase in R² indicates a more robust association between 

the two tools when evaluating specific chlorophyll-a concentrations, offering a more 

accurate perspective on the relationship between SNAP and AlgaeMap under these 

restricted conditions.

3 CONCLUSIONS

The processing capabilities of SNAP are heavily dependent on the availability of 

cloud-free images, leading to notable discrepancies in the volume of data processed 

compared to AlgaeMap, which utilizes all images captured within a 5-day recurrence 

interval (Lobo et al. 2021). While both analyses reveal moderate correlations between 

variations, the limited number of observations available for SNAP may influence the 

reliability of the results.

Although both SNAP and AlgaeMap utilize the same satellite, AlgaeMap—calibrated 

with CETESB data—showed a closer alignment with actual field measurements. On the 

other hand, SNAP has demonstrated its ability to operate effectively without field data 

for calibration when using the C2RCC methodology. However, the lack of available field 

data during certain months significantly affected the evaluation of the relationship 

between remote sensing and in situ measurements over the entire study period.

The monitoring point RGDE02900 demonstrated the strongest relationship 

between the remote sensing methodologies. According to Jesus (2006), the construction 

of the Anchieta Dam in 1982 separated the Rio Grande Reservoir from the Billings 

Reservoir to facilitate the capture of raw water for the water treatment station. In the 

Rio Grande, algicides are employed to inhibit algal growth (Jesus 2006), which explains 

why chlorophyll-a levels at RGDE02900 consistently remain below 30 µg/l, while levels 

in the Billings headwaters region exceed 100 µg/l.
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The Taquacetuba arm (BITQ00100) demonstrated a less consistent relationship. 

Notably, the C2RCC atmospheric correction exhibited failures for high Chl-a, particularly 

in the headwater’s region of the reservoir during the rainy season. These inconsistencies 

may be attributed to environmental and temporal conditions that cause variations in 

Chl-a levels. 

If the model does not adequately account for these fluctuations, its predictions 

may be compromised. Furthermore, changes in water quality—such as the presence 

of other substances that affect light absorption—can also influence Chl-a detection, 

potentially leading to failures in the neural network model (Pompêo et al. 2019).

The failures in the SNAP methodology led to insufficient data in the upstream 

region of the reservoir, which directly impacted data collection at the BILL02030 

monitoring point. Moreover, the proximity of the BITQ00100 monitoring point to the 

reservoir’s edge may have influenced the average pixel values in SNAP. This proximity 

could result in the inclusion of edge pixels, which may have further affected the SNAP 

results and contributed to the observed discrepancies.

Interpreting the correlation between the methodologies SNAP, AlgaeMap, 

Delft3D, and CETESB proved challenging due to the limited data and the relatively 

short study period (October 2018 to January 2019), which encompassed only the rainy 

season. Nevertheless, the results for AlgaeMap, Delft3D, and CETESB were generally 

consistent during the evaluated months. An exception occurred in January 2019, when 

the mathematical model reported Chl-a levels that were lower than those observed in 

the field and detected by remote sensing.

Linear regression analyses across all monitoring points revealed that SNAP results 

were more closely aligned with CETESB during the dry period, similar to AlgaeMap’s 

alignment with CETESB. The correlations among SNAP, AlgaeMap, and CETESB data 

exhibited varied associations. Notably, a strong correlation was observed between 

SNAP and CETESB during the dry period; but, the relationship between AlgaeMap and 

CETESB was even stronger during the same timeframe, underscoring the necessity 
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for a more refined approach in using SNAP. Additionally, applying specific Chl-a limits 

significantly improved the agreement between the two tools.

Analysis of the relationship between precipitation and Chl-a revealed that during 

the rainy periods (summer), there is a notable increase in Chl-a levels, indicating a 

higher presence of phytoplankton. This phenomenon has been documented in studies 

by Machado and Baptista (2016) and Arraut et al. (2005). Furthermore, the rise in 

surface water temperature during the summer, coupled with the influx of nutrients 

and organic matter due to increased rainfall, significantly contributes to the elevation 

of Chl-a concentrations, as highlighted by Amorim (2020).

Analysis of the relationship between precipitation and Chl-a revealed that, 

during the rainy periods (summer), there is a higher concentration of Chl-a, indicating 

increased phytoplankton presence, as addressed in studies by Machado and Baptista 

(2016) and Arraut et al. (2005). Additionally, the increase in surface water temperature 

during summer and the influx of nutrients and organic matter related to increased 

rainfall result in a significant rise in Chl-a, as stated by Amorim (2020).

In conclusion, remote sensing methodologies, whether through AlgaeMap or 

SNAP, have demonstrated effectiveness in assessing Chl-a in the Billings Reservoir, 

offering valuable information for watershed management. The observed variations 

in correlations emphasize the significant impact of seasonal factors and highlight the 

necessity for tailored approaches that consider the specific characteristics of different 

periods, monitoring points, and methodologies.
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