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ABSTRACT

This work presents the application of the asymptotic homogenization method to a problem which
models the mechanical equilibrium of functionally graded microperiodic Euler-Bernoulli beams clamped
at both ends and subjected to a microperiodic distributed load. The five-term formal asymptotic
solution is obtained in terms of the solution of the homogenized problem and the periodic solutions of
the local problems, for whose existence a new result is presented. Analytical expressions for the
homogenized and local solutions are provided. The exact solution of the problem, which is seldom
available, is also provided for comparison purposes.
Keywords: Euler-Bernoulli beam; Asymptotic homogenization method; Formal asymptotic solution;
Homogenized and local problems

RESUMO

Este trabalho apresenta a aplicação do método de homogeneização assintótica a um problema que
modela o equiĺıbrio mecânico de vigas de Euler-Bernoulli microperiódicas funcionalmente graduadas
fixadas em ambas as extremidades e submetidas a uma carga microperiódica distribúıda. A solução
assintótica formal de cinco termos é obtida em termos da solução do problema homogeneizado e das
soluções periódicas dos problemas locais, para cuja existência é apresentado um novo resultado. São
fornecidas expressões anaĺıticas para as soluções homogeneizada e locais. A solução exata do
problema, raramente dispońıvel, também é fornecida para fins de comparação.
Palavras-chave: Viga de Euler Bernoulli; Método de homogeneização assintótica; Solução assintótica
formal; Problemas homogeneizado e locais
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1 INTRODUCTION

The Euler-Bernoulli beam theory (Rao, 2016) provides a classical fundamental
model for analyzing the behavior of slender (i.e. ideally one-dimensional) structures
under various loading conditions. However, when dealing with beams made of
heterogeneous materials, the traditional analysis based on the classical Euler-Bernoulli
beam theory becomes inadequate due to the complexity of the material properties.
Moreover, when considering more accurate representations of the
micro-heterogeneous structure of the materials real beams are made of, direct
mathematical or computational treatment becomes particularly difficult, as the values
of its properties change very rapidly with respect to position, which mathematically
translates to differential equations with rapidly oscillating coefficients. This common
feature of micro-heterogeneous materials is caused by the so-called separation of
structural scales, that is, the heterogeneity occurs at the local scale (i.e. the microscale)
whereas appearing homogeneous at the global scale (i.e. the macroscale). Such
separation of scales is characterized by the geometric parameter ε, 0 < ε ≪ 1, defined
as the ratio of the characteristic lengths of both scales.

There are several examples of both natural and manufactured
micro-heterogeneous materials, such as bones, soils, wood, paper, ceramics, concrete
(Torquato, 2002) present in nature or developed for specific applications. Hence,
studying such materials is clearly important, specially, how the interaction between
their physical and geometrical properties occurs.

Separation of scales, together with the assumption of matter continuity at the
local scale, guarantees the theoretical existence of an ideal homogeneous material
equivalent to the micro-heterogeneous material in the sense that the constant
properties of the former are the effective properties of latter (Bakhvalov & Panasenko,
1989). Observe that, as the properties of the equivalent homogeneous material are
constant, its physical behavior is modeled by means of differential equations with
constant coefficients. This approach is called homogenization and allows studying
micro-heterogeneous materials via their equivalent homogeneous counterparts.

A particularly important case of micro-heterogeneous materials is that of
microperiodic materials, whose structure is characterized by the periodic reproduction
of a recurring element called a basic cell of periodicity of relative size ε. One way to
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Silva, D. M. da, Pérez Fernández, L. D., Molter, A., & Castillero, J. B. | 3

approach mathematically this type of problem is through the use of the so-called
asymptotic homogenization method (AHM) (Bakhvalov & Panasenko, 1989;
Bensoussan et al., 1978; Ciouranescu & Donato, 2000; Tartar, 2009). The fundamental
goal of the AHM is to obtain a formal asymptotic solution (FAS) (Bakhvalov &
Panasenko, 1989) of the original problem with rapidly oscillating coefficients, namely, a
two-scale series in terms of powers of ε with periodic coefficients in the local scale. The
so-called homogenized problem for the first term of the FAS, which is independent of
the local scale, models the behavior of the equivalent homogeneous material. The
other coefficients are obtained in terms of the local functions, which are periodic in the
local scale and are the solutions of the so-called local problems.

Recently, in the context of beams, the AHM approach proved to be a powerful
tool for analyzing the steady-state behavior of microperiodic composite Euler-Bernoulli
beams Huang et al. (2020), i.e. beams with piecewise constant properties. In this
present work, we address the application of AHM to the more challenging case of twice
continuously differentiable properties, which corresponds to functionally graded
microperiodic Euler-Bernoulli beams. Here, a natural generalization of Silva et al.
(2023) to the case of microperiodic load.

Finally, note that typical applications of the AHM deal with second-order
differential equations. However, Euler-Bernoulli beams are modeled by means of
fourth-order differential equations, so the usual tool (a Lemma of Bakhvalov &
Panasenko (1989)) to prove the existence of the periodic solutions of the local
problems, which allows constructing the FAS, are not applicable. So, we develop a
fourth-order version of such a tool which, to the best of our knowledge, is original. This
is done in section 2.1. Then, the original problem is formulated and solved in section
2.2, whereas the AHM is applied in section 2.3.

2 METHODOLOGY

2.1 Preliminaries

Lemma: Let F (y) e a(y) be 1-periodic differentiable functions, with a(y) strictly
positive and bounded. A necessary and sufficient condition for a 1-periodic solutionN(y)

of the equation LN = F , with L ≡ d2

dy2

(
a(y)

d2

dy2

)
, to exist is that ⟨F ⟩ ≡

∫ 1

0

F (y)dy = 0.
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In addition, the solution N(y) is unique up to an additive constant, that is, N(y, C) =

Ñ(y) + C, where ⟨Ñ⟩ = 0 and C is a constant.
To the best of our knowledge, this result is original and its proof is described as

follows. In order to prove necessity, it suffices to apply the averaging operator ⟨·⟩ to the
equation LN = F . Then, it follows from the 1-periodicity of a(y) and N(y) that ⟨F ⟩ = 0.
On the other hand, for proving sufficiency, an analytical expression for N(y) is found,
for which the values of the integration constants that ensure the 1-periodicity of N(y)

are only possible when ⟨F ⟩ = 0.
2.2 Problem formulation

Let ε be a parameter such that 0 < ε ≪ 1. Consider the problem of the
mechanical equilibrium of a functionally graded Euler-Bernoulli beam of unit length,
with microperiodic internal structure and flexural rigidity aε ∈ C2(0, 1), clamped at both
ends and subjected to a distributed load f ε ∈ C(0, 1). This problem is stated as follows:
for each ε, find the deflection uε ∈ C4(0, 1) ∩ C1[0, 1], solution of the differential equation
Lεuε ≡ d2

dx2

(
aε(x)

d2uε

dx2

)
= f ε(x), x ∈ (0, 1), (1)

where aε(x) = a
(x
ε

) is ε-periodic, strictly positive and bounded, and f ε(x) = f
(
x,

x

ε

) is
ε-periodic in the second argument, subject to boundary conditions
uε(0) = 0,

du

dx

∣∣∣∣
x=0

= 0, uε(1) = 0,
du

dx

∣∣∣∣
x=1

= 0. (2)
The exact solution to the problem in (1)-(2) is obtained by direct integration as

uε(x) =

∫ x

0

(Cε
1I

ε
2(w) + Cε

2I
ε
1(w) + Iε3(w)) dw, (3)

where
Cε

1 =
1

∆ε

∫ 1

0

(Iε1(1)I
ε
3(w)− Iε3(1)I

ε
1(w)) dw, Cε

2 =
1

∆ε

∫ 1

0

(Iε3(1)I
ε
2(w)− Iε2(1)I

ε
3(w)) dw, (4)

∆ε =

∫ 1

0

(Iε2(1)I
ε
1(w)− Iε1(1)I

ε
2(w)) dw, (5)

Iε1(w) =

∫ w

0

dr

aε(r)
, Iε2(w) =

∫ w

0

rdr

aε(r)
, Iε3(w) =

∫ w

0

1

aε(r)

∫ r

0

∫ s

0

f ε(t)dtdsdr. (6)
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Even though we have an analytical expression for the exact solution uε(x) in
(3)-(6), its actual calculation for particular cases can become analytically overly complex
and otherwise computationally demanding. Therefore, we will opt for an alternative
approach to find a good approximation of the exact solution, which has a simpler
expression.
2.3 AHM application

Let u(4)(x, ε) be a formal asymptotic solution (FAS) of problem (1)-(2), which is an
asymptotic expansion of the exact solution uε(x) of (1)-(2) define as follows:

uε(x) ∼ u(4)(x, ε) =
4∑

k=0

εkuk(x, y), y =
x

ε
, ε = n−1, n ∈ N, (7)

where (x, y) ∈ (0, 1)×(0, n), and the coefficients of the powers of ε are unknown functions
uk(x, y), k ∈ {0, 1, 2, 3, 4}, are continuously differentiable up to the fourth order with
respect to both variables x and y, and 1-periodic in the local variable y.

By applying the second-order chain rule
d2(·)
dx2

=
∂2(·)
∂x2

+ 2ε−1 ∂
2(·)

∂x∂y
+ ε−2∂

2(·)
∂y2

. (8)
to the differential equation (1) of the original problem, we get
(
Lxx

xx + ε−1(2Lxx
xy + 2Lxy

xx) + ε−2(Lxx
yy + 4Lxy

xy + Lyy
xx) + ε−3(2Lxy

yy + 2Lyy
xy) + ε−4Lyy

yy

)
uε = f, (9)

where the linear differential operators Lαβ
γφ, are defined as

Lαβ
γφ(·) =

∂2

∂α∂β

(
a(y)

∂2(·)
∂γ∂φ

)
, α, β, γ, φ ∈ {x, y}, (10)

with the 1-periodic flexural rigidity a(y) with respect to the local variable y.
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By substituting (7) into (9), and rearranging the terms by powers of ε, we obtain
ε−4Lyy

yyu0

+ ε−3
(
Lyy

yyu1 + 2Lxy
yyu0 + 2Lyy

xyu0

)
+ ε−2

(
Lyy

yyu2 + 2Lxy
yyu1 + 2Lyy

xyu1 + Lxx
yyu0 + 4Lxy

xyu0 + Lyy
xxu0

) (11)
+ ε−1

(
Lyy

yyu3 + 2Lxy
yyu2 + 2Lyy

xyu2 + Lxx
yyu1 + 4Lxy

xyu1 + Lyy
xxu1 + 2Lxx

xyu0 + 2Lxy
xxu0

)
+ ε0

(
Lyy

yyu4 + 2Lxy
yyu3 + 2Lyy

xyu3 + Lxx
yyu2 + 4Lxy

xyu2 + Lyy
xxu2 + 2Lxx

xyu1 + 2Lxy
xxu1 + Lxx

xxu0 − f
)

= O(ε)

So, in order for the asymptotic equality in (11) to hold true, the existence of
solutions uk, k ∈ {0, 1, 2, 3, 4}, 1-periodic in y, to the following recurrence of differential
equations must be guaranteed:
ε−4 : Lyy

yyu0 = 0,

ε−3 : Lyy
yyu1 =− 2Lxy

yyu0 − 2Lyy
xyu0,

ε−2 : Lyy
yyu2 =− 2Lxy

yyu1 − 2Lyy
xyu1 − Lxx

yyu0 − 4Lxy
xyu0 − Lyy

xxu0, (12)
ε−1 : Lyy

yyu3 =− 2Lxy
yyu2 − 2Lyy

xyu2 − Lxx
yyu1 − 4Lxy

xyu1 − Lyy
xxu1 − 2Lxx

xyu0 − 2Lxy
xxu0,

ε0 : Lyy
yyu4 =− 2Lxy

yyu3 − 2Lyy
xyu3 − Lxx

yyu2 − 4Lxy
xyu2 − Lyy

xxu2 − 2Lxx
xyu1 − 2Lxy

xxu1 − Lxx
xxu0 + f.

Note that, for each fixed x ∈ (0, 1), the equations in the recurrence (12) are of
the form LN = F with F (y) and a(y) being 1-periodic, where the 1-periodicity of a(y)
is inherited from the ε-periodicity of aε(x). Thus, noting that for fixed x, Lyy

yy ≡ L, the
Lemma can be applied to guarantee the existence (and also uniqueness) of 1-periodic
solutions of the recurrence of equations in (12).

Applying the Lemma to the problem for u0(x, y) in (12) with N ≡ u0 and F ≡ 0, we
have that the existence of a 1-periodic solution u0 in y is guaranteed, and also that u0

does not depend on y, i.e.,
u0(x, y) = u0(x), (13)
so u0(x) represents the mean deflection, which is independent of the microstructure, i.e.,
independent of the local variable y and the geometrical parameter ε. Then, considering
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(13), we update the problem for u1(x, y) in (12) and obtain
Lyy

yyu1 = 0, (14)
which is identical to in (12). Thus, from (14), we have N ≡ u1 and F ≡ 0, so by the
Lemma, the existence of the solution u1, which is 1-periodic in y, is guaranteed, and it
follows that u1 also does not depend on y, i.e., u1(x, y) = u1(x). However, u1(x) also
represents a contribution to the mean deflection, which is perturbed by ε in FAS (7). So,
in order to comply with the mean deflection being independent of the microstructure,
the only admissible realization of u1(x) is
u1(x) = 0, (15)
that is, applying the mean value operator ⟨·⟩ to (7) yields the following estimation of the
mean deflection:
⟨uε(x)⟩ ∼

〈
u(4)(x, ε)

〉
= u0(x) + εu1(x) +

4∑
k=2

εk ⟨uk(x, y)⟩ , (16)

which implies (15) and conditions
⟨uk(x, y)⟩ = 0, k ∈ {2, 3, 4}. (17)

Updating the problem for u2(x, y) in (12), based on (13) and (15), we have
Lyy

yyu2 = −d2a

dy2
d2u0

dx2
, (18)

from which, identifying N ≡ u2 and F ≡ −d2a

dy2
d2u0

dx2
, the Lemma ensures the existence

of u2(x, y), 1-periodic in y, since ⟨F ⟩ = 0, due to the 1-periodicity in y of a(y). Thus,
considering the structure of the right-hand side of (18), we take
u2(x, y) = N2(y)

d2u0

dx2
, (19)

where local function N2(y) is 1-periodic. Substituting (19) into (18) and (17) with k = 2

assuming d2u0

dx2
̸= 0, we obtain that N2(y) is the 1-periodic solution of the so-called first
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local problem defined by the differential equation
d2

dy2

(
a(y)

d2N2

dy2
+ a(y)

)
= 0, (20)

and the condition ⟨N2(y)⟩ = 0, which leads to
N2(y) =

∫ y

0

∫ t

0

(
â

a(s)
− 1

)
dsdt+ C1y + C2, (21)

where â = ⟨(a(y))−1⟩−1 is the so-called effective coefficient of flexural rigidity, and
C1 = −

〈∫ y

0

(
â

a(s)
− 1

)
ds

〉
, C2 = −

〈∫ y

0

∫ t

0

(
â

a(s)
− 1

)
dsdt+ C1y

〉
.

It follows from (13), (15), and (19) that the problem for u3(x, y) can be updated as
Lyy

yyu3 = − d2

dy2

(
a(y)

dN2

dy

)
d3u0

dx3
, (22)

from which, identifying N ≡ u3 and F ≡ − d2

dy2

(
a(y)

dN2

dy

)
d3u0

dx3
, it follows that ⟨F ⟩ = 0,

as a(y) and N2(y) are 1-periodic. Therefore, the Lemma guarantees the existence of the
solution u3(x, y), which is 1-periodic in y. Thus, considering the structure of the right-
hand side of (22), we take
u3(x, y) = N3(y)

d3u0

dx3
, (23)

where local function N3(y) is 1-periodic. Substituting (23) into (22) and (17) with k = 3,
assuming d3u0

dx3
̸= 0, we obtain that N3(y) is a 1-periodic solution of the so-called second

local problem defined by the differential equation
d2

dy2

(
a(y)

d2N3

dy2
+ 2a(y)

dN2

dy

)
= 0, (24)

and the condition ⟨N3(y)⟩ = 0, from which, using ⟨N2(y)⟩ = 0 again, we have
N3(y) = −2

∫ y

0

N2(s)ds+ C3, (25)

Ci. e Nat., Santa Maria, v.47, spe. 1, e90550, 2025
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where
C3 = 2

〈∫ y

0

N2(s)ds

〉
.

Finally, applying the Lemma to the equation for u4(x, y) in the recurrence (12),
using (13), (15), (19) and (23), we obtain that the condition for the existence of a solution
u4(x, y), which is 1-periodic in y, is that u0(x) is the solution of the so-called homogenized

problem defined by the homogenized equation

L0u0 ≡ â
d4u0

dx4
= f̂(x), (26)

where f̂(x) = ⟨f(x, y)⟩ is the mean load, and the boundary conditions by substituting
FAS (7) into the original boundary conditions (2):
u0(0) = 0,

du0

dx

∣∣∣∣
x=0

= 0, u0(1) = 0,
du0

dx

∣∣∣∣
x=1

= 0, (27)
so, the solution u0(x) of problem (26)-(27) is obtained by direct integration as
u0(x) =

1

â

(
Ĉ1x

3 + Ĉ2x
2 +

∫ x

0

Î(w)dw

)
, (28)

where
Ĉ1 = 2

∫ 1

0

Î(w)dw − Î(1), Ĉ2 = Î(1)− 3

∫ 1

0

Î(w)dw, Î(w) =

∫ w

0

∫ r

0

∫ s

0

f̂(t)dtdsdr. (29)
Therefore, being u0 the solution of the equation of the homogenized problem, so

(26) becomes an identity, and taking account (20) and (25), we have that the problem for
u4(x, y) can be rewritten as
Lyy

yyu4 = −3
d2

dy2
(a(y)N2(y))

d4u0

dx4
+ f̂(x)− f(x, y). (30)

Then, considering the structure of the right-hand side of (30), we take
u4(x, y) = N41(y)

d4u0

dx4
+N42(x, y), (31)

where local functions N41(y) and N42(x, y) are 1-periodic in y. Substituting (31) into (30)
Ci. e Nat., Santa Maria, v.47, spe. 1, e90550, 2025
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assuming d4u0

dx4
̸= 0, we obtain that N41(y) and N42(x, y) are the 1-periodic solutions of

the so-called third local problems defined by the differential equations
d2

dy2

(
a(y)

d2N41

dy2
+ 3a(y)N2(y)

)
= 0,

∂2

∂y2

(
a(y)

∂2N42

∂y2

)
= f̂(x)− f(x, y), (32)

and conditions ⟨N41(y)⟩ = 0 and ⟨N42(x, y)⟩ = 0, respectively. Then, we have
N41(y) = 3

∫ y

0

∫ s

0

N2(t)dtds+ C4y + C5, (33)
N42(x, y) =

∫ y

0

∫ z

0

1

a(w)

(∫ w

0

∫ s

0

(
f̂(x)− f(x, t)

)
dt ds+ C6w + C7

)
dwdz + C8y + C9, (34)

where
C4 = −3

〈∫ y

0

N2(t)dt

〉
, C5 = −

〈
3

∫ y

0

∫ s

0

N2(t)dtds+ C4y

〉
,

C6 = −
〈∫ y

0

(
f̂(x)− f(x, t)

)
dt

〉
, C7 = −

〈
1

a(y)

∫ y

0

∫ s

0

(
f̂(x)− f(x, t)

)
dtds

〉
− C6

â

2
,

C8 = −
〈∫ y

0

1

a(w)

(∫ w

0

∫ s

0

(
f̂(x)− f(x, t)

)
dt ds+ C6w + C7

)
dw

〉
, (35)

C9 = −
〈∫ y

0

∫ z

0

1

a(w)

(∫ w

0

∫ s

0

(
f̂(x)− f(x, t)

)
dt ds+ C6w + C7

)
dwdz

〉
− C8

2
.

Therefore, substituting (13), (15), (19), (23), and (31) into (7), we obtain the
following expression for the FAS, returning to the original variable:
u(4)(x, ε) = u0(x) + ε2N2

(x
ε

) d2u0

dx2
+ ε3N3

(x
ε

) d3u0

dx3
+ ε4

(
N41

(x
ε

) d4u0

dx4
+N42

(
x,

x

ε

))
. (36)

Observe that FAS (36) does not satisfies the original boundary conditions (2). In
fact, among the lower-order FASs u(k)(x, ε), k ∈ {0, 2, 3}, obtained by truncating (7),
zeroth-order FAS u(k)(x, ε) ≡ u0(x) is the only that satisfies conditions (2).

3 CONCLUSIONS

Based on the above, it is evident that the use of the AHM is highly beneficial for
dealing with problems involving coefficients that oscillate rapidly with respect to
position, as it is not always possible to obtain the exact solution to such problems
using traditional methods. Although the original problem addressed here has an
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expression for the exact solution, its implementation becomes nontrivial due to the
nature of the coefficient aε(x). Thus, one of the advantages of using AHM is that the
problem to obtain the solution u0(x) is, at least in structure, simpler than the problem
for the exact solution uε(x), as evidenced by the respective differential equations (1)
and (26). This can also be observed by considering that, in the original problem, the
beam is considered non-uniform, whereas in the homogenized problem, uniformity is
guaranteed. Additionally, the AHM approach allows for a deeper understanding of the
beam’s behavior in relation to spatial variations of the coefficients, thus facilitating the
analysis and resolution of practical structural engineering problems.

It is worth noting that this is an initial work in the field, but it encompasses all the
fundamental steps of applying the AHM, standing out for the originality of the Lemma
presented and the richness of details provided.
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