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ABSTRACT

In this work, we analyze a level set regularization strategy to identify the constant piecewise stiffness
coefficient in a static Euler-Bernoulli beam, based on indirect deflection measurements. The theoretical
results presented are illustrated by some numerical simulations.
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RESUMO

Neste trabalho, analisamos uma estratégia de regularização tipo level-sets para a identificação do
coeficiente de rigidez constante por partes em uma viga do tipo Euler-Bernoulli estática, a partir de
medidas indiretas da deflexão. Os resultados teóricos apresentados são ilustrados por algumas
simulações numéricas.
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1 INTRODUCTION

Beams are a key component of structural systems and are essential for
supporting engineering projects (Hibbeler, 2006). In many practical situations, beams
are constantly impacted by environmental loads, caused by environmental
phenomena such as wind, waves, current, tides, earthquakes, temperature, ice,
seabed movement, and marine growth, among others (Hibbeler, 2006). These
phenomena usually change the main structural components of the beam, leading to
future collapse. For the sake of structural safety, it is important to determine whether
there are damages or changes to the materials that make up these structures. It is
often too costly, if not impossible, to measure alterations in the characteristics of
beam materials directly. On the contrary, alterations in the physical characteristics of
materials can frequently lead to modifications in the stiffness coefficient
a(x) = E(x)I(x) > 0, resulting from the product of the modulus of elasticity E(x) and
the moment of inertia I(x). As a result, the beam resistance to deflection is affected
under bending moments (Hibbeler, 2006).

Therefore, a key problem associated with beam theory in engineering is the
identification of the stiffness coefficients a(x) of the beams in a non-destructive
manner. This is termed the inverse problem in beam theory (Kawano, 2017; Lesnic
et al., 1999; Medeiros et al., 2022). This technique allows the evaluation of the risks and
measures to be adopted in the structure, based on indirect measurements of the
beam of the transverse deflection.

More precisely, in this work, we assume that the beam is one-dimensional and of
length L. The beam is loaded by a known transverse force f(x) ∈ L2[0, L] which results
in a deflection u(x) modeled by the Euler-Bernoulli type equation
M ′′(x) = f(x) , a(x)u′′(x) = M(x) (1)
with boundary conditions
u(0) = u(L) = M(0) = M(L) = 0 , (2)
characterizing the beam in question as being statically determined (Hibbeler, 2006).
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The determination of the deflection u = u(x) that satisfies the equation (1), with
boundary conditions (2), knowing the stiffness coefficient a(x) and the loading force f(x)

is a traditional mechanical problem, also known as a direct problem (Hibbeler, 2006).
The focus of this contribution is on the inverse problem related to the

Euler-Bernoulli beam. In fact, identification of the stiffness coefficient a(x) of the beam,
which a(x) is piecewise constant, given that the loading force f ∈ L2[0, L] and the
boundary conditions (2), from indirect (non-destructive) measurements of the
deflection of u(x), for x ∈ [0, L]. In other words, the available measurements are given
by uδ, subject to level errors δ ≥ 0, of the deflection u(x), which satisfying
∥u− uδ∥2L2[0,L] ≤ δ . (3)

A characteristic shared by almost all the inverse problems, which includes the
identification of the stiffness coefficient a(x) (see Theorem 3), is that they are ill-posed
in the sense of Hadamard (Kirsh, 2011). Therefore, the stability of the proposed
identification with respect to noise measurements is one of the main concerns (Kirsh,
2011).

In this contribution, we will propose and analyze a regularization method, called
leve-set, for the stable identification of the stiffness coefficient a(x), when it assumes
two positive, known, and distinct values, that is, a(x) ∈ {a1, a2} almost always in [0, L]. In
other words, we assume that there exist sets of non-zero measure Ω1,Ω2 ⊂ [0, L], with
finite Hausdorff measure and [0, L]Ω1 ∪ Ω2, such that a(x) = a1 if x ∈ Ω1 and a(x) = a2 if
x ∈ Ω2 := [0, L]− Ω1.

It is worth mentioning that with such assumptions, the stiffness coefficient a(x)
can be rewritten as
a(x) = a2 + (a1 − a2)χΩ1 , (4)
where χX represents the characteristic function of the set X.

Literature overview: Extensive research has recently been conducted on the
identification of stiffness coefficients in the Euler-Bernoulli beam theory; see (Gladwell
& Morassi, 2010; Kawano, 2017; Lerma & Hinestroza, 2017; Lesnic et al., 1999; Marinov
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et al., 2015; Marinov & Vatsala, 2008; Medeiros, 2019; Medeiros et al., 2022) and
references. In this section, we provide a summary of the papers that discuss methods
for regularizing the estimation of a(x) based on indirect observations of the beam
deflection u(x) within the framework of Euler-Bernoulli beam theory.

In Lesnic et al. (1999), the authors demonstrate uniqueness identification and a
Tikhonov-type regularization approach for the reconstruction of a smooth (C1[0, L])
rigidity coefficient a(x), from measurements of beam deflection. However, the
smoothness of the coefficient required for the analysis conducted in Lesnic et al. (1999)
implies that intriguing physical scenarios, such as crack beams, where a(x) is
represented as in (4), cannot be taken into account.

In Marinov et al. (2015), a formula was provided to obtain a piecewise constant
coefficient a(x). Marinov & Vatsala (2008) then assumed the stiffness to be a piecewise
polynomial function and used a similar technique to Marinov et al. (2015) to identify the
polynomial coefficients. However, this technique requires prior knowledge of where the
coefficients change their values, which is not practical as it implies knowing where the
beam has failed beforehand. Additionally, the equation obtained depends on a quotient
that involves the second derivative of the data, which is an ill-posed problem (Kirsh,
2011).

In Lerma & Hinestroza (2017), a method of reconstructing the stiffness
coefficient a(x) is presented that involves the use of Green’s functions. This approach
yields a smooth a(x) that is reconstructed.

In Kawano (2017), a unique solution is presented to the issue of determining the
flexural stiffness in a dynamic Euler-Bernoulli beam, based on the observation of
boundary measurements. The author of Kawano (2017) shows how, by observing the
displacement and slope of a vibrating beam at one of its ends for a brief period, the
unique flexural stiffness a(x) can be identified.

Investigation of parameter identification in the Euler-Bernoulli beam theory is
also conducted as an inverse spectral problem, as seen in (Gladwell & Morassi, 2010)
and other related sources. These approaches are faced with the challenge of obtaining
spectral data as measured output.

In Medeiros (2019); Medeiros et al. (2023,2), the uniqueness identification of a
non-necessarily smooth stiffness coefficient a(x) as in (4) is proved. Then, iterative
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regularization approaches are used in the reconstructions. It turns out that the
smoothness of the beam solution implies that the iterative reconstructed a(x) is
smooth as well (see Section 3 for details).

Article novelties and organization: In this work, it is shown that it is possible to use
techniques such as level sets (e.g. (Cezaro et al., 2009)) as a regularization method to
identify the piecewise constant stiffness coefficient a(x) as in (4), in the Euler-Bernoulli
equation (1). Some numerical simulations obtained from the iterative method
generated by level sets techniques are presented to support the theoretical results.
Such results appear linked in the text as follows: In Section 2, the problem of
identifying the coefficient a(x) is formulated as a parameter-to-measures operator. It is
proved that this operator is continuous and Fréchet differentiable with respect to the
topology of L2[0, L] ∩ L1[0, L]. On the one hand, these results show that any
regularization method based on adjoint equations such as classical Tikhonov
(see (Lesnic et al., 1999)) or iterative regularization (see (Medeiros, 2019; Medeiros
et al., 2023,2)) results in a smooth reconstructed a(x). We demonstrate that the level
set formulation presented in Section 4 is a regularization strategy for the problem. In
Section 4.2, the algorithm derived from the proposed level set technique is presented,
which will be exemplified with some numerical simulations. Section 6 presents some
conclusions.

Main assumptions: In the forthcoming analysis we shall assume that:
(H1) The flexural stiffness coefficient a(x) ∈ Ad := {a measurable on[0, L] , 0 < a ≤

a(x) ≤ a}, for known constants a, a. In particular, the piecewise constant a(x) as
in (4) satisfies H1).

(H2) The load distribution f ∈ L2[0, L].
(H3) The measurements uδ ∈ L2[0, L] differ from exact data u ∈ L2[0, L] from a noisy

level δ > 0, that is, ∥u− uδ∥L2[0,L] ≤ δ.
(H4) The problem (6) has a solution a∗ ∈ Ad.
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2 PARAMETER-TO-MEASUREMENT MAP AND ITS PROPERTIES

In this section, we introduce the flexural stiffness coefficient identification
problem as a non-linear operator equation, called the parameter-to-solution map.
Many results in this section were already presented in (Medeiros, 2019; Medeiros et al.,
2023,2), but they are important to understand why Tikhonov’s or iterative
regularization proposed in (Lesnic et al., 1999; Medeiros et al., 2023,2) produces a
smooth approximate stiffness coefficient a(x). Therefore, the level-set regularization
approach proposed in the following sections is an alternative to obtain a regularized
solution of a piecewise constant a(x) as in (4).

We begin by introducing the weak solution of the system (1) with boundary
conditions (2).
Lemma 1. Let assumptions (H1) and (H2) be satisfied. Then, there exists a unique weak

solution u ∈ H2[0, L] ∩H1
0 [0, L] of (1), with boundary conditions (2).

Here, a weak solution is any u ∈ H1[0, L] that satisfies

∫ L

0

u′ϕ′dx =

∫ L

0

M

a
ϕdx ∀ϕ ∈ H1

0 [0, L] . (5)
Proof. It is deduced from Assumption (H2), the boundary conditions (2) and the elliptic
regularity (Brezis, 2010) that a unique M ∈ C[0, L] ∩ H2[0, L] ⊂ L2[0, L] is the solution
of the first equation in (1). The continuity of M implies that it is bounded uniformly
in the interval [0, L]. Furthermore, due to assumption H1) the bi-linear form related to
the variational formulation (5) and the corresponding linear functional in the right-hand-
side of (5) are both continuous and coercive in H1[0, L]. Therefore, it the existence and
uniqueness of a weak solution of (1)-(2) is deduced from Lax-Milgram’s lemma and the
elliptic regularity theory, as stated in (Brezis, 2010).

As a consequence of Lemma 1, the parameter-to-solution map (forward operator),
defined by,

F : Ad ⊂ L2[0, L] −→ L2[0, L] (6)
a 7−→ F (a) = u(a) , (7)

where, u(a) is the unique weak solution of (1)-(2), is well defined.
Ci. e Nat., Santa Maria, v.47, spe. 1, e90522, 2025
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We demonstrate certain characteristics of the operator (6) that are essential for
comprehending the ill-posedness and suggest regularization techniques for the inverse
problem of the stiffness coefficient.

The following theorem demonstrates the continuity of the operator (6) in the
L2[0, L] space, which is our first result in this direction.
Theorem 2. Let assumptions (H1) and (H2) be satisfied. Consider the boundary

conditions (2). Let the parameter-to-solution map F defined in (6). Then:

i) F is continuous from Ad ⊂ L2[0, L] to L2[0, L].

ii) F is also continuous in the L1[0, L] norm topology.

Proof. Observe that since L2[0, L] is a metric space, it is sufficient to show that F is
sequentially continuous, e.g. (Brezis, 2010). Let (an) ∈ Ad be a convergent sequence to
a in L2[0, L]. Since Ad is closed, it follows that a ∈ Ad. Denote by F (an) = u(an) := un and
F (a) = u(a) := u the unique weak solutions of (1) (2) (see Lemma 1), corresponding to
an, a ∈ Ad, respectively.

The linearity of (1), implies that un − u satisfies
(un − u)′′ = −(an − a)

a
u′′
n = −(an − a)

ana
M. (8)

with homogeneous boundary condition.
From the assumptions (H1) and (H2), it is deduced that ∥M∥ < C̃ and ∥ana∥ > a2.

Therefore, M
ana

is uniformly bounded in [0, L]. Integrating (8) with vn := un − u ∈ H1
0 [0, L]

as the test function, and using the Poincaré and Hölder inequality, we obtain
∥vn∥L2[0,L] ≤ C∥an − a∥L2[0,L] (9)
where C is a constant that depends only on the Poincaré’s constant, ∥M∥L∞[0,L] and a2.

It follows from (9) assertion i) is satisfied.
Furthermore, from the assumption H1), we have |a(x)| ≤ a for x a.e. in [0, L], M >

0. Then, a ∈ Ls[0, L] for any 1 ≤ s < ∞ and
∥a∥sLs[0,L] =

∫
Ω

|a(x)|s−1|a(x)| dx ≤ as−1∥a∥L1[0,L] . (10)
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In particular, equation (10) implies in
∥a∥Ls[0,L] ≤ a(s−1)/s∥a∥1/sL1[0,L]. (11)

As a consequence of item i), (9) and (11), the assertion on item ii) follows.
We will demonstrate that the stiffness identification problem we are considering

is ill-posed, as stated in (Kaltenbacher et al., 2008; Kirsh, 2011). This means that even
slight changes in measurements uδ can have a major impact on identifying the stiffness
coefficient a. This is due to the compactness of the operator F defined in (6) in the
L2[0, L]-topology, because if the inverse operator F−1 exists, it is not limited. We will
present this result in the following theorem.
Theorem 3. Suppose that (H1) and (H2) are fulfilled. Additionally, assume that the boundary

conditions in (2) are satisfied. Consequently, the operator F specified in (6) is compact from

Ad ⊂ L2[0, L] to L2[0, L].

Proof. Let (an) ∈ Ad be the sequence that weakly converges to a in the L2[0, L] norm
topology. The convexity and closedness of Ad, implies that it is weakly closed (Brezis,
2010). As a consequence, a ∈ Ad. Let the notation for F (an) = un and F (a) = u as in
Theorem 2. Arguing as in Theorem 2, we have that the difference F (an)−F (a) := un − u

satisfies the variational formulation given by
∫ L

0

an(un − u)′′φdx = −
∫ L

0

(an − a)aMφdx, (12)
for any test function φ ∈ C∞

0 [0, L].
Furthermore, assumptions (H1) and (H2) implies that aM ∈ L∞[0, L]. As a result,

aMφ ∈ L2[0, L]. Consequently, due to the weak convergence of an to a in L2[0, L], the
right side of (12) tends to zero as n increases. As a result, the left side of (12) converges
to zero in the sense of distributions.

Under the assumption H1), the dominated convergence theorem (Brezis, 2010)
and the fact that C∞

0 [0, L] is dense in L2[0, L] imply that un−u ⇀ z in L2[0, L]. Furthermore,
z satisfies
z′′ = 0 , (13)
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with homogeneous boundary conditions, in the sense of distributions. Then, the
maximum principle (Brezis, 2010) applied to (13) and the fact that a ∈ Ad implies z ≡ 0.
Consequently, we have un − u

L2

−→ 0.
On the other hand, substituting φn = un − u into (12) and considering

Assumption (H1), we can deduce that ∥un − u∥L2 → 0. This implies that un − u

converges weakly and in norms to zero, which in turn implies that un → u in L2[0, L],
thus concluding the proof.

Theorem 3 suggests that a regularization technique should be used to ensure
a reliable determination of the stiffness coefficient a(x) from measurable data (noise
affected), for example, as in (Kaltenbacher et al., 2008; Kirsh, 2011).

In the following we show the results for with we are able to deduce that classical
Tikhonov or iterative regularization as proposed in (Lesnic et al., 1999; Medeiros et al.,
2023,2) implies smooth reconstructed stiffness coefficients a(x). For that fate, define
the following auxiliary operator

A(a) : H2[0, L] ∩H1
0 [0, L] −→ L2[0, L] (14)

u 7−→ A(a)u := −au′′. (15)
for any u = u(a) the unique solution of (1) with the boundary conditions (2), for a ∈ Ad.
It is noteworthy that Lemma 1 implies that A(a) is properly defined.

The following proposition is about the Fréchet differentiability of the parameter-
to-solution map F (a) defined in (6). Furthermore, we define the corresponding problem
that the Fréchet derivative F ′(a) and its adjoint F ′(a)∗ must satisfy.
Proposition 4. Consider the Assumptions (H1) and (H2) be satisfied. Then:

i) The operator A(a) defined in (14) is linear, bounded, and invertible. Its inverse A−1(a)

is also linear and bounded.

ii) The operator A(a) defined in (14) has a linear and bounded adjoint operator defined

by A∗(a)v = −(av)′′. Furthermore, A∗(a) has a linear bounded inverse given by

(A∗(a))−1 := (A−1(a))∗, such that (A∗(a))−1w = v, where v is the unique solution of

−(av)′′ = w.

Ci. e Nat., Santa Maria, v.47, spe. 1, e90522, 2025
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iii) The operator F (a) in (6) is Fréchet differentiable. Its Fréchet derivative F ′(a) is a linear

and bounded operator satisfying

F ′(a)h = A−1(a)[hu′′], (16)
with

∥F ′(a)∥ ≤ a−1∥M∥L2[0,L] := γ−1 . (17)

iv) The adjoint of F ′(a) is also a bounded linear operator that satisfies

F ′(a)∗r = u′′(a)(A−1(a))∗r , (18)
for any r ∈ L2[0, L].

Proof. The linearity of A(a) is evident from its definition. We will now demonstrate that
A(a) is bijective. For a ∈ Ad, we can argue as in Lemma 1, to prove the existence and
uniqueness of a solution u ∈ H1

0 [0, L] of −au′′ = w with homogeneous boundary
conditions, for any w ∈ L2[0, L]. The elliptic regularity (e.g. (Brezis, 2010)) imply that
u ∈ H2[0, L]. Therefore, the bijectivety is established. Consequently, there exists a
inverse for A(a) that is a linear operator A−1(a).

Moreover
∥A(a)u∥L2[0,L] = ∥ − au′′∥L2[0,L] ≤ a∥u′′∥L2[0,L] ≤ a∥u∥H2[0,L] . (19)
that implies that A(a) is bounded. The open map theorem (Brezis, 2010) implies that
A−1(a) is bounded. This verifies the claims of item i)-ii).

The proof of item iii) is a direct consequence of the bounded linear operator
theory, as seen in (Brezis, 2010), and items i) and ii). Furthermore,
⟨A∗(a)v, φ⟩L2 = ⟨v, A(a)φ⟩L2 = ⟨v,−aφ′′⟩L2 = ⟨−(av)′′, φ⟩L2

for any φ ∈ C∞
0 [0, L]. Therefore, the fact that C∞

0 [0, L] is dense in L2[0, L] implies that
A∗(a)v = −(av)′′.
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The proof of items iii) and iv) is next. Let F (a+h) = ũ and F (a) = u with ã := a+h ∈

Ad. The linearity of (1) implies that the difference F (a+ h) and F (a) satisfies
−a(ũ′′ − u′′) = hũ′′ , (20)
with homogeneous boundary conditions. It follows from ã ∈ Ad that ũ′′ = ã−1M ∈

L2[0, L]. Then, arguing as in Lemma 1, we get the existence and uniqueness of a solution
U = U(h) ∈ H2[0, L] ⊂ L2[0, L] of (20). Set F ′(a)h := U . As a consequence, F ′(a) is a linear
operator in h, for a+h ∈ Ad. Furthermore, he elliptic regularity theory, e.g., (Brezis, 2010)
implies in
∥U∥L2[0,L] ≤ a−1∥M∥L2[0,L]∥h∥L2[0,L] .

As a result, F ′(a) can be extended as a bounded liner operator for any h ∈ L2[0, L]

that satisfies ∥F ′(a)∥ ≤ a−1∥M∥L2[0,L] := γ−1,.
It can be deduced from items i) and ii) that F ′(a)h = U = U(h) = A(a)−1(hu′′). To

prove that F ′(a) is the Fréchet derivative of F , let W = F (a + h) − F (a) − F ′(a)h for any
h ∈ L2[0, L] such that a+ h ∈ Ad. The linearity implies that W satisfies
−aW ′′ = 0,

with homogeneous boundary conditions. As a consequence of the maximum principle
(Brezis, 2010) we get W (x) = 0 ,∀x ∈ [0, L], for any h. Therefore,
lim

∥h∥→0

∥F (a+ h)− F (a)− F ′(a)h∥
∥h∥

= 0 ,

concluding item iii).
Item iii) implies the existence of a bounded linear operator F ′(a)∗ (adjoint of F ′(a))

satisfying
⟨F ′(a)∗r, h⟩L2 = ⟨r, F ′(a)h⟩L2 , h ∈ L2[0, L]. (21)

Ci. e Nat., Santa Maria, v.47, spe. 1, e90522, 2025
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From (16), it follows that
⟨r, F ′(a)h⟩L2 = ⟨r, A−1(a)[hu′′]⟩L2 = ⟨u′′(a)(A−1(a))∗r, h⟩L2 , (22)
that concludes item iv).

3 THE SMOOTHNESS OF THE IDENTIFICATION BY CLASSICAL
REGULARIZATION METHODS

In this section, we discuss the smoothness of the reconstructed stiffness
coefficient aδα(x) of a beam given by classical regularization methods (Kaltenbacher
et al., 2008; Kirsh, 2011).

In the Tikhonov type regularization, aδα(x) is obtained as
aδα(x) ∈ argmin∥F (a)− uδ∥2L2[0,L] + α∥a− a0∥L2[0,L] (23)
where α is the regularization parameter and a0 represent some a-priori information
about the solution of the problem.

In the iterative type regularization, aδα(x) is obtained as
aδα(x) := aδk∗ (24)
where k∗ is the first index of the iteration
aδk+1 = aδk + γkF

′(aδk)
∗(F (aδk − uδ) , (25)

satisfying the discrepancy principle
∥F (aδk)− uδ∥L2[0,L] ≤ τδ , (26)
for some τ > 1. In particular, if
γk :=

∥F ′(aδk)
∗(F (aδk − uδ)∥2

∥F ′(aδk)F
′(aδk)

∗(F (aδk − uδ)∥2
, or γk = γ−1 , (27)

Ci. e Nat., Santa Maria, v.47, spe. 1, e90522, 2025
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we have the Steepest Descent or Landweber iteration, respectively, e.g. (Kaltenbacher
et al., 2008).

In the following theorem, we show that Tikhonov regularization (23) as well as
iterative regularization (25) produce smooth reconstructed coefficients aδα.
Theorem 5. Let the Assumptions H1) - H3) holds. Assume that the a-priori a0 is smooth.

Then, the reconstructed coefficient aδk given by the Tikhonov regularization (23) or by iterative

regularization (24) is smooth.

Proof. The existence of a minimizer aδα for the Tikhonov functional (23) follows from
assumptions, Theorem 3 and the standard extraction of subsequences as in
(Kaltenbacher et al., 2008; Kirsh, 2011). The first order optimality conditions implies
that
aδα ∈ a0 +

1

2α
F ′(aδα)

∗(F (aδα)− uδ) (28)
It follows from (28) or (25) that the regularizing solutions aδα are as smooth as

F ′(aδα)
∗(F (aδα)−uδ). Therefore, its follows from Propositon 4 iv) that aδα is at least H2[0, L].

As a consequence of Theorem 5, any regularizing solution aδα obtained by the
classical regularization approaches is not suitable for identifying the piecewise
constant rigidity coefficient a(x) as in (4).

4 A LEVEL-SET ANSATZ

Given the results in Theorem 5, in this section we analyze a standard level set (SLS)
approach1 (Cezaro et al., 2009,1) to parameterize the problem of identifying the stiffness
coefficient a(x), as in (4). The (SLS) consists of obtaining a level set function ϕ : [0, L] → R,
in H1([0, L]), in such a way that the zero level set Γϕ := {x ∈ [0, L] ; ϕ(x) = 0} coincides
with the discontinuities of the stiffness parameter a(x) as in (4) coincide with Γϕ. For this
reason, the technique is called a level set (Cezaro et al., 2009,1) and references therein.

1The SLS approach is distinct from other level-set approaches presented in Cezaro et al. (2013). Someadvantages and disadvantages of level-set approaches were discussed in Cezaro et al. (2013).
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Let H(t) = 1 if t > 0 and H(t) = 0 if t ≤ 0 be the Heaviside function. Then, the
stiffness coefficient a(x) as in (4) can be rewritten as
a(x) = a2 + (a1 − a2)H(ϕ) =: P (ϕ). (29)
Remark 1. Notice that Ω1 = {x ∈ [0, L] : ϕ(x) ≥ 0}, Ω2 = {x ∈ [0, L] : ϕ(x) < 0}. Therefore,

the operator P defined in (29) establishes the relationship between the level-sets of ϕ and the

sets Ω1,Ω2 and the stiffness coefficient a(x), as in (4).
Thus, the operator P in (29) maps H1[0, L] into the set

V := {z ∈ L∞([0, L]) | z = a2 + (a1 − a2)χΩ1 , for some Ω1 ⊂ [0, L]} . (30)
It follows from Remark 1 that the problem of identifying the stiffness coefficient

a(x) as in (4), can be rewritten as
F (P (ϕ)) = uδ, (31)
where uδ are the measurements in (3).
4.1 The regularization properties of the (SLS)-approach

Since the inverse problem of identifying a(x) is ill-posed (see Theorem 3), the some
characteristic is shared by problem (31). Therefore, we shall propose an regularization
strategy for the level-set anzat.

A regularization strategy for the (SLS) approach presented previously for the
problem (31), consists of obtaining regularized solutions ϕδ

α, for the Tikhonov functional
Fα(ϕ) :=∥F (P (ϕ))− uδ∥2L2[0,L] + α

(
β1|H(ϕ)|BV + β2∥ϕ− ϕ0∥2H1([0,L])

)
, (32)

where α > 0 is the regularization parameter, while the positive constants β1, β2 are
scaling factors. Furthermore, | · |BV , represents the semi-norm in the space of bounded
variation functions; see (Evans & Gariepy, 1992). The term in H1 acts as a regularization
for the level set function ϕ in the space H1. The semi-norm BV penalizes the size of the
Hausdorf measure on the boundary of the set {x ∈ [0, L] : ϕ(x) > 0}.
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As the operatorP is discontinuous, the functionalFα does not have a closed graph
in H1[0, L]. Therefore, the existence of minimizers for Fα will be proven, in a generalized
sense (see (Cezaro et al., 2009)), as follows: for each ε > 0, consider the continuous
approximation of the operator P as Pε(ϕ) := a1Hε(ϕ) + a2(1 − Hε(ϕ)) , where Hε(t) =

1 + t/ε for t ∈ [−ε, 0] , Hε(t) = H(t) for t ∈ R\ [−ε, 0]. The pair (z, ϕ) ∈ L∞[0, L]×H1[0, L]

is said to be admissible when there is a sequence of functions {ϕk} in H1[0, L] and a
sequence of positive numbers εk → 0, satisfying
lim
k→∞

∥ϕk − ϕ∥L2[0,L] = 0 , lim
k→∞

∥Hεk(ϕk)− z∥L1[0,L] = 0 . (33)
A generalized minimum for Fα defined in (32) will be considered as any admissible

pair (z, ϕ) minimizing

Gα(z, ϕ) := ∥F (Q(z))− uδ∥2L2[0,L] + α
(
inf

{
lim inf
k→∞

(
β1|Hεk(ϕk)|BV + β2∥ϕk − ϕ0∥H1[0,L]

)})
,

(34)
over the set of admissible pairs, where Q : L∞[0, L] ∋ z 7→ a1z + a2(1− z) ∈ L∞[0, L].

For the convergence analysis that follows, we need to set an extra assumption:
Assumption (A1): There is a∗ piecewise constant, solution of (6) and there is ϕ∗ ∈ H1[0, L]

such that P (ϕ∗) = a∗ with |∇ϕ∗| ≠ 0 in a neighborhood of {ϕ∗ = 0}, such that H(ϕ∗)=z ∈

V .
Theorem 6 (Existence of generalized minimizers, Convergence and Stability). Consider

hypothesis A1) true. Then:

i) The functional Gα in (32) has minimizers in the set of admissible pairs.

ii) [Convergence] Assume that you have exact data uδ = u. For each α > 0 denote by

(zα, ϕα) a minimizer of Gα in the set of admissible pairs. Then, for any sequence of

positive numbers {αk} → 0, there exists a subsequence (which for simplicity will be

denoted by {αk}), such that (zαk
, ϕαk

) → (ẑ, ϕ̂) in L1[0, L] × L2[0, L], with ( ẑ, ϕ̂). Still,

(ẑ, ϕ̂) is a solution of (31).
iii) [Stability] Let α = α(δ) satisfy limδ→0 α(δ) = 0 and limδ→0 δ

2α(δ)−1 = 0. For any sequence

of positive numbers {δk} → 0, denote by {uδk} ∈ L2[0, L] the noisy measurements
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satisfying (3). Then, there is a subsequence, which is for simplicity denoted by {δk}, and

its corresponding {αk := α(δk)} such that (zαk
, ϕαk

) converges in L1[0, L] × L2[0, L] for

a solution of (31).
Proof. It follows from Theorem 2 ii) that the operator F in (6) is continuous in the
topology of L1[0, L]. Therefore, all the hypotheses required in (Cezaro et al., 2009,
Theorem 6, 8, 9) are satisfied. Therefore, the proof follows as a particular case of the
results obtained in (Cezaro et al., 2009, Theorem 6, 8, 9).
4.2 Numerical approximation

Table 1 – Level-Set Algorithm
Step 1: Evaluate the residue rk := F (Pε(ϕk))− uδ where F (Pε(ϕk)) = uε solution of
Pε(ϕk))u

′′
ε = M with boundary conditions (2)Step 2: Evaluate F ′(Pε(ϕk))

∗rk For that:Step 2.1: Solve −(Pε(ϕk)vk)
′′ = rk with conditions v′(0) = v′(1) = 0Step 2.2: Calculate M

Pε(ϕk)
vk where vk is the solution of Step 2.1

Step 3: Calculate Rε(ϕk) given by the right side of (36) for ϕ = ϕkStep 4: Evaluate δϕk solution of αβ1(I −∆)δϕk = −Rε(ϕk) with (δϕ)V = 0 and Rε(ϕk)calculated in Step 3 according to (36)Step 5: Update ϕk+1 = ϕk + δϕk

Source: the authors (2024)
As noted in Cezaro et al. (2009), obtaining generalized minima for functional Fα is

impractical. Alternatively, the strategy is to obtain minimizers for the functional
Gε,α(ϕ) := ∥F (Pε(ϕ))− uδ∥2L2[0,L] + α

(
β1|Hε(ϕ)|BV + β2∥ϕ− ϕ0∥2H1(Ω)

) (35)
which has minimizers in H1[0, L], which approximate the minimizers of the functional
Fα when ε → 0. In fact, Theorem 2 ii) and hypothesis A1) guarantee that the results
presented in (Cezaro et al., 2009, Lemma 10, Theorem 11) can be replicated for the
problem studied in this work, of which the above statement follows. Thus, the numerical
method will be based on the optimality conditions for the Gε,α functional given by2

β2α [(ϕ− ϕ0)
′′ − (ϕ− ϕ0)] = (a1−a2)H

′
ε(ϕ)F

′(Pε(ϕ))
∗(F (Pε(ϕ))−uδ)+1/2β1αε

−2sign(H ′
ε(ϕ)),

(36)
2Note that H ′

ε(t) = 1/ε , t ∈ (−ε, 0), H ′′
ε (t) = −1/ε2 , t ∈ (−ε, 0) and zero otherwise. sign represents thesign function.
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with boundary conditions (ϕ− ϕ0)
′(0) = (ϕ− ϕ0)

′(L) = 0.
The numerical implementation to obtain the coefficient (4) is given by the

iterative algorithm presented in Table (1). The calculations used to obtain the adjoint of
the Fréchet derivative of the operator F are given in Proposition 4.

5 SIMULATED RESULTS

In this subsection, to support the theoretical results obtained previously, some
numerical simulations of the algorithm 1 will be presented to identify a piecewise
constant stiffness coefficient a(x) given by (4). The measured data simulated
correspond to a loading force of f(x) = 1 applied to a beam of length L = 1. For all
cases, the data were simulated in the manner uδ = u(x) + ξ, where ξ is a uniformly
distributed random variable with values between [−1, 1] and u(x) = u(a∗(x)) is the
solution of (1), where a∗(x) is the coefficient to be identified, given by

a∗(x)

 0.5 if x ∈ [0, 1/2]

1.0 if x ∈]1/2, 1]
. (37)

In all simulations presented, ε = 1/100 and the initial guess is given by ϕ0 = x(x−

1/4).
It is worth mentioning that at least two ODE’s are solved in each iteration step of

the algorithm 1. The numerical solution was obtained using the finite difference method,
with equal distributed points xi = i/N , i = 0, 1, 2, . . . , N , and N = 200 points.

Figures 1(a)-(b) present the recovered coefficient aδk = Pε(ϕk) according to (29) for
the noise level δ = 0.001, at different stages of the iteration. It is possible to observe that
the coefficient iterated by the algorithm 1 approaches the exact solution.

Figure 2 presents the recovered coefficient for the noise level of δ = 0.01 at
different points of the k iteration. Once again, it is possible to observe that the iteration
of the algorithm produces approximate solutions that converge to solve the problem.

The numerical simulations presented in Figures 1 and 2 demonstrate that the
approximate iterative solution aδk = Pε(ϕk) is stable and convergent for the constant
stiffness coefficient piecewise a∗(x), consistent with the theoretical results presented in
Theorem 6.
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Figure 1 – Reconstructed stiffness coefficient aδk = Pε(ϕk) for the noise level of δ = 0.001

Exact coefficient.

Reconstructed coefficient with k=10.
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(a) Coefficient aδk = Pε(ϕk) at distinct iterationindex k.
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(b) Coefficient aδk = Pε(ϕ) after k = 85 iterations.

Caption: The (a) figure shows the reconstructed coefficient for k = 10 and k = 34 iterations and (b)shows the coefficient after k = 85 iterationsSource: the authors (2024)

Figure 2 – Reconstructed stiffness coefficient aδk = Pε(ϕk) for the noise level of δ = 0.01at distinct iteration index k
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Reconstructed coefficient with k=18.

Reconstructed coefficient with k=76
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Caption: The graph shows the reconstructed coefficient for k = 18 and k = 76 iterations
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6 CONCLUSIONS

In this work, the inverse problem of identifying the piecewise constant
coefficient in the static Euler-Bernoulli equation was studied. It proved to be possible
to use level set methods as a regularization method for the problem through the
continuity of the operator (6) parameter-to-measurements in the topology of L1.
Furthermore, the necessary properties were presented to obtain regularized solutions
of the level set function in a stable and convergent way. This work was concluded by
presenting numerical simulations with the objective of identifying the constant
coefficient by parts at different noise levels using the proposed level set method,
corroborating the theoretical results previously constructed.
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