

CIÊNCIAº NATURA

Ci. e Nat., Santa Maria, v. 47, esp. 1, e90697, 2025• https://doi.org/10.5902/2179460X90697 Submissão: 27/01/25 • Aprovação: 30/01/25 • Publicação: 24/02/25

IV Jornada de Matematica e Matematica aplicada UFSM

Folheações do espaço hiperbólico \mathbb{H}^3 por superfícies mínimas

Foliations of the hyperbolic space \mathbb{H}^3 by minimal surfaces

Matheus Pimentel Gomes 100

RESUMO

Neste trabalho, apresentamos duas folheações do espaço hiperbólico por superfícies mínimas. Em cada uma dessas folheações, as folhas são todas invariantes pelo fluxo de um campo de Killing. Na primeira, o campo de Killing é do tipo parabólico, e na segunda, do tipo hiperbólico.

Palavras-chave: Superfícies mínimas; Espaço hiperbólico; Folheação

ABSTRACT

In this work, we present two foliations of the hyperbolic space by minimal surfaces. In each of these foliations, the leaves are invariant under the flux of a Killing field. In the first, the Killing field is of parabolic type, and in the second is of hyperbolic type.

Keywords: Minimal surfaces; Hyperbolic space; Foliation

1 INTRODUÇÃO

O problema de encontrar folheações de uma variedade, que, a grosso modo, é uma maneira de decompô-la em subvariedades disjuntas chamadas de folhas, movimenta as pesquisas em matemática há algum tempo. Por exemplo, uma folheação do \mathbb{R}^3 são os planos paralelos $\{z=t\}_{t\in\mathbb{R}}$, que são disjuntos e sua união é todo o \mathbb{R}^3 . Em especial, quando se trata de uma variedade riemanniana, podemos investigar que propriedades geométricas cada folha da folheação possui.

Em \mathbb{R}^3 , o problema de classificar os tipos de folheações por superfícies de curvatura média constante (cmc) foi completamente resolvido por Meeks (1988). O autor provou que qualquer folheação do \mathbb{R}^3 por superfícies cmc é uma folheação por planos paralelos. Além disso, Sampaio & Silva (2024) provaram que uma folheação do \mathbb{R}^n por superfícies cmc é, necessariamente, uma folheação por superfícies mínimas.

Nesse sentido, em se tratando do espaço hiperbólico \mathbb{H}^3 (a variedade riemanniana, simplesmente conexa, de dimensão 3 e com curvatura seccional constante igual a -1), Barbosa et al. (1987) provam que se uma folheação do \mathbb{H}^3 é constituída por folhas com curvatura média constante H satisfazendo $H \geq 1$, então as folhas são horoesferas.

Dizemos que uma superfície S é invariante pela ação de um grupo G se G(S) = S. Mostra-se que os campos de Killing de uma variedade estão relacionados com as superfícies invariantes por um subgrupo do grupo das isometrias dessa variedade, pois a cada campo de Killing definido numa variedade completa M, é possível associar um grupo G agindo em M. No caso do \mathbb{H}^3 , os tipos de campos de Killing são conhecidos. Fornari & Ripoll (2004) apresentam uma prova da classificação dos campos de Killing, a menos de conjugação, em 4 tipos: rotacionais, parabólicos, hiperbólicos e helicoidais.

Neste trabalho, estamos interessados em folheações do \mathbb{H}^3 por superfícies mínimas, ou seja, que têm curvatura média constante H igual a zero, e que são invariantes pela ação de um subgrupo a 1-parâmetro do grupo de isometrias do \mathbb{H}^3 . Mais precisamente, estamos interessados no caso em que a ação do subgrupo é oriunda de um campo de Killing que é ou parabólico ou hiperbólico. Assim, provamos os seguintes teoremas.

Teorema 1.1. Seja X um campo de Killing parabólico em \mathbb{H}^3 . Seja G o subgrupo a 1-parâmetro de $Iso(\mathbb{H}^3)$ associado a X. Então, dada uma totalmente geodésica $\mathbb{H}^2 \subset \mathbb{H}^3$

ortogonal a X, existe uma família a 1-parâmetro de superfícies mínimas mergulhadas em \mathbb{H}^3 que são perpendiculares a \mathbb{H}^2 , são invariantes pela ação de G e folheiam \mathbb{H}^3 .

Teorema 1.2. Seja Y um campo de Killing hiperbólico em \mathbb{H}^3 . Seja G o subgrupo a 1-parâmetro de $Iso(\mathbb{H}^3)$ associado a Y. Então, dada uma totalmente geodésica $\mathbb{H}^2 \subset \mathbb{H}^3$ ortogonal a Y, existe uma família a 1-parâmetro de superfícies mínimas mergulhadas em \mathbb{H}^3 que são perpendiculares a \mathbb{H}^2 , são invariantes pela ação de G e folheiam \mathbb{H}^3 .

Neste trabalho, as superfícies que provamos que folheiam o \mathbb{H}^3 são conhecidas, a sua existência foi provada no artigo de Carmo & Dajczer (1983). No entanto, o fato de folhearem o espaço não havia sido provado naquele momento. Além disso, apresentamos uma maneira distinta da que foi feita por Carmo & Dajczer (1983) para a obtenção dessas superfícies. Enquanto eles utilizaram o modelo do hiperboloide para \mathbb{H}^3 , nós utilizamos o modelo do semiespaço superior.

No que segue, abordaremos com um pouco mais de detalhes o que é necessário para chegar ao Teorema 1.1 e ao Teorema 1.2.

2 CAMPOS DE KILLING E ISOMETRIAS ASSOCIADAS

Considere M uma variedade riemanniana e X um campo de vetores em M. É um fato conhecido da teoria das equações diferenciais ordinárias que dado $p \in M$, existem $U \subset M$ vizinhança de p e $\phi: (-\varepsilon, \varepsilon) \times U \to M$ uma aplicação diferenciável tais que, para todo $q \in U$, a curva $t \mapsto \phi(t,q) =: \phi_t(q)$ é a trajetória de X passando por q em t=0. A família $\{\phi_t\}_{t\in (-\varepsilon\varepsilon)}$ é chamada de fluxo.

Definição 2.1. Dizemos que X é um campo de Killing se, para todo $t_0 \in (-\varepsilon, \varepsilon)$ a aplicação $\phi_{t_0}: U \subset M \to M$ é uma isometria.

Note que, não necessariamente, o fluxo está definido para todo t. No entanto, pode-se mostrar que, quando a variedade é completa, o fluxo fica definido para todo t. Além disso, um cálculo direto mostra que $\phi_t \big(\phi_s(q) \big) = \phi_{t+s}(q)$. Assim, se considerarmos M uma variedade completa e $(\mathbb{R},+)$ o grupo aditivo, podemos definir uma aplicação $F: (\mathbb{R},+) \to (Iso(M),\circ)$ por $F(t)=\phi_t$. Com isso, a aplicação F é um homomorfismo de grupos. Logo, o conjunto $\{\phi_t; t\in \mathbb{R}\}$ forma um subgrupo a 1-parâmetro do grupo Iso(M). Ainda, como cada campo de Killing X associa uma tal aplicação F como acima, podemos nos referir a $\{\phi_t\}_{t\in\mathbb{R}}$ como o subgrupo a 1-parâmetro associado a X.

Agora, o desenvolvimento feito acima pode ser feito em \mathbb{H}^3 , já que esta é uma variedade completa. Mais ainda, existe uma classificação dos campos de Killing em \mathbb{H}^3 , a menos de conjugação, em 4 tipos: rotacionais, parabólicos, hiperbólicos e helicoidais. Para uma prova dessa classificação, ver Fornari & Ripoll (2004). Com isso, podemos investigar quando uma determinada superfície é invariante pela ação de um desses subgrupos.

Além de apresentar as famílias de superfícies mínimas invariantes pelos grupos associados aos campos de Killing parabólico e hiperbólico, também mostramos que tais famílias produzem uma folheação do espaço hiperbólico.

3 SUPERFÍCIES INVARIANTES

Definição 3.1. Seja Σ uma superfície em \mathbb{H}^3 . Dizemos que Σ é uma superfície parabólica (hiperbólica) se ela é invariante pela ação de G, onde G é o subgrupo a 1-parâmetro de isometrias associado ao campo de Killing parabólico (hiperbólico).

As superfícies mínimas invariantes foram calculadas utilizando o modelo do semiespaço superior para \mathbb{H}^3 , isto é, $\mathbb{H}^3:=\{(x,y,z)\in\mathbb{R}^3;z>0\}$ com a métrica riemanniana:

$$ds^2 = \frac{dx^2 + dy^2 + dz^2}{z^2}.$$

Sejam $N\subset \mathbb{H}^3$ uma totalmente geodésica e X um campo de Killing ortogonal a N. Dada α uma curva em N, com $|\alpha'|\equiv 1$, e seja Σ a superfície gerada pelo fluxo associado a X através dos pontos de α . Assim, Σ é mínima se e somente se sua curvatura média H for igual a zero. Logo, temos:

$$-2H = \langle \nabla_{\alpha'} \alpha', \eta \rangle + \left\langle \nabla_{\frac{X}{|X|}} \frac{X}{|X|}, \eta \right\rangle = 0, \tag{1}$$

onde η é ortogonal a Σ e $|\eta| \equiv 1$.

No que segue, vamos investigar essa equação em coordenadas, para os casos em que X é parabólico ou hiperbólico.

Seja $\{(x,y,z)\in\mathbb{H}^3\;;\;y=0\}=:\mathbb{H}^2\subset\mathbb{H}^3$ uma totalmente geodésica. Observe que o campo de vetores X definido por $X(p):=\frac{\partial}{\partial y}(p)$ é um campo de Killing parabólico em \mathbb{H}^3 .

Suponha que $\alpha(t)=\big(x(t),0,z(t)\big)$. Assim, se $|\alpha'|=1 \forall t\in\mathbb{R}$, temos que a equação (1) em coordenadas, leva ao sistema:

$$\begin{cases} (x''z' - z''x')z - 2x'z^2 = 0\\ x'^2 + z'^2 = z^2. \end{cases}$$
 (2)

Portanto, se tivermos funções $x: \mathbb{R} \to \mathbb{R}$ e $z: \mathbb{R} \to \mathbb{R}^+$ que satisfazem o sistema (2), então podemos construir uma superfície mínima parabólica Σ a partir de α .

Proposição 3.2. Dada uma totalmente geodésica $\mathbb{H}^2 \subset \mathbb{H}^3$, existe uma família a 1-parâmetro de superfícies mínimas parabólicas $\{\Sigma_k\}_{k>0}$ tal que Σ_k é ortogonal a \mathbb{H}^2 .

Prova.

Podemos assumir, sem perda de generalidade, $\mathbb{H}^2:=\mathbb{H}^3\cap\{y=0\}$. Defina um aplicação u_k por:

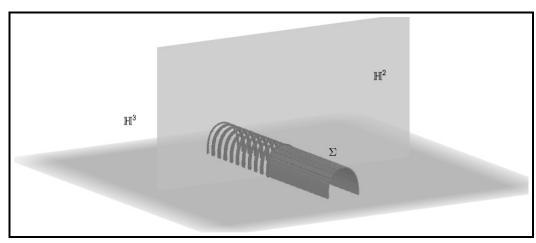
$$u_k : \mathbb{R} \times \mathbb{R} \to \mathbb{H}^3$$

$$(s,t) \mapsto \left(\frac{1}{\sqrt{k}} \int_0^t \left(\operatorname{sech}(2v)\right)^{\frac{3}{2}} dv, s, \frac{1}{\sqrt{k}} \left(\operatorname{sech}(2t)\right)^{\frac{1}{2}}\right).$$

Seja Σ_k a imagem de u_k . Observe que, se s=0 então $t\mapsto u_k(0,t)$ é uma curva em $\mathbb{H}^2\subset\mathbb{H}^3$ que satisfaz o sistema (2). Portanto, Σ_k é uma superfície mínima parabólica.

Agora, como temos explicitamente a parametrização para Σ_k , podemos mostrar essa superfície em \mathbb{H}^3 .

Figura 1 – Superfície mínima parabólica Σ



Fonte: autores (2025)

Lema 3.3. A família de curvas $\{\alpha_k\}_{k>0}$, onde $\alpha_k(t) := u_k(0,t)$ e u_k é como na Proposição 3.2, folheia \mathbb{H}^2 .

Prova.

Defina a aplicação $F: \mathbb{R} \times (0, +\infty) \to \mathbb{R} \times (0, +\infty)$ por:

$$F(t,k) = \left(\frac{1}{\sqrt{k}} \int_0^t \left(\operatorname{sech}(2v)\right)^{\frac{3}{2}} dv, \frac{1}{\sqrt{k}} \left(\operatorname{sech}(2t)\right)^{\frac{1}{2}}\right).$$

Tudo o que precisamos fazer é mostrar que F é um difeomorfismo global. Fazendo isso, para cada k, $t \to F(t,k)$ é uma folha da folheação, o que significa que F folheia \mathbb{H}^2 .

Defina a curva $F_1(t)=F(t,1)$. Com isso, para cada $k_0\in(0,+\infty)$, $F_{k_0}(t)$ é uma homotetia da curva $F_1(t)$. Dado $p\in\mathbb{H}^2$, considere a reta que conecta p com a origem. Esta reta deve tocar a curva $F_1(t)$ em algum ponto p'. Portanto, podemos escolher a homotetia que leva p' a p. Assim, temos uma curva da família passando pelo ponto p. Portanto, F é uma aplicação sobrejetiva.

Observe que F é diferenciável. Então, para mostrar que F é um difeomorfismo global, vamos provar $\det \left(DF(t,k)\right) \neq 0$ para cada k e t no domínio. De fato, podemos calcular DF(t,k):

$$DF(t,k) = \begin{pmatrix} \frac{1}{\sqrt{k}} \left(\operatorname{sech}(2t) \right)^{\frac{3}{2}} & -\frac{1}{2\sqrt{k}} \int_0^t \left(\operatorname{sech}(2v) \right)^{\frac{3}{2}} dv \\ -\frac{1}{\sqrt{k} \left(\operatorname{sech}(2t) \right)^{\frac{1}{2}}} \tanh(2t) & -\frac{1}{2\sqrt{k}} \left(\operatorname{sech}(2t) \right)^{\frac{1}{2}} \end{pmatrix}.$$

Segue que

$$\det \left(DF(t,k)\right) = \frac{1}{2k} \left(\left(\operatorname{sech}(2t)\right)^{\frac{1}{2}} \tanh(2t) \int_0^t \left(\operatorname{sech}(2v)\right)^{\frac{3}{2}} dv + \left(\operatorname{sech}(2t)\right)^2 \right).$$

Portanto, $\det(DF(t,k)) > 0$ para cada $k \in t$ no domínio.

Assim, o Lema 3.3 prova que podemos folhear o \mathbb{H}^2 . Já que cada Σ_k está associado a uma única curva desta família, podemos obter uma folheação do \mathbb{H}^3 .

Proposição 3.4. *A família* $\{\Sigma_k\}_{k>0}$ *dada por 3.2 folheia o* \mathbb{H}^3 .

Prova. Seja $J: \mathbb{R} \times \mathbb{R} \times (0, +\infty) \to \mathbb{R} \times \mathbb{R} \times (0, +\infty)$ a aplicação dada por J(s, t, k) = (s, F(t, k)), onde F é aquela obtida no Lema 3.3. Então, J é um difeomorfismo global. Portanto, $\{\Sigma_k\}_{k>0}$ folheia \mathbb{H}^3 .

Com isso, acabamos de provar o Teorema 1.1 enunciado na introdução.

3.2 Superfícies mínimas hiperbólicas

Aqui, para obter superfícies invariantes, usamos as coordenadas esféricas em \mathbb{H}^3 , dadas por:

$$\psi(\theta, \phi, r) = (r \cos \phi \sin \theta, r \sin \phi \sin \theta, r \cos \theta),$$

com $\theta \in (0, \pi/2)$, $\phi \in (-\pi/2, \pi/2)$ e r > 0. Agora, observe que para cada r fixo temos uma totalmente geodésica, $\mathbb{H}^2 \subset \mathbb{H}^3$. Além disso, tal \mathbb{H}^2 é ortogonal ao campo de Killing hiperbólico Y dado por Y(p) = p. Então, fixamos r = 1.

Queremos encontrar uma curva $\alpha:\mathbb{R}\to\mathbb{H}^2$, que em coordenadas é dada por $\alpha(t)=\left(\cos\phi(t)\sin\theta(t),\sin\phi(t)\sin\theta(t),\cos\theta(t)\right)$ tal que o fluxo de Y através de cada um dos seus pontos gere uma superfície mínima $\Sigma\subset\mathbb{H}^3$. Assim, escrevendo a equação (1) nessas coordenadas, obtemos o seguinte sistema de EDO's:

$$\begin{cases} (\theta''\phi' - \phi''\theta')\sin(\theta) - \phi'\cos(\theta)(\theta'^2 + \sin^2(\theta) + 1) = 0\\ \theta'^2 + \phi'^2\sin^2(\theta) = \cos^2(\theta) \end{cases}$$
(3)

primeira linha para obter:

É conveniente apresentar uma versão mais simples do sistema (3). Para isso, calculamos a derivada da segunda linha em relação a t e então usamos isso na

$$\begin{cases} \frac{\partial \phi_k}{\partial t}(t) = k \cot^2 \theta_k(t) \cos \theta_k(t) \\ \frac{\partial \theta_k}{\partial t}(t) = \cos \theta_k(t) \sqrt{1 - k^2 \cot^2 \theta_k(t) \cos^2 \theta_k(t)}. \end{cases}$$
(4)

Proposição 3.5. Dada uma totalmente geodésica $\mathbb{H}^2 \subset \mathbb{H}^3$, existe uma família a 1-parâmetro de superfícies mínimas hiperbólicas $\{\Sigma_k\}_{k>0}$ tal que Σ_k é ortogonal a \mathbb{H}^2 .

Prova.

Podemos assumir, sem perda de generalidade, $\mathbb{H}^2:=Im\Big(\psiig|_{r=1}\Big).$ Defina uma aplicação u_k por:

$$u_k: (0, +\infty) \times \mathbb{R} \to \mathbb{H}^3$$

 $(s, t) \mapsto (s \cos \phi_k(t) \sin \theta_k(t), s \sin \phi_k(t) \sin \theta_k(t), s \cos \theta_k(t)),$

onde

$$\theta_k(t) = \arctan\left(\sqrt{\frac{z_k(t) - 1}{2}}\right)$$

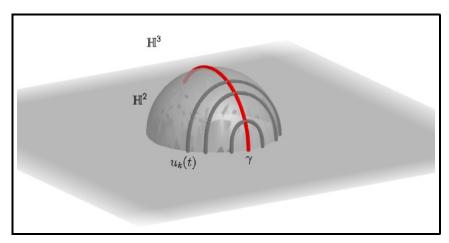
е

$$\phi_k(t) = \int_0^t \frac{2k\sqrt{2}}{(z_k(s) - 1)\sqrt{z_k(s) + 1}} ds,$$

com $z_k(t)=\sqrt{4k^2+1}\cosh(2t)$. Seja Σ_k a imagem de u_k . Observe que se s=1 então $u_k(1,t)$ é uma curva em $\mathbb{H}^2\subset\mathbb{H}^3$ com as funções θ_k e ϕ_k satisfazendo o sistema (3). Portanto, Σ_k é uma superfície mínima hiperbólica.

Observação 3.6. Na prova da Proposição 3.5, nós escolhemos uma geodésica γ em \mathbb{H}^2 , onde todas as curvas $t\mapsto u_k(1,t)$ são ortogonais. Tal família de curvas é simétrica com relação a essa geodésica, ver Figura 2

Figura 2 – Curva geratriz $u_k(t)$ e geodésica γ



Fonte: autores (2025)

Lema 3.7. A família de curvas $\{\alpha_k\}_{k>0}$, onde α_k é definida pelas curvas $t\mapsto u_k(1,t)$ (como na Proposição 3.5), folheia o $\mathbb{H}^2\cap\{x>0\}$.

Demonstração. Defina uma aplicação H por:

$$H: (0, +\infty) \times [0, +\infty) \rightarrow (0, \pi/2) \times [0, \pi/2)$$

 $(k, t) \mapsto (\theta_k(t), \phi_k(t)),$

onde $\theta_k(t)$ e $\phi_k(t)$ são aquelas da Proposição 3.5. Pela observação 3.6, podemos olhar somente pro caso $t \geq 0$, pois a curva α_k , para todo k, é simétrica em relação à geodésica que corta cada α_k em t=0. Além disso, se H for um difeomorfismo global, podemos compor H com a parametrização $\psi|_{r=1}$ para obter uma nova parametrização de $\mathbb{H}^2 \cap \{x>0\}$. Assim, a parametrização $(\psi|_{r=1}\circ H)$ mapeia, para cada k, uma curva (ou folha) da folheação. Portanto, para provar esse Lema, só precisamos mostrar que H é um difeomorfismo global.

Observe que, se fixarmos k_0 , $t\mapsto \theta_{k_0}(t)$ é uma função crescente. Da mesma forma, se fixarmos t_0 , $k\mapsto \theta_k(t_0)$ também é uma função crescente. Além disso, $t\mapsto \phi_{k_0}(t)$ também é crescente. Portanto, se provarmos que $k\mapsto \phi_k(t_0)$ é uma função decrescente, então H é injetiva por monotocidade. Antes de fazermos isso, observe $\lim_{(k,t)\to(0,0)}\theta_k(t)=0$ e $\lim_{t\to\infty}\theta_k(t)=\frac{\pi}{2}$. Portanto, se provarmos $\lim_{k\to 0}\phi_k(t_0)=\frac{\pi}{2}$ e $\lim_{k\to \infty}\phi_k(t_0)=0$ também provamos que H é sobrejetiva. O que passamos a fazer a partir de agora.

Observe que

$$\frac{\partial \phi_k}{\partial k}(t) = \int_0^t \frac{\partial}{\partial k} \left(\frac{2k\sqrt{2}}{(z_k(s) - 1)\sqrt{z_k(s) + 1}} \right) ds$$

$$= \int_0^t \frac{\cosh^2 2s - 1 - 2k^2 \cosh^2 2s - \frac{2k^2}{\sqrt{4k^2 + 1}} \cosh 2s}{\left(\sqrt{4k^2 + 1}\cosh 2s - 1\right)^2 \left(\sqrt{4k^2 + 1}\cosh 2s + 1\right)^{\frac{3}{2}}} ds \tag{5}$$

Assim, vemos que se $k \geq \frac{\sqrt{2}}{2}$, o numerador em (5) é negativo. Logo, $\frac{\partial \phi_k}{\partial k}(t) < 0$ para $k \geq \frac{\sqrt{2}}{2}$ e $t \geq 0$. Consequentemente, ϕ_k é uma função decrescente para $k \geq \frac{\sqrt{2}}{2}$. A partir de agora, vamos estudar com cuidado a função ϕ_k para concluir que ϕ_k também é decrescente para $k < \frac{\sqrt{2}}{2}$.

Primeiro, observe que podemos obter, para cada $\theta \in (0,\pi/2)$ fixo, uma função $t(\theta)$. Para isso, basta isolar t na função $\theta_k(t)$. Ainda, defina $\phi_k(t) = \overline{\phi}_k(\theta)$, onde $\overline{\phi}(\theta) := \phi_k(t(\theta))$. Com isso, afirmamos que podemos definir o seguinte:

$$\overline{\phi}_k(\theta) = \int_{\theta_k(0)}^{\theta} \frac{k \cot^2 s}{\sqrt{1 - k^2 \cot^2 s \cos^2 s}} ds.$$

De fato, note que:

$$\frac{d\phi_k}{dt} = \frac{d\overline{\phi}_k}{d\theta_k} \frac{d\theta_k}{dt}.$$
 (6)

Agora, do sistema (4) temos:

$$\frac{d\theta_k}{dt}(t) = \cos\theta_k(t)\sqrt{1 - k^2 \cot^2\theta_k(t)\cos^2\theta_l(t)},$$

o que é sempre positivo. Então,

$$\frac{d\theta_k^{-1}}{dt}(t) = \frac{1}{\frac{d\theta_k}{dt}(t)}.$$

Logo, podemos usar isso em (6) para obter:

$$\frac{d\overline{\phi}_k}{d\theta_k}(\theta_k) = \frac{k \cot^2 \theta_k}{\sqrt{1 - k^2 \cot^2 \theta_k \cos^2 \theta_k}}$$

$$\overline{\phi}_k(\theta) = \int_{\theta_k(0)}^{\theta} \frac{k \cot^2 s}{\sqrt{1 - k^2 \cot^2 s \cos^2 s}} ds,$$
(7)

já que $\overline{\phi_k}(\theta_k(0))=0$. De agora em diante, denotaremos $\phi_k(\theta):=\overline{\phi}_k(\theta)$. Observe que, quando $\theta \to \frac{\pi}{2}$, temos que $t(\theta) \to \infty$. Para simplificar a notação, vamos usar $\frac{\pi}{2}$ ao invés de $\lim_{\theta \to \pi/2} t(\theta)$.

Note que, pelo Teorema Fundamental do Cálculo, podemos escrever:

$$\phi_k(\theta) = \phi_k\left(\frac{\pi}{2}\right) - \int_{\theta}^{\frac{\pi}{2}} \frac{k \cot^2 s}{\sqrt{1 - k^2 \cot^2 s \cos^2 s}} ds. \tag{8}$$

Observe que, para $\theta \in \left(\theta_k(0), \frac{\pi}{2}\right)$, temos

$$\frac{\partial}{\partial k} \left(\frac{k \cot^2 s}{\sqrt{1 - k^2 \cot^2 s \cos^2 s}} \right) = \frac{\cot^2 s \left(\sqrt{1 - k^2 \cot^2 s \cos^2 s} \right) + 2k^2 \cot^2 s}{\left(1 - k^2 \cot^2 s \cos^2 s \right)^{\frac{3}{2}}} > 0.$$

Assim, a segunda parcela de (8) é decrescente em k para todo k>0. Logo, se mostrarmos que $\phi_k\Big(\frac{\pi}{2}\Big)$ é decrescente em k para $k<\frac{\sqrt{2}}{2}$, teremos, por (5) e (8), que ϕ_k é decrescente em k para todo $k\in(0,+\infty)$.

Primeiro, observe que $\phi_k(\theta)=0$ quando t=0. Assim, podemos reescrever (8) como

$$\phi_k\left(\frac{\pi}{2}\right) = \int_{\theta_k(0)}^{\frac{\pi}{2}} \frac{k \cot^2 s}{\sqrt{1 - k^2 \cot^2 s \cos^2 s}} ds.$$

Vamos analisar $\phi_k\Big(\frac{\pi}{2}\Big)$. Defina $\beta=\sqrt{4k^2+1}$. Assim, $\theta_k(0)=\arctan\bigg(\sqrt{\frac{\beta-1}{2}}\bigg)$. Agora, vamos fazer a mudança de variáveis $v=\sqrt{\frac{\beta+1}{2}}\cos s$. Assim, quando $s=\pi/2$, v=0; quando $s=\theta_k(0),\ v=1$. Temos:

$$\phi_k\left(\frac{\pi}{2}\right) = \int_{\theta}^{\frac{\pi}{2}} \frac{k \cot^2 s}{\sqrt{1 - k^2 \cot^2 s \cos^2 s}} ds$$

$$= \frac{\sqrt{2}\sqrt{\beta^2 - 1}}{2} \int_0^1 \frac{v^2}{\left(\frac{\beta + 1}{2} - v^2\right)\sqrt{\beta + 1 - 2v^2 - (\beta - 1)v^4}} dv. \tag{9}$$

Vamos usar o Teorema dos Resíduos para resolver a integral (9). Defina $F:\mathbb{C}\to\mathbb{C}$ e $G:\mathbb{C}\backslash\{v_0,-v_0\}\to\mathbb{C}$ por:

$$F(v) = \sqrt{\beta + 1 - 2v^2 - (\beta - 1)v^4}$$

е

$$G(v) = \frac{v^2}{\left(\frac{\beta+1}{2} - v^2\right)F(v)},$$

onde $v_0=\sqrt{\frac{\beta+1}{2}}$. Como a função $\frac{1}{\sqrt{z}},z\in\mathbb{C}$, é holomorfa em $\mathbb{C}\backslash\mathbb{R}^+$, temos que G será holomorfa desde que $F(v)\notin\mathbb{R}^+$. Assim, vamos encontrar um domínio tal que $F(v)\notin\mathbb{R}^+$. Primeiro, vamos determinar quando $F(v)\in\mathbb{R}^+$. Seja v=a+bi, segue que:

$$F(v) = (\beta + 1) - 2(a^2 - b^2) - (\beta - 1)((a^2 - b^2)^2 - 4a^2b^2) +$$

$$- (4ab + (\beta - 1)4ab(a^2 - b^2))i.$$

Assim, F(v) é um número real puro quando a=0, b=0 ou $1+(\beta-1)(a^2-b^2)=0$. Vamos analisar cada caso para saber quando ele é um real puro e positivo.

1. Caso a=0 : se a=0, então

$$Re(F(v)) = \beta + 1 + 2b^2 - (\beta - 1)b^4.$$

$$\text{Assim, } Re\big(F(v)\big) \geq 0 \text{ quando } -\sqrt{\frac{\beta+1}{\beta-1}} \leq b \leq \sqrt{\frac{\beta+1}{\beta-1}}.$$

2. Caso b=0: se b=0, então

$$Re(F(v)) = \beta + 1 - 2a^2 - (\beta - 1)a^4.$$

Assim, $Re(F(v)) \ge 0$ quando $-1 \le a \le 1$.

3. Caso $1 + (\beta - 1)(a^2 - b^2) = 0$: nesse caso, podemos reescrevê-lo como

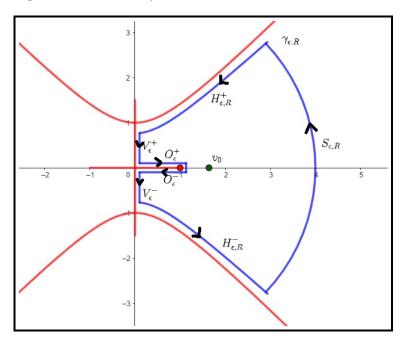
$$b^2 - a^2 = \frac{1}{\beta - 1}. ag{10}$$

Assim, $Reig(F(v)ig) \geq 0$ na região limitada pelos ramos da hipérbole descrita pela equação (10).

Dados $\varepsilon>0$ suficientemente pequeno e R>0 suficientemente grande, vamos definir por $\gamma_{\varepsilon,R}$ o bordo do domínio que contém o polo v_0 , onde $\gamma_{\varepsilon,R}:=S_{\varepsilon,R}\cup H_{\varepsilon,R}^+\cup H_{\varepsilon,R}^-\cup V_\varepsilon^+\cup V_\varepsilon^+\cup V_\varepsilon^-\cup O_\varepsilon^+\cup O_\varepsilon^-$, com

- $S_{\varepsilon,R}$ é um arco de circunferência centrado na origem;
- $H^{+-}_{arepsilon,R}$ são ramos de uma hipérbole cujo ponto de intersecção com o eixo imaginário dista arepsilon da intersercção da hipérbole $b^2-a^2=\frac{1}{\beta-1}$ com o mesmo eixo;
- V_{ε}^{+-} são segmentos verticais que distam ε do eixo imáginário;
- O_{ε}^{+-} são segmentos horizontais que distam ε do eixo real.

Figura 3 – Curva $\gamma_{\varepsilon,R}$



Fonte: autores (2025)

Pelo Teorema dos Resíduos, temos:

$$\int_{\gamma_{\varepsilon,R}} G(v)dv = Res(G, v_0)$$

$$= 2\pi i \lim_{v \to v_0} (v - v_0)G(v)$$

$$= 2\pi i \lim_{v \to v_0} \frac{v^2}{(v + v_0)\sqrt{F(v)}}$$

$$= \frac{\pi\sqrt{2}}{\sqrt{\beta^2 - 1}}.$$
(11)

Observe que

$$\lim_{\substack{\varepsilon \to 0 \\ R \to \infty}} \int_{\gamma_{\varepsilon,R}} G(v) dv = \lim_{\substack{\varepsilon \to 0 \\ R \to \infty}} \int_{O_{\varepsilon}^{+}} G(v) dv + \int_{O_{\varepsilon}^{-}} G(v) dv + \int_{V_{\varepsilon}^{+}} G(v) dv + \int_{V_{\varepsilon}^{-}} G(v) dv + \int_{V_{\varepsilon}^{-}} G(v) dv + \int_{H_{\varepsilon,R}^{-}} G(v) dv + \int_{H_{\varepsilon,R}^{-}} G(v) dv + \int_{S_{\varepsilon,R}} G(v) dv$$

$$(12)$$

Vamos analisar cada uma das integrais da equação (12). Note que

$$\int_{V_{\varepsilon}^{-}} G(v)dv = \int_{V_{\varepsilon}^{+}} G(\overline{v})d\overline{v},$$

onde v=a+bi e $\overline{v}=a-bi$. Mas quando $\varepsilon\to 0$, $Re(v)\to 0$. Consequentemente, $d\overline{v}=-dv$ e $G(v)=G(\overline{v})$, já que as potências de v são de expoentes pares. Logo,

$$\lim_{\varepsilon \to 0} \left(\int_{V_{\varepsilon}^{-}} G(v) dv + \int_{V_{\varepsilon}^{+}} G(v) dv \right) = \lim_{\varepsilon \to 0} \left(- \int_{V_{\varepsilon}^{+}} G(v) dv + \int_{V_{\varepsilon}^{+}} G(v) dv \right) = 0 \tag{13}$$

Agora, observe que quando $\varepsilon \to 0$, temos

$$\lim_{\varepsilon \to 0} \left(\int_{H_{\varepsilon,R}^-} G(v) dv + \int_{H_{\varepsilon,R}^+} G(v) dv \right) = \int_{H_R^+ \cup H_R^-} G(v) dv$$
 (14)

e

$$\lim_{\varepsilon \to 0} \left(\int_{O_{\varepsilon}^{-}} G(v) dv + \int_{O_{\varepsilon}^{+}} G(v) dv \right) = 2 \int_{0}^{1} G(v) dv, \tag{15}$$

já que $\int_{O_{\varepsilon}^-} G(v) dv = -\int_{O_{\varepsilon}^+} G(\overline{v}) d\overline{v}$. Agora, vamos mostrar que $\int_{S_{\varepsilon,R}} G(v) dv \to 0$, quando $R \to \infty$. De fato, seja $v = Re^{i\theta}$ em $S_{\varepsilon,R}$, onde $-\theta_{\varepsilon,R} \le \theta \le \theta_{\varepsilon,R}$. Assim, $dv = Rie^{i\theta}$. Ainda, como o denominador de G(v) é da ordem 4 e o numerador é da ordem 2, temos que

$$|G(Re^{i\theta})| \le \frac{C}{R^2},$$

onde C é uma constante. Finalmente,

$$\left| \int_{S_{\varepsilon,R}} G(v) dv \right| \leq \int_{-\theta_{\varepsilon,R}}^{\theta_{\varepsilon,R}} \left| G(Re^{i\theta}) \right| \left| Rie^{i\theta} \right| d\theta$$
$$\leq \frac{C}{R} \int_{-\theta_{\varepsilon,R}}^{\theta_{\varepsilon,R}} d\theta \leq \frac{2\pi C}{R}.$$

Logo, quando $R\to\infty$, temos que $\int_{S_{\varepsilon,R}}G(v)dv\to 0$. Agora, podemos substituir (13), (14) e (15) em (12) para obter:

$$\lim_{\substack{\varepsilon \to 0 \\ R \to \infty}} \int_{\gamma_{\varepsilon,R}} G(v) dv = 2 \int_0^1 G(v) dv + \int_{H_\infty^+ \cup H_\infty^-} G(v) dv.$$

Ainda, usando (9) e (11), temos:

$$\lim_{\substack{\varepsilon \to 0 \\ R \to \infty}} \int_{\gamma_{\varepsilon,R}} G(v) dv = 2 \int_0^1 G(v) dv + \int_{H_{\infty}^+ \cup H_{\infty}^-} G(v) dv.$$

$$\frac{\pi \sqrt{2}}{\sqrt{\beta^2 - 1}} = \frac{4}{\sqrt{2} \sqrt{\beta^2 - 1}} \phi_k \left(\frac{\pi}{2}\right) + \int_{H_{\infty}^+ \cup H_{\infty}^-} G(v) dv$$

$$\frac{\pi}{2} = \phi_k \left(\frac{\pi}{2}\right) + \frac{\sqrt{2} \sqrt{\beta^2 - 1}}{4} \int_{H_{\infty}^+ \cup H_{\infty}^-} G(v) dv. \tag{16}$$

Agora, lembramos que $\beta=\sqrt{4k^2+1}$. Logo, da igualdade (16), temos que se

$$\beta \mapsto \frac{\sqrt{2}\sqrt{\beta^2 - 1}}{4} \int_{H_{\infty}^+ \cup H_{\infty}^-} G(v) dv$$

for uma função crescente para $\beta\in(1,\sqrt{3})$, temos que $\phi_k\left(\frac{\pi}{2}\right)$ é decrescente para $k\in\left(0,\frac{\sqrt{2}}{2}\right)$. Como, da equação (5), ϕ_k é decrescente para $k\geq\frac{\sqrt{2}}{2}$ e para $t\geq0$, teremos que ϕ_k é decrescente em k para k>0. Vamos analisar o crescimento da função $\frac{\sqrt{2}\sqrt{\beta^2-1}}{4}\int_{H^+_\infty\cup H^-_\infty}G(v)dv$ para $\beta\in(1,\sqrt{3})$. Para isso, vamos fazer uma mudança de variáveis. Observe que H^+_∞ é o ramo da hipérbole $a^2-b^2=\frac{1}{\beta-1}$, onde a>0 e b>0; H^-_∞ é o ramo da hipérbole $a^2-b^2=-\frac{1}{\beta-1}$, onde a>0 e b<0. Assim, temos que $b=\sqrt{a^2+\frac{1}{\beta-1}}$ para a curva H^+_∞ e $b=-\sqrt{a^2+\frac{1}{\beta-1}}$ para a curva H^-_∞ . Como v=a+bi,

$$v = a + \sqrt{a^2 + \frac{1}{\beta - 1}} e dv = \left(1 + \frac{a}{\sqrt{a^2 + \frac{1}{\beta - 1}}}i\right) da,$$

 $\operatorname{em} H_{\infty}^{+} \operatorname{e}$

$$v = a - \sqrt{a^2 + \frac{1}{\beta - 1}} e dv = \left(1 - \frac{a}{\sqrt{a^2 + \frac{1}{\beta - 1}}}i\right) da,$$

em H_{∞}^- . Disso, segue que

$$\begin{split} Im \bigg(\int_{H_{\infty}^+} G \bigg(a &+ \sqrt{a^2 + \frac{1}{\beta - 1}} \bigg) \bigg(1 + \frac{a}{\sqrt{a^2 + \frac{1}{\beta - 1}}} i \bigg) da \bigg) + \\ &+ Im \bigg(\int_{H_{\infty}^-} G \bigg(a - \sqrt{a^2 + \frac{1}{\beta - 1}} \bigg) \bigg(1 - \frac{a}{\sqrt{a^2 + \frac{1}{\beta - 1}}} i \bigg) da \bigg) = 0. \end{split}$$

Assim, obtemos que:

$$2Re\left(\frac{\sqrt{2}\sqrt{\beta^2 - 1}}{4} \int_{H_{\infty}^+ \cup H_{\infty}^-} G(v)dv\right) = 2\sqrt{2}\sqrt{\beta + 1}(\beta - 1) \int_0^{\infty} \frac{A}{BC}da,\tag{17}$$

onde

$$A = \beta^2 + 1 + 8a^4(\beta - 1)^2 + 2a^2(\beta^2 + 3)(\beta - 1);$$

$$B = (\beta^2 + 1)^2 + 16a^2(\beta - 1)^2 + 16a^2(\beta - 1);$$

$$C = \sqrt{\beta^2 + 4a^4(\beta - 1)^2 + 4a^2(\beta - 1)}.$$

Como $\frac{\partial}{\partial \beta}\Big(\frac{A}{BC}\Big)>0$ para $\beta\in(1,\sqrt{3})$, temos, por (17), que $\frac{\sqrt{2}\sqrt{\beta^2-1}}{4}\int_{H_\infty^+\cup H_\infty^-}G(v)dv$ é crescente para $\beta\in(1,\sqrt{3})$. Observe que, como existe t=0 tal que $\phi_k(0)=0$ e $\phi_k\Big(\frac{\pi}{2}\Big)$ é decrescente em k, temos que

$$\lim_{k \to \infty} \phi_k \left(\frac{\pi}{2} \right) = 0. \tag{18}$$

Finalmente, quando $\beta \to 1$, temos que $k \to 0$. Assim, tomando o limite $\beta \to 1$ na equação (16), temos que $\phi_k \left(\frac{\pi}{2}\right) \to \frac{\pi}{2}$. Isso conclui que H é uma bijeção. Para mostrar que H é um difeomorfismo, vamos analisar a sua diferencial, o que passamos a fazer.

Podemos obter, derivando as funções $\theta_k(t)$ e $\phi_k(t)$ em relação a t e k, as seguintes expressões:

$$\frac{\partial \theta_k}{\partial k}(k,t) = \frac{4k \cosh 2t}{(z_k(t)+1)\sqrt{4k^2+1}}$$

$$\frac{\partial \theta_k}{\partial t}(k,t) = \frac{2\sqrt{4k^2+1}\sinh 2t}{z_k(t)+1}$$

$$\frac{\partial \phi_k}{\partial k}(k,t) = \frac{\partial}{\partial k} \left(\int_0^t \frac{2k\sqrt{2}}{(z_k(s)-1)\sqrt{z_k(s)+1}} ds \right) := f(k,t)$$

$$\frac{\partial \phi_k}{\partial t}(k,t) = \frac{2k\sqrt{2}}{(z_k(t)-1)\sqrt{z_k(t)+1}}$$

Podemos, então, calcular o determinante do diferencial de H. Observe que:

$$DH(k,t) = \begin{pmatrix} \frac{4k\cosh 2t}{(z_k(t)+1)\sqrt{4k^2+1}} & \frac{2\sqrt{4k^2+1}\sinh 2t}{z_k(t)+1} \\ f(k,t) & \frac{2k\sqrt{2}}{(z_k(t)-1)\sqrt{z_k(t)+1}} \end{pmatrix}.$$

Temos que:

$$\det (DH(k,t)) = \frac{8k^2\sqrt{2}\cosh 2t\sqrt{z_k+1} - 2(4k^2+1)\sinh 2t(z_k^2-1)f(k,t)}{(z_k^2-1)\sqrt{4k^2+1}(z_k+1)}.$$

Observe que

$$8k^2\sqrt{2}\cosh 2t\sqrt{z_k+1} > 0$$

е

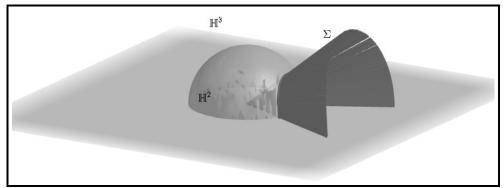
$$2(4k^2 + 1)\sinh 2t(z_k^2 - 1) \ge 0$$

para todo k e t no domínio. Logo, se f(k,t) < 0, temos que $\det \left(DH(k,t)\right) > 0$ para todo (k,t) no domínio. Note que, para que f seja negativa, é suficiente que ϕ_k seja decrescente em k. Mas, para mostrar que H é bijeção, mostramos que ϕ_k é decrescente em k. Logo, H é um difeomorfismo.

Note que o Lema 3.7 garante a folheação de $\mathbb{H}^2 \cap \{x > 0\}$. Mas, por simetria do \mathbb{H}^2 , podemos associar cada curva α_k a uma curva α_{-k} , onde esta é a curva simétrica com relação ao plano $\{x=0\}$. Além disso, considere para k=0 a superfície Σ_0 como sendo a totalmente geodésica $\{x=0\}$. Assim, temos que a família $\{\Sigma_k\}_{k>0}$ definida na Proposição 3.5 estendida para $k \in \mathbb{R}$ folheia o \mathbb{H}^3 . De fato, considere a aplicação $J(s,k,t)=\big(s,H(k,t)\big)$, onde H é aquela obtida no Lema 3.7. Com isso, concluímos a prova do Teorema 1.2 enunciado anteriormente.

Com a parametrização das superfícies, podemos utilizar o software GeoGebra para esboçar a superfície Σ .

Figura 4 – Superfície mínima hiperbólica Σ



Fonte: autores (2025)

AGRADECIMENTOS

Agradeço à minha orientadora, Patrícia Kruse Klaser, por todo o ensinamento ao longo do mestrado e doutorado, especialmente pela ajuda prestada na organização e desenvolvimento deste artigo. Agradeço também ao professor Leonardo Prange Bonorino por ter feito uma contribuição providencial no desenvolvimento das superfícies mínimas hiperbólicas. Além deles, também agradeço à CAPES pelo apoio financeiro prestado através da bolsa de pesquisa.

REFERÊNCIAS

Barbosa, J. L. M., Gomes, J. d. M., & Silveira, A. M. (1987). Foliation of 3-dimensional space forms by surfaces with constant mean curvature. Bulletin of the Brazilian Mathematical Society, 18(2):1-12.

- Carmo, M. P. d. & Dajczer, M. (1983). Rotation hypersurfaces in spaces of constant curvature. *Transactions American Mathematical Society*, 277(2):685–709.
- Fornari, S. & Ripoll, J. B. (2004). Killing fields, mean curvature, translation maps. *Illinois Journal of Mathematics*, 48(4):1385–1403.
- Meeks, W. H. (1988). The topology and geometry of embedded surfaces of constant mean curvature. *Journal Differential Geometry*, 27(3):539–552.
- Sampaio, J. E. & Silva, E. C. d. (2024). Cmc foliations on euclidean spaces are minimal foliations. *ArXiv*, pages 1–22. https://arxiv.org/pdf/2404.13772.

Contribuições dos autores

1 - Matheus Pimentel Gomes

Professor de Matemática https://orcid.org/0009-0001-6433-171X • gomes.matheusao@gmail.com Contribuição: Escrita e organização de todas as seções

Como citar este artigo

Gomes, M. P. (2025). Folheações do espaço hiperbólico \mathbb{H}^3 por superfícies mínimas. *Ciência e Natura*, Santa Maria, v. 47, esp. 1, e90697. DOI: https://doi.org/10.5902/2179460X90697.