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ABSTRACT

In this paper, we investigate the impact of epidemic spread in a SIR type model with saturation between
multiple interacting populations. The model is derived from an average threshold that considers multiple
agents. Theoretical analysis confirms the model’s well-posedness, indicating that it possesses a unique
solution that varies continuously on the basis of the initial conditions and parameters. Additionally, we
conduct numerical simulations for a scenario involving two circulating strains, where we also explore
the scenario in which the disease mutates upon transmission, leading to increased transmissibility. A
comparison between the dynamics of the SIR model with and without saturation reveals that saturation
results in a milder disease dynamics.
Keywords: Saturated SIR model; Multi-Population dynamics; Diseases transmission; Predictions

RESUMO

Neste artigo, investigamos o impacto da propagação epidêmica em um modelo do tipo SIR com
saturação entre múltiplas populações em interação. O modelo é derivado de um limite médio que
considera múltiplos agentes. A análise teórica confirma a boa colocação do modelo, indicando que ele
possui uma solução única que depende continuamente das condições iniciais e parâmetros. Além disso,
realizamos simulações numéricas para um cenário envolvendo duas cepas circulantes, onde também
exploramos o cenário em que a doença sofre mutação durante a transmissão, levando ao aumento da
transmissibilidade. Uma comparação entre a dinâmica do modelo SIR com e sem saturação revela que a
saturação resulta em uma dinâmica mais branda da doença.
Palavras-chave: SIR saturado; Multiplas populações; Transmissão de doenças; Previsões
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1 INTRODUCTION

The occurrence of significant events that bring about profound changes in
human life globally triggers an ongoing quest for solutions and methods to anticipate
similar events in the future, as well as strategies for prevention Dhaoui et al. (2022).
Unsurprisingly, the global outbreak of the coronavirus pandemic sparked a worldwide
competition among researchers to develop epidemiological models that can elucidate
the patterns of contagion. This rush was so intense that conducting a comprehensive
review of recent literature became nearly impracticable Dhaoui et al. (2022). Broadly
speaking, the suggested models encompass SIR-type compartmental models Allen
(2007); Hethcote (2000); Kermack & Mckendrick (1927), statistical models Allen (2007),
agent-based models Kolokolnikov & Iron (2021), models that depict individuals
interconnected on a network Lazo & De Cezaro (2021); Marques et al. (2022,2);
Maurmann et al. (2023), and others.

The core of most mathematical models in epidemiology is based on SIR-type
compartmental models Allen (2007); Hethcote (2000); Lazo & De Cezaro (2021);
Marques et al. (2022,2); Maurmann et al. (2023). In these models, each of the n

(potentially different) populations is segmented into compartments, labeled as Si(t),
Ii(t), Ri(t), which indicate the proportion of the population i, for i = 1, · · · , n, that are
susceptible, infected, and recovered at time t ≥ 0, respectively. Assuming that the
disease spreads when a person from compartment Si(t) encounters someone from
compartment Ij(t), where the likelihood of this interaction is proportional to Si(t)Ij(t)

with an infection rate denoted as βij , the conservation of mass principle implies that
the dynamics of the model should be described as

S ′
i(t) = −Si(t)

(
n∑

j=1

βij

Nj

Ij(t)

)
,

I ′i(t) = Si(t)

(
n∑

j=1

βij

Nj

Ij(t)

)
− γiIi(t) , (1)

R′
i(t) = γiIi(t) ,

where Ni = Si(t) + Ii(t) + Ri(t), for i = 1, · · · , n, represents the total population, which
remains consistent, and γi denotes the recovery rate. The model in Equation (1) is an
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SIR-type model designed for multiple populations that have interactions with each other,
as discussed in Lazo & De Cezaro (2021); Marques et al. (2022,2); Maurmann et al. (2023)
and related literature. In Lazo & De Cezaro (2021); Marques et al. (2022,2), the authors
show that the multi-population SIR model (1) presents a plateau-like behavior in the
total infected population as n is large and the population density is decreasing. This
phenomenon is not observed in the classical SIR models without control strategies, e.g.
Allen (2007); Hethcote (2000), since the population is considered homogeneous.

If we take into account a crucial aspect of dynamics where Λi represents the rate
at which new individuals are recruited due to birth or immigration into the susceptible
population, and mi denotes the fixed death rate, then the model described by
Equation (1) can be expressed as

S ′
i(t) = Λi − Si(t)

(
n∑

j=1

βij

Nj

Ij(t)

)
−miSi(t) ,

I ′i(t) = Si(t)

(
n∑

j=1

βij

Nj

Ij(t)

)
− (γi −mi)Ii(t) , (2)

R′
i(t) = γiIi(t)−miRi(t) .

The model (1) or model (2) needs to be taken into account along with the
subsequent initial conditions
Si(0) ≥ 0 , Ii(0) ≥ 0 , Ri(0) ≥ 0 . (3)

The SIR model in (1) or (2) assumes that the contacts between an infectious Ij

and susceptible individual Si, for i, j ∈ {1, · · · , n}, is given by the law of mass action in
chemistry, which results in the susceptible person becoming infected due to the random
”collision” (with zero distance) between infectious and susceptible individual, e.g. Allen
(2007). However, it is well known that many diseases are transmitted by airbone particle,
for example Influenza, Tuberculosis, Measles, Covid-19 among others, e.g. Kutter et al.
(2018), where susceptible individuals can be infected without a direct contact with an
infected individual. In other words, a susceptible individual can be infected even when
remains in a distance (not null) of infected individual, see Kolokolnikov & Iron (2021) for
some motivations regards the Covid-19 data and references therein.
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In this paper, we introduce a modification to the SIR (1) model that takes into
account the impacts of the spatial arrangement and population densities, as discussed
in Section 2. The proposed model extends existing models examined by Lazo &
De Cezaro (2021); Marques et al. (2022,2); Maurmann et al. (2023) and Kolokolnikov &
Iron (2021) by integrating the concept of infection saturation discussed in Kolokolnikov
& Iron (2021) into a model involving n ≥ 1 interacting populations as proposed in Lazo
& De Cezaro (2021); Marques et al. (2022,2); Maurmann et al. (2023). To our knowledge,
no model involving n interacting populations with saturation has been previously
proposed or examined in the literature. In Subsection 2.1, we will demonstrate the
well-posedness of the proposed model, indicating that it possesses a unique solution
that varies continuously based on the initial conditions and parameters. Section 3 will
present various numerical simulations of the model, incorporating assumptions about
the dynamics of a disease with multiple circulating strains. Finally, in Section 4, we will
summarize the key findings and suggest potential avenues for future research.

2 AGENT-BASED SIR MODEL

To determine the model, we will assume that every person in the population i,
where i ranges from 1 to n, acts as an agent. Each of these agents has a radius ri,
within which interactions occur between agents from compartments Si and Ij in the
same region. These interactions, which last an average time µij , lead to the spread of
infection with a probability pij .

Given the uniformity within each population (though not necessarily throughout
the population), the probability of a susceptible individual from group i coming into
contact with an infected individual from group j (where i, j = 1, · · · , n) can be expressed
as aij = pijr

2
jπ/Aj , with Aj representing the general area inhabited by population j.

The following lemma defines the model presented below as an agent-based
mean field model, extending the findings in Kolokolnikov & Iron (2021) to n interacting
populations.
Lemma 2.1. Let rj be significantly smaller compared to the size of Aj . Then the probability

of an individual Si getting infected by an infected agent Ij is determined by µij(1 − (1 −

aij)
Ij) . Specifically, if 0 < aij << 1, which occurs when rj << Aj , then µij(1 − (1 − aij)

Ij) is

approximately equal to µij(1− exp(−aijIj)).
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Proof. Let Eij represent the probability that an individual from Si is located within a
radius circle rj of an individual from Ij . In such cases, the probability of transmission
is determined by pijEij . It is important to note that Eij denotes the proportion of the
total area covered by the combined disks of Ij , where j = 1, · · · , n. When rj is small,
Eij is approximately equal to aijIj . As the population within Ij grows, the circles start to
overlap, causing Eij to eventually reach a saturation point with a probability of 1.

Claim: Eij = ajij .
The claim is proved by employing induction in j while keeping i ∈ {1, · · · , n} fixed.

When j = 1, Ei1 represents the probability that an individual of Si is within the disk of
radius ri1, with an area of ai1 = πr2i1/Aj . Therefore, Ei1 = ai1. Subsequently, Ei2 denotes
the anticipated area of overlap of two disks of radius rij , and so forth. Consequently,
Eij = C(aij)

j . As aij = 1 leads to Eij reaching a maximum value of 1, it follows that c = 1.
Thus, Eij = −

∑
k=1 IjC(Ij; k)a

k
ik = 1− (1− aij)

Ij , where C(Ij; k) is the combination
of the area of all circles of radius rij , without intersections.

It follows from Lemma 2.1, that the agent-based multi-population SIR model, with
vital dynamics is given by

S ′
i(t) = Λi −

n∑
j=1

µij (1− exp(−aijIj(t)))Si(t)−miSi(t) ,

I ′i(t) =
n∑

j=1

µij (1− exp(−aijIj(t)))Si(t)− (γi +mi)Ii(t) , (4)
R′

i(t) = γiIi(t)−miRi(t) .

The model (4) will be examined with the initial conditions specified in (3).
It should be noted that the model (4) is an extension of the model examined in

Kolokolnikov & Iron (2021) and Lazo & De Cezaro (2021); Marques et al. (2022,2);
Maurmann et al. (2023) because it considers n ≥ 1 interacting populations with
saturation. Furthermore, the proof of Lemma 2.1 demonstrates that the model (4) is a
generalization of a Reed-Frost model, as shown, for example, Abbey (1952); Mistro &
Rodrigues (2021) and the related literature.

In the following, we state the relation between the saturated SIR model (4) to the
SIR model without saturation 2.
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Remark 2.1. Suppose that the population affected, denoted as Ij(t), is relatively low. By

applying the Taylor approximation, it can be deduced that 1 − exp(aijIj(t)) ≈ aijIj(t).

Consequently, the model (4) can be considered identical to the model 2 when βij = µijaij .

2.1 Well-posedness

In the forthcoming discussion, we will demonstrate the well-posedness of the
SIR model with saturation for multiple interacting populations (4), given the initial
conditions (3). To accomplish this, we refer to
U(t) = (S1(t), I1(t), R1(t), · · · , Sn(t), In(t), Rn(t))

T , a vector comprising 3n coordinates that
represents a feasible solution for the model (4). Furthermore, we will denote F (t, U(t))

as the vector function that embodies the right-hand side of the model (4), with its
components corresponding to the respective equations in the system (4).

The first result is a lemma that will help to demonstrate the main result.
Lemma 2.2. Assuming that the model 4 satisfies the general assumptions, consider N(t) =∑n

i=1 Ni(t), where Ni(t) represents the total population of individuals in group i ∈ {1, · · · , n}.

It is assumed that mi ≥ M for all i ∈ {1, · · · , n}. Consequently, N(t) is bounded uniformly.

Proof. Summing up all the equation in model (4) results in

Ṅ(t) =
n∑

i=1

Ṅi(t) =
n∑

i=1

Λi −
n∑

i=1

miNi(t) . (5)

Let Λ = maxi∈{1,··· ,n} Λi and M = mini∈{1,··· ,n}mi. Hence, we get
Ṅ(t) = nΛ−MN(t) . (6)

Therefore, the Gronwall inequality (see Techl (2012)) implies that
N(t) ≤ n

Λ

M
+N(t = 0)e−M . (7)

Remark 2.2. The assumption in Lemma 2.2 that mi ≥ M , for every i ∈ {1, · · · , n}, is not

limiting. If mi = 0 for some i, then according to the comparison principle Techl (2012), it can

be deduced that the solution of model (4) with mi = 0 is less than the solution with mi > 0.
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Lemma 2.3. Let F (t, U(t)) be defined as mentioned above. The Jacobian matrix of F (t, U(t)),

denoted by J(t, U(t)), consists of all elements given by continuous functions in terms of t.

Consequently, it is uniformly continuous in any interval t ∈ [0, T ], for any T > 0. Furthermore,

there exists a positive constant L such that J(t, U(t)) ≤ L. Additionally, there exist constants

C1, C2 ≥ 0 such that

∥F (t, U(t))∥ ≤ C1 + C2∥U(t)∥ . (8)
Proof. The calculations for the first three rows of the Jacobian matrix J(t, U(t)) will be
demonstrated, and the results for the remaining rows are similar.

Note that ∂f1(t,U(t))
∂Sj(t)

= −µ11

∑n
j=1 (1− exp(−a1jIj(t)))−mj if j = 1 and zero otherwise.

Furthermore, ∂f1(t,U(t))
∂Ij(t)

= µ11a1jS1exp(−a1jIj(t)) and ∂f1(t,U(t))
∂Rj(t)

= 0 for all j = 1, · · · , n. Now,
∂f2(t,U(t))

∂Sj(t)
= −∂f1(t,U(t))

∂Sj(t)
, ∂f2(t,U(t))

∂Ij(t)
= −∂f1(t,U(t))

∂Ij(t)
− ζj , where ζj = (γ1 +m1) for j = 1 and zero

otherwise. Finally, ∂f3(t,U(t))
∂I1(t)

= γ1, ∂f3(t,U(t))
∂R1(t)

= m1 and all other partial derivatives are null.
Due to the boundedness of N(t) as stated in Lemma 2.2, it can be inferred that

the lemma holds.
The following statement serves as a supporting outcome for the subsequent

Theorem.
Proposition 2.1. The function F (t, U(t)) is continuous for t in the interval [0, T ] and is

Lipschitz continuous with respect to U(t) for any T > 0.

Proof. From the definition of the model (4) that each row of F (t, U(t)) is composed of
sums and products of continuous functions. Therefore, F (t, U(t)) is continuous with
respect to t ∈ [0, T ]. Furthermore, it follows from Lemma ?? that each coordinate of the
Jacobian matrix J(t, U(t)) is composed of continuous functions in [0, T ].

Moreover, it follows form the Mean Value Theorem Sotomayor (1979) and
Lemma 2.3 that there is Z(t) between U(t) and Ũ(t) such that

∥F (t, U(t))− F (t, Ũ(t))∥ ≤ ∥J(t, Z(t))(t)∥∥U(t)− Ũ(t)∥ ≤ L∥U(t)− Ũ(t)∥

thus guaranteeing Lipschitz continuity of F (t, U(t)).
Now we can prove the main theoretical result of this work.
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Theorem 2.1. Assume that the hypotheses of Proposition 2.1 are true. Then:

i) There is a unique continuous solution U(t) for the model (4)-(3), for all t ∈ [0, T ]. This

solution depends continuously on the initial conditions (3) and the model

parameters (4).
ii) The solution u(t) can be continuously extended to the non-negative real line.

Proof. It follows from Proposition 2.1 that F (t, U(t)) is continuous with respect to t and
Lipschitz continues with respect to U(t), for any t ∈ [0, T ]. Therefore, it follows from
Picard’s Theorem and Gronwall’s inequality Techl (2012) the existence of a continuous
solution U(t), as stated in the Theorem, item i). Furthermore, Lemma 2.3 guarantee the
linear growth of ∥F (t, U(t))∥ (see the inequality (8)). Therefore, it follows from (Techl,
2012, Theorem 2.17) that item-ii) is true.

3 NUMERICAL SIMULATIONS

In this section, we will present the results of several numerical simulations of the
model (4), considering the initial conditions (3), when dealing with two interacting
populations (n = 2). The solutions were numerically approximated for the simulated
scenarios using the fourth-order Runge-Kutta method Ascher & Greif (2011), on a
uniform grid with a step size of h = 10−2. The numerical solver is implemented in
MATLAB, running on an Windows 10 operational system 64 bits. We chose the
fourth-order Runge-Kutta since it is easy to implement and reduces the stiffness effect
in the simulations. However, according to Silva et al. (2023), some implicit numerical
scheme shall be used.

The simulations presented in the following are performed under the scenario
where both populations are symmetric, each with a total population of N1 = N2 = 500.
The interaction between these populations is reciprocal, denoted by µ12 = µ21 = 0.01.
Furthermore, the recovery rate is assumed to be γj = 0.05 for both populations, while
Λi = µi = 0.001 is considered. The authors have deliberately selected these parameters
in all simulations to reflect the implications of incorporating saturation into a
multi-population model, drawing from the parameters derived in Kolokolnikov & Iron
(2021).
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3.1 The impacts where the diseases originated

Here, we discuss how the initial conditions influence the dynamics. Specifically,
the simulations illustrate the consequences of the disease’s point of origin and
subsequent transmission.
SCENARIO 1: This scenario is represented in Figure 1 in which we present the scenario
in which the disease begins in population 1 (I1(0) > 0) while, at the beginning of the time,
population 2 is free from the disease (I2(0) = 0). In this way, the initial conditions are
considered to be S1(0) = S2(0) = 500, I1(0) = 10, I2(0) = 0, R1(0) = R2(0) = 0. We will also
assume that the radius rj = 0.1, while pj = 0.5, that is, each encounter has a 50% chance
of infecting an individual. These parameters correspond to aj = 0.0157, for j = 1, 2. In
this case, the infected populations are denoted by Ij(t), for j = 1, 2

Figure 1 – Dynamics of infected population in the scenarios presented in SCENARIO 1
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Source: the authors (2024)
Figure 1 also illustrates a scenario where the disease, after being transmitted from

population 1 to population 2, mutates or undergoes another process that increases its
transmissibility. This leads to r∗2 = 2r2 and µ∗

21 = 2µ21, as well as r∗∗2 = 4r2 and µ∗∗
21 = 4µ21.

The other parameters remain constant as previously defined. In this case, the solution
for the infected population is denoted by I∗j (t) and I∗∗j , where j = 1, 2, respectively.
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The findings illustrated in Figure 1 indicate that the mutation, which increases
transmissibility, predominantly affects population 2, with the behavior of population 1
remaining largely unchanged.
SCENARIO 2: This situation is shown in Figure 2, where we illustrate a scenario in which
the disease starts in population 2 (I2(0) > 0), while population 1 is disease-free at the
initial time (I1(0) = 0). Initially, the conditions are set as S1(0) = S2(0) = 500, I1(0) = 0,
I2(0) = 10, R1(0) = R2(0) = 0. The rest of the parameters and the simulated scenarios
(including mutations) are the same as described in SCENARIO 1.

Figure 2 – Dynamics of infected population in the scenarios presented in SCENARIO 2
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The findings illustrated in Figure 2 indicate independently if the diseases starts
in population 2, or in population 1 (compare with SCENARIO 1 presented in Figure 1)
the mutation, which increases transmissibility, predominantly affects population 2, with
the behavior of population 1 remaining largely unchanged. There is a diminute shift to
the left in the dynamics of infection in simulated SCENARIO 2 compared to SCENARIO 1,
mainly due to the initial conditions and the high infection rate in the population where
the disease starts.
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In light of the findings of SCENARIO 1 and 2, it can be inferred that the dynamic
response of the infected population is not influenced by the initial conditions of the
model (2).
3.2 Comparison between the dynamics of the SIR model with and without

saturation

In this section, we provide a comparison of the dynamics in the simulation
scenarios for the SIR model with saturation as specified in (4) and the SIR model
without saturation as shown in (2).

SCENARIO 3: The situation illustrated in Figure 3 depicts the behavior of the group of
people who are infected, considering the starting conditions and the factors specified
in SCENARIO 1. This is based on the SIR model with saturation (4) and the SIR model
without saturation, as shown in (2). The connection between the contagious rates
between the models is detailed in Remark 2.1.

Figure 3 – Dynamics of infected population presented in SCENARIO 3. The notation Ij(t)represents the dynamics for the infected population of the SIR model (4) withsaturation, while the notation w.s.Ij(t) represents the dynamics of the infectedpopulation for the SIR model (2) without saturation, for j = 1, 2, respectively
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Figure 3 illustrates that diseases spread more rapidly and affect a larger number
of individuals at peak when the model without saturation (model (2)) is taken into
account. On the other hand, the saturation in dynamics causes the infection in
populations to take longer to vanish.

In Figure 4, we present the behavior of the infected populations in the scenarios
with and without saturation in the dynamics. The comparison between those dynamics
in the SIR model reveals that the saturation results in a milder disease dynamics when
compared with the SIR model without saturation.

Figure 4 – Dynamics of infected population presented in SCENARIOS 1 to 3. Thenotation Ij(t), I
∗
j (t) and I∗∗j (t) represents the dynamics of the infected population of theSIR model (4) with saturation, while the notation w.s.Ij(t), w.s.I

∗
j (t) and w.s.I∗∗j (t)represents the dynamics of the infected population for the SIR model (2) withoutsaturation, for j = 1, 2, respectively
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(a) Comparison of the dynamicsfor the infected population inpopulation 1
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(b) Comparison of the dynamicsof the infected population inpopulation 2
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(c) Comparison of the dynamicsof the infected population in thepopulation without mutations inpopulation 2
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4 CONCLUSIONS

In this paper, we investigate the impact of epidemic spread in a model of SIR
type with saturation among multiple interacting populations. The model proposed
here is derived from an average threshold that considers multiple agents, extending
the models examined in Kolokolnikov & Iron (2021) and Lazo & De Cezaro (2021);
Marques et al. (2022,2); Maurmann et al. (2023). Theoretical analysis confirms the
model’s well-posedness. Additionally, we conduct numerical simulations for a scenario
involving two interacting populations, where we also explore the scenario where the
disease mutates upon transmission, leading to increased transmissibility. A
comparison between the dynamics of the SIR model with and without saturation
reveals that saturation results in a milder disease dynamics.
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