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Burgers’ PINNs with transfer learning by θ-scheme

PINNs para resolução da equação de Burgers com transferência de aprendizagem peloesquema θ

Vitória Biesek I�, Pedro Henrique de Almeida Konzen I�

IUniversidade Federal do Rio Grande do Sul, RS, Brazil

ABSTRACT

The Burgers equation is a well-established test case in the computational modeling of several
phenomena, such as fluid dynamics, gas dynamics, shock theory, cosmology and others. In this work,
we present the application of physics-informed neural networks (PINNs) with a transfer learning
approach using the θ-scheme to solve the Burgers’ equation. The proposed approach consists of
searching for a discrete solution in time through a sequence of artificial neural networks (ANNs). At each
time step, the previous ANN transfers its learning to the next network model, which learns the solution
in the current time by minimizing a loss function based on the θ-scheme approximation of the Burgers’
equation. To test this approach, we present its application to two benchmark problems with known
analytical solutions. Compared to usual PINN models, the proposed approach has the advantage of
requiring smaller neural network architectures with similar accurate results and potentially decreasing
computational costs.
Keywords: Burgers’ equation; Physics-informed neural network; Explicit Euler method; Implicit Euler
method; Crank-Nicolson method

RESUMO

A equação de Burgers é um caso de teste bem estabelecido na modelagem computacional de diversos
fenômenos, como dinâmica de fluidos, dinâmica de gases, teoria do choque, cosmologia e outros. Neste
trabalho, apresentamos a aplicação de rede neural informada pela f́ısica (PINNs, do inglês,
physics-informed neural networks) com uma abordagem de transferência de aprendizagem pelo esquema
θ para resolver a equação de Burgers. A abordagem proposta consiste em buscar uma solução discreta
no tempo por meio de uma sequência de redes neurais artificiais (ANNs, do inglês, artificial neural
networks). A cada passo de tempo, a ANN anterior transfere seu aprendizado para o próximo modelo de
rede, que aprende a solução no tempo corrente pela minimização de uma função de perda baseada na
aproximação pelo esquema θ da equação de Burgers. Para testar esta abordagem, apresentamos sua
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aplicação a dois problemas padrões com soluções anaĺıticas conhecidas. Em comparação com os
modelos clássicos de PINNs, a abordagem proposta tem a vantagem de exigir arquiteturas de redes
neurais menores com precisão semelhante e potencialmente diminuir os custos computacionais.
Palavras-chave: Equação de Burgers; Redes neurais informadas pela f́ısica; Método de Euler expĺıcito;
Método de Euler impĺıcito; Método de Crank-Nicolson

1 INTRODUCTION

Burgers’ equation is found in modeling fluid dynamics, gas dynamics, shock
theory, cosmology, among others (Bonkile et al., 2018). It is widely used for testing the
mathematical and numerical analysis of convective-diffusive differential equations
(Konzen et al., 2017). We consider the viscous Burgers equation with initial and
Dirichlet boundary conditions, given by
ut + uux = νuxx, (t, x) ∈ (0, tf ]× (0, 1) (1a)
u(0, x) = u0(x), x ∈ [0, 1], (1b)
u(t, 0) = u(t, 1) = 0, t ∈ [0, tf ], (1c)
For example, in a fluid dynamics application, it models the velocity u = u(t, x) (m/s) in
time t ( s) and point x (m), of a fluid with kinematic viscosity ν (m2/s).

In this work, we investigate the application of physics-informed neural networks
(PINNs) with a transfer learning approach using the θ-scheme to solve the Burgers’
equation. PINNs (Raissi et al., 2019) are deep learning techniques (Goodfellow et al.,
2016) for solving partial differential equations (PDEs). Recently, they have been applied
to solve many important problems, such as incompressible Navier-Stokes equations
(Jin et al., 2021; Raissi et al., 2018), Euler equations for high-speed aerodynamic flows
(Mao et al., 2020), heat transfer problems (Cai et al., 2021), and the advection equation
(Vadyala et al., 2022).

For a time-dependent PDE, the classical PINN consists of a multilayer perceptron
(MLP) neural network (Haykin, 2009) that learns the solution u(t, x) from the governing
equations. Usually, the MLP has input (t, x) and output u(t, x), or input x and output
uuu(x) =

{
u
(
t(k), x

)}nt

k=0
for given nt steps in time. Here, we investigate the application of

an adaptation approach to PINN, in which the solution is given by a sequence of MLPs,
one at each time step t(k). Given the initial condition, a first MLPN (0) learns the solution
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at t(0) = 0 by training to estimate the initial condition u0 = u0(x). Then, given the time
step size ht > 0, the modelN (0) transfers its learning to a second MLPN (1) , which learns
the solution in t(1) = ht by training based on the θ-scheme of the Burgers’ equation. This
is an iterative process, where the k-th model N (k) transfers its learning to start the next
model N (k+1) , which learns the solution in time t(k+1) through the θ scheme.

Next, we present details about the PINNs approach with transfer learning by the
θ scheme. Then, results for test cases are discussed. Finally, we present some final
considerations.

2 PINNs

PINNs are deep learning techniques for solving partial differential equations
(PDEs). The solution is learned by an artificial neural network (ANN) following a
supervised learning approach that incorporates the PDE (governing equation, initial
and boundary conditions) into the loss function. Here, we describe an alternative PINN
approach, where a sequence of multilayer perceptrons (MLPs), one for each discrete
time, is trained with a θ transfer learning scheme.
2.1 Multilayer perceptron

In this work, we consider an MLP type neural network
ũ = N

(
x;
{(

W (l), bbb(l), fff (l)
)}nl

l=1

) (2)
where the triple (W (l), bbb(l), fff (l)

) denotes the weights W (l), the biases bbb(l) and the activation
function fff (l) in the l-th layer of the network, l = 1, 2, . . . , nl, nl = nh + 1, with nh a given
number of hidden layers. As a deep learning technique, the output of the network is
computed through successive compositions
aaa(l) = fff (l)

(
W (l)aaa(l−1) + bbb(l)

)
, (3)

with input a(0) = x, output a(nl) = ũ and l = 1, 2, . . . , nl. Assuming the necessary
smoothness of fff (l), the derivatives ũx and ũxx can be computed by automatic
differentiation as an application of the chain rule (Ketkar & Moolayil, 2021).
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2.2 θ-scheme

The θ-scheme for Eq. (1) consists in the iteration
ũ(0)(x) = u0(x), (4a)
ũ(k) = ũ(k−1) + (1− θ)ht

(
νũ(k−1)

xx − ũ(k−1)ũ(k−1)
x

)
+ θht

(
νũ(k)

xx − ũ(k)ũ(k)
x

)
, (4b)

ũ(k)(0) = ũ(k)(1) = 0, (4c)
where ũ(k)(x) ≈ u

(
t(k), x

) at each discrete time t(k) = kht, k = 0, 1, 2, . . . , nt, with time step
ht = 1/nt, for a given number of time steps nt. Choosing θ = 0 we have the explicit Euler
scheme, with θ = 0.5 we have the Crank-Nicolson scheme and for θ = 1 we have the
implicit Euler scheme.

The proposed PINN with θ transfer learning scheme consists of training a
sequence of MLPs ũ(k)(x) = N (k)(x), k = 0, 1, 2, . . . , nt, with the input x and the output
being the estimate of ũ(k)(x).

For the initial condition Eq. (4a), the neural network N (0) is trained to minimize
the loss function
L0 :=

1

ns

ns∑
s=1

∣∣ũ(0)(xs)− u0(xs)
∣∣2 , (5)

whith ns samples 0 ≤ xs ≤ 1. Sequentially, k = 1, 2, . . . , nt, the knowledge of N (k−1) is
transferred to N (k), which is trained to minimize the loss function

L :=
1

ns − 2

ns−2∑
s=1

∣∣R (x; ũ(k), ũ(k−1)
)∣∣2 + 1

2

(∣∣ũ(k)(0)
∣∣2 + ∣∣ũ(k)(1)

∣∣2) , (6)

where R denotes the residual
R
(
x; ũ(k), ũ(k−1)

)
:= ũ(k) − (1− θ)ht

(
νũ(k−1)

xx − ũ(k−1)ũ(k−1)
x

)
− θht

(
νũ(k)

xx − ũ(k)ũ(k)
x

)
. (7)

The derivatives are computed directly from the neural network by automatic
differentiation.

The basic algorithm of PINN with transfer learning by the θ-scheme is summarized
as follows:
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0. Set the number nt and the size ht of the time step.

1. Set the architecture N (0).

2. Train N (0) to minimize the initial loss function Eq. (5).

3. For k = 1, 2, . . . , nt:

a. Set θ.
b. (Transfer learning.) N (k) ← N (k−1).
c. Train N (k) to minimize the loss function Eq. (6).

In the end, the approach provides the sequence of MLPs {N (k)
}nt

k=0
, each providing the

estimated solution ũ(k)(x) ≈ u
(
t(k), x

) of the Burgers’ equation (1). Normally, there is no
need to store the entire sequence, and the algorithm requires the storage only of N (k)

and N (k−1) in each iteration.
2.3 Implementation details

We carried out implementations in Python language of neural network models
with the help of the PyTorch library (Stevens et al., 2020). The model considered is an
MLP with an architecture 1− nn × nh − 1, one input, nh hidden layers, each with nn units,
and one output. A study on the choices of nh and nn was presented in the work of (Biesek
& Konzen, 2023). In the hidden layers, the hyperbolic tangent is used as the activation
function and in the output layer the identity function. The models are trained using
the Adam method (Kingma & Ba, 2014) as an optimizer. As a training stopping criteria,
we assume L0,L < 10−6, and a maximum number of 5000 epochs (the calculation was
performed using 32-bit float arithmetic).

3 RESULTS

Here, we present two benchmark problems to test the proposed approach. In the
first, the solution of the Burgers’ equation is a shock wave. The second is a rarefaction
problem.
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3.1 Problem 1: Shock wave problem

The firs problem has the initial condition
u0(x) = − sin(πx). (8)
In the article by (Basdevant et al., 1986), the following analytical solution is given

u(x) =
−
∫∞
−∞ sin(π(x− η))f(x− η)e−

η2

4νt dη∫∞
−∞ f(x− η)e−

η2

4νt dη
, (9)

where f(y) = e− cos(πy)/(2πν). We assume ν = 0.01/π.
We consider an MLP with structure 1− 50× 4− 1, one input, 4 hidden layers with

50 units in each layer, and one output. The modelN (k) receives the initial parameters of
N (k−1) and its training depends on the time step ht and the number of spatial samples
ns. In order to analyze the influence of such parameters, we performed numerical tests
varying them, for each scheme θ = 0 (explicit Euler), θ = 0.5 (Crank-Nicolson) and θ = 1

(implicit Euler). For θ = 0, Table 1 shows the results ne \ εrel, with ne being the total
number of epochs and εrel final value of the relative L2 error

εrel
(
t(k)
)
:=

∥∥ũ(k)(x)− u
(
t(k), x

)∥∥
2

∥u (t(k), x)∥2
, (10)

for k = nt, i.e. t = tf = 1. Due to the stochastic nature of the training method, each
test has been performed three times, and the average of the results are tabulated. In
Table 2 results are presented with the scheme θ = 0.5. Results for the θ = 1 scheme are
presented in Table 3.
Table 1 – Problem 1: Test of parameters with the explicit Euler scheme
ht\ns 20 200 2000

1E−1 −x− −x− −x−
1E−2 4E+4 \ 7.5E−4 6E+4 \ 2.1E−3 5E+4 \ 3.0E−4
1E−3 16E + 4 \ 1.7E−2 14E+4 \ 1.8E−2 1.3E+5 \ 9.0E−3

Source: the authors (2024)
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Table 2 – Problem 1: Test of parameters with the Crank-Nicholson scheme
ht\ns 20 200 2000

1E−1 1E+4 \ 2.8E−4 6E+4 \ 3.1E−5 4E+4 \ 4.2E−5
1E−2 4E+4 \ 1.4E−2 4E+4 \ 1.5E−3 3E+4 \ 1.5E−3
1E−3 15E+4 \ 4.0E−2 13E+4 \ 6.9E−3 14E+4 \ 4.2E−3

Source: the authors (2024)

Table 3 – Problem 1: Test of parameters with the implicit Euler scheme
ht\ns 20 200 2000

1E−1 −x− 4E+4 \ 4E−3 4E+4 \ 4E−3
1E−2 3E+4 \ 1E−3 3E+4 \ 2E−4 5E+4 \ 1E−3
1E−3 2E+5 \ 1E−2 14E+4 \ 3E−3 14E+4 \ 5E−3

Source: the authors (2024)

The results presented in Tables 1-3 indicate that transfer learning was effective
with all time steps in the Crank-Nicolson scheme. Euler’s schemes required an adequate
time step, and in the case of ht = 10−1, the learning of the networks failed to converge.
From the analysis of these results, we observed that ht = 10−2 and ns = 200 present a
good relationship between accuracy and learning cost.

Figure 1 shows the plots of PINNs solutions (with transfer learning schemes θ = 0,
0.5 and 1), with ns = 200 and ht = 10−2, versus the analytical solution (solid line) of the
problem for times t = 0.0, 0.1, 0.5, 0.9 and 1.0.

In comparison with the estimations reported by (Raissi et al., 2019) for this same
problem, we note that our proposed transfer learning approach produce similar results
with a similar MLP architecture. In the paper of (Raissi et al., 2019), an MLP 2− 20× 9− 1

was found to produce good estimations. In the next subsection we discuss on a problem
with discontinuous initial condition, where our proposed transfer learning approach has
feasible advantages in comparison with classical PINN schemes.
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Figure 1 – Problem 1: Comparisons of PINNs solutions with transfer learning versusanalytical solutions

Note: Solid line: analytical solution. Dashed line: PINN with explicit Euler scheme. Dotted line: PINN withCrank-Nicolson scheme. Dash-dotted line: PINN with implicit Euler scheme
Source: the authors (2024)

3.2 Problem 2: Rarefaction problem

The second test case is a rarefaction problem with initial condition
u0(x) = 2 sign (x) , x ∈ [a, b] = [−1, 1]. (11)
Assuming ν = 1, the analytical solution is given by (Benton & Platzman, 1972)
u(t, x) = 2

G(t, x)−G(t,−x)
G(t, x) +G(t,−x)

, (12)

where G(t, x) =
1

2
et−xerfc2t− x

2
√
t

. We consider the boundary conditions u(t, a) = ua and
u(t, b) = ub.
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This problem involves a discontinuity at x = 0 in the initial condition, which often
leads to MLP estimations with spurious oscillations near that point. To address this
issue, we opt not to train the N (0) model directly with the initial condition during the
training of N (1). Instead, we assume ũ(0) = u0. While this approach could be applied
to previous problems as well, it is noted that it comes with increased computational
demands. Hence, the preferable strategy is to initially train N (0) and then transfer its
acquired knowledge to N (1), particularly when the initial condition u0 exhibits sufficient
smoothness. In summary, when the initial condition is not smooth, the approach always
perform the first time step with the implicit Euler scheme.

Here, an MLP with architecture 1 − 30 × 3 − 1, one input, 3 hidden layers with
30 units per layer and one output, and fixing the time step as ht = 10−3, was enough
to achieve the expected tolerance for L < 10−5 with θ = 0.5 and 1. We observe that
it wasn’t possible to achieve the expected tolerance with the explicit Euler scheme, nor
with a time step bigger then ht = 10−3.

By performing the same tests as in the previous problem, we obtained the results
ne \ εrel shown in Table 4, where ne is the total number of epochs and εrel the final value
of the relative error L2 given by (10). Again, the average results of three rounds are
tabulated. The results show that the Crank-Nicolson and implicit Euler schemes have
similar accuracies.

Table 4 – Problem 2: Tests of Crank-Nicolson (CN) and implicit Euler (IE) schemes with
ht = 10−3.
ns 20 200 400

CN 1E+5 \ 4E−4 1E+5 \ 5E−5 1E+5 \ 5E−5IE 1E+5 \ 2E−4 1E+5 \ 6E−5 1E+5 \ 9E−5

Source: the authors (2024)

Figure 2 shows the graph of PINNs solutions (with transfer learning scheme θ = 0.5

and 1), with ns = 200 and ht = 10−3, versus the analytical solution (solid line) of the
problem for times t = 0.01, 0.10, 0.50, and 1.0.
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Figure 2 – Problem 2: Comparisons of PINNs solutions with transfer learning versusanalytical solutions

Note: Solid line: analytical solution. Dotted line: PINN with Crank-Nicolson scheme. Dash-dotted line:PINN with implicit Euler scheme
Source: the authors (2024)

3.2.1 Comparison on Classical PINNs

An classical PINN approach will seek the solution for the the Problem 2 by
assuming a MLP with inputs t, x and output ũ ≈ u(t, x). A common choice for the loss
function will involve the estimation of the initial condition. Because its discontinuity,
this is a not suitable task for a MLP, which is expected to produce estimations of u with
spurious oscillations for t near 0. An alternative also explored in the paper of (Raissi
et al., 2019), is to assume an MLP with input x and discrete time estimations as outputs
ũuu(x) ≈

(
u(k+1)(x)

)nt−1

k=0
, avoiding the estimations of the initial condition.

This last PINN approach estimates the solution just on discrete time steps, and
it can be trained by minimizing the residual of a discrete time method as the θ-scheme,
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some Runge-Kutta method or some other. By assuming the θ-scheme, one could impose
the following loss function

LPINN :=
1

(ns − 2)nt

ns−2∑
s=1

(∣∣∣R(1)PINN(xs)
∣∣∣2 + nt∑

k=1

∣∣∣R(k+1)PINN (xs)
∣∣∣2)

+
1

2nt

nt−1∑
k=0

(∣∣u (t(k+1), 0
)
− ũ(k+1)(0)

∣∣2 + ∣∣u (t(k+1), 1
)
− ũ(k+1)(1)

∣∣2) , (13)

where the implicit Euler would need to be imposed for k = 0, i.e.
R(1)PINN(xs) := ũ(1)(xs)− u0(xs)− ht

(
νũ(1)

xx − ũ(1)ũ(1)
x

)
. (14)

For k > 0, the θ-scheme will be applied by
R(k+1)PINN (xs) := ũ(k+1)(xs)− ũ(k)(xs) + (1− θ)ht

(
νũ(k)

xx − ũ(k)ũ(k)
x

)
− θht

(
νũ(k+1)

xx − ũ(k+1)ũ(k+1)
x

)
.

(15)

In comparison to our proposed transfer learning PINN, this approach has a
notable disadvantage. It requires bigger MLPs, since the number of outputs are nt,
which usually will be of order 102 − 104 (giving ht = 10−2 − 10−4). Based on the results
previous shown, we performed numerical tests with MLP of architectures
1 − 30 × 3 − nt, 1 − 30 × 6 − nt, and 1 − 60 × 3 − nt for nt = 100, 1000 and all failed to
produce suitable estimations with the classical PINN approach discussed above. It
indicates that a much bigger architecture is required, demanding a higher
computational cost (processing and memory), much related to the high cost of the
automatic differentiation computations.

4 CONCLUSIONS

In this work, we proposed the application of PINNs with transfer learning using the
θ-scheme to solve the viscous Burgers’ equation with homogeneous initial and Dirichlet
boundary conditions. The method consists of using MLPs to estimate the solution in
discrete time steps. As an iterative process, a first neural network model is trained to
learn the initial condition. Then, the knowledge is transferred to the next model, which
learns the solution in the next time step, minimizing the residual of the θ-scheme of
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the Burgers’ equation. The result is a sequence of neural network models that estimate
solutions to the problem in discrete times.

Compared to usual PINN models, the proposed approach has the potential to
require smaller neural network architectures with similar accurate results and,
consequently, reduce computational costs. The comparison between the schemes
θ = 0.0, 0.5 and 1, showed that all have a similar accuracy when convergence is
achieved. The explicit Euler scheme converged only with small enough time steps. For
the problem with discontinuous initial condition the approach has only converged with
the implicit and the Crank-Nicolson schemes.
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