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ABSTRACT

In this work, we propose and analyze the existence of synchronization/dissynchronization states of
in-phase and coupled oscillators that model the influence of external factors such as pain on the
biological rhythms of sleep-wakefulness and body temperature under the memory effect. We show the
well-posedness of the proposed model and derive analytical solutions for the oscillator system in the
synchronized state. The theoretical results are accompanied by some numerical simulations that
indicate that the existence of memory contributes to the synchronization of the oscillator system.
Keywords: Circadian rhythms; Synchronization; Couple oscillators; Memory

RESUMO

Neste trabalho propomos e analisamos a existência de estados de sincronização/dessincronização de
osciladores em fase e acoplados que modelam a influência de fatores externos como a dor nos ritmos
biológicos do sono-v́ıgilia e temperatura corporal sob o efeito de memória. A memória é incorporada no
modelo pelas derivadas de ordem fracionária do tipo Caputo. Mostramos a boa colocação do modelo
proposto e derivamos soluções anaĺıticas para o sistema de osciladores no estado de sincronia. Os
resultados teóricos são acompanhados por algumas simulações numéricas que indicam que a
existência de memória contribui para a sincronização do sistema de osciladores.
Palavras-chave: Ritimo circadiano; Sincronização; Osciladores acoplados; Memória
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1 INTRODUCTION

Circadian rhythm, which is associated with our internal biological clock, is a
natural biological process that presents endogenous and adaptive oscillations around
a 24-hour period (Klerman & Hilaire, 2007; Moore-Ede et al., 1983). Although
endogenous, the circadian rhythm adjusts to external stimulus called zeitgebers1, which
include luminosity, temperature, among others. Circadian rhythm is responsible for
monitoring the cycle of activities and regulating the material and psychological
rhythms of human beings, influencing digestion while awake, cell renewal, among
other functions (Bumgarner et al., 2021; Neves et al., 2022; Palada et al., 2020; Walker
et al., 2020; Wang et al., 2022).

Examples of rhythms that occur in the body include sleep-wake, body
temperature, hormone levels, blood pressure, and pain. These rhythms usually change
in a predictable manner with a specific period and frequency, resulting in a repeating
pattern or a cycle of changes known as synchronization (Klerman & Hilaire, 2007;
Strogatz, 1987, 2000; Tass, 1999). Desynchronization, which is a change in the timing of
biological rhythms, can modify the performance of several essential processes, such as
metabolism, hormone levels, sleep, and body temperature, and is responsible for
health problems in humans, including cognitive problems, obesity, diabetes, and
cancer, among others (Bumgarner et al., 2021; Neves et al., 2022; Palada et al., 2020;
Walker et al., 2020; Wang et al., 2022).

The sleep-wake cycle and body temperature are usually in sync with the natural
light in the environment. However, certain modern lifestyles can disrupt this
synchronization, such as shift work, jet lag, or excessive use of social media (Walker
et al., 2020; Wang et al., 2022). Pain is another factor that can cause desynchronization,
as demonstrated by (Bumgarner et al., 2021; Palada et al., 2020) and the references
therein.

The circadian rhythm has the ability to adapt to the local environment, given the
action of external stimulus called zeitgebers2. A classic example is the ability of people
to synchronize their biological rhythm after experiencing jet lag. Furthermore, the
repetition of certain behaviors and routines in the new environment, under

1Zeitgebers, from the German “time giver”.2Zeitgebers, from the German “time giver”.
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appropriate lighting conditions, speeds up the process of synchronizing the circadian
rhythm. This is the case, for example, of a person who goes to bed and gets up the
same “time” that they usually do, even though they are in another time zone. Thus,
zeitgebers function as a memory trigger that our circadian rhythm acquired during
evolution and vice versa. In this work, we use memory as a synonym for the ability to
retain and evoke information, characteristics present consciously or subconsciously in
living beings, mainly in humans (Silverthorn, 2018). Therefore, when we talk about
memory, we refer to whether or not an organism knows the existence of a past
behavior and has information about what the behavior was like.

Gaining insight into the impact of the pain phenomenon and the respective
memory of circadian rhythms on the synchrony of body rhythms can help improve
people’s quality of life. In this paper, we present a mathematical model to investigate
the external influences of pain on the synchronization of sleep-wake cycles and body
temperature in a model with memory. Although modeling provides a caricature of the
underlined phenomena, it could provide some guidance for medical advice. The
proposed methods use the fact that the circadian rhythms of sleep-wake, temperature,
and eventually pain have a periodic oscillatory behavior. Hence, we assume that each
of the circadian rhythms of interest is in phase oscillators coupled in a network
(three-body coupling problem) by constant coupling forces. Memory is assumed to be
imputed in the model by the Caputo fractional derivative in the dynamics. We show
that the proposed model describes the essential properties of the investigated
circadian rhythms, from which interesting properties can be deduced.
Literature overview: Synchronization of phase-coupled oscillators is a topic of
research in many scientific fields, and a complete literature overview becomes almost
impossible. Some examples can be found in (Bard et al., 2019; Bick et al., 2019; Cai
et al., 2022; Dörfler & Bullo, 2014,1; Kuramoto, 1984; Pikovisky et al., 2001; Rodrigues
et al., 2016,1; Strogatz, 1987, 2000; Tass, 1999) and references therein. Applications
related to the framework presented in this article are modeling of problems in
neuroscience, neurological treatments, psychological treatments, cardiac markers, and
circadian rhythms, as demonstrated in (Cai et al., 2022; Contessa & Cezaro, 2017;
Dörfler & Bullo, 2014; Glaeser et al., 2023b,1; Pikovisky et al., 2001; Strogatz, 1987; Tass,
1999).
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The modeling of the sleep-wake cycle and body temperature as two coupling
oscillators was first proposed in (Strogatz, 1987). The sinc/dessyncronization results in
(Strogatz, 1987) were generalized in (Glaeser et al., 2023b; ?) assumed that the
dynamics of the two coupling oscillators (sleep-wake cycle and body temperature)
have memory (fractional circadian rhythms). The authors of (Glaeser et al., 2018)
proposed the use of multi-agent simulation techniques to investigate the relationship
between circadian rhythm synchronization and pain effects. In (Glaeser et al., 2023a)
analytical results for the sinc/dessyncronization for the coupling oscillator model of the
sleep-wake cycle and body temperature influenced by pain (PIM model) were obtained.
Since the dynamics in the model proposed in (Glaeser et al., 2023a) was based on
integer derivatives (that is, a local operator), no memory was considered.

Main contributions: In this manuscript, we generalize the results obtained by the
authors in (Glaeser et al., 2023a), for the PIM model with memory. Memory is assumed
to be input into the model by a Caputo-type fractional dynamics of the coupling
oscillators.

The results are distributed in the manuscript as follows: In Section 2, we will
introduce the fractional dynamic PIM model. It is characterized by a topology of
phase-coupled oscillators that characterize sleep-wake, body temperature, and pain,
where the dynamics of iteration is driven by fractional derivatives of Caputo type. In
Subsection 2.1, we show the well-posedness of the fractional PIM model. We also show
why the proposed model has memory. Section 3, we derive sufficient conditions for
partial and total synchronization for the proposed fractional PIM model. In Section 4,
we provide numerical evidence to support the theoretical findings discussed earlier.
The last section of this contribution is Section 5, which is devoted to the final
conclusions and potential future developments.

2 MODELING THE CIRCADIAN RHYTHM AS A SYSTEM OF COUPLED
OSCILLATORS WITH FRACTIONAL DYNAMICS

From a modeling perspective, the periodic fluctuations seen in the circadian
rhythm of sleep-wake, temperature, and pain suggest that coupled oscillator systems
are excellent models for describing the fundamental characteristics of biological
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rhythms. These were the main arguments used by (Strogatz, 1987) in its seminar
paper. Here, we adopt a similar strategy, assuming that the interactions of the
circadian rhythms of sleep-wake, temperature, and pain are given, respectively, by the
phase oscillators θ1(t), θ2(t) and θ3(t) that are weakly coupled to each other (as
represented by Figure 1).
Figure 1 – Fractional PIM model

Source: The authors
Caption: Coupling form of phase oscillators that describe the biological rhythm of body temperature θ1(t),sleep-wake θ2(t) and pain θ3(t).

Moreover, the dynamics interaction consists of three oscillators mutually coupled
and moving in a counterclockwise direction, given by

Dαθ1(t) = ωα
1 −Bα

1 cos(2π(θ2(t)− θ1(t)))− Cα
1 cos(2π(θ3(t)− θ1(t))) (1)

θ2(t) = 0 (2)
θ3(t) = 0, (3)

for t ∈ [0, f3[,
Dαθ1(t) = ωα

1 −Bα
1 cos(2π(θ2(t)− θ1(t)))− Cα

1 cos(2π(θ3(t)− θ1(t))) (4)
θ2(t) = 0 (5)

Dαθ3(t) = ωα
3 + Aα

2 cos(2π(θ1(t)− θ3(t)))−Bα
2 cos(2π(θ2(t)− θ3(t))), (6)
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for t ∈ [f3, f2[ e
Dαθ1(t) = ωα

1 −Bα
1 cos(2π(θ2(t)− θ1(t)))− Cα

1 cos(2π(θ3(t)− θ1(t))) (7)
Dαθ2(t) = ωα

2 + Aα
1 cos(2π(θ1(t)− θ2(t))) + Cα

2 cos(2π(θ3(t)− θ2(t))) (8)
Dαθ3(t) = ωα

3 + Aα
2 cos(2π(θ1(t)− θ3(t)))−Bα

2 cos(2π(θ2(t)− θ3(t))). (9)
for t ≥ f2.

In (1)-(9), ωi = τ−1
i is the intrinsic frequency and τi is the period in hours of the

oscillator i = 1, 2, 3. The positive parameters Al, Bl and Cl, with l = 1, 2, are the coupling
strengths that determine how much each oscillator influences the others. Note that
some coupling force parameters may be preceded by a negative signal since the
oscillators move in a counterclockwise direction. Furthermore, Dα(·) is the Caputo
fractional derivative operator (Diethelm, 2004), of order α ∈]0, 1]. All the model
parameters in (1)-(9) are raised to the power of the order of derivatives α, so that the
time corresponds to (time)−1, see (Diethelm, 2004).

The model (1)-(9) assumes that sleep time is defined as a fraction f2 of the
oscillator θ2(t). Therefore, θ2(t) = 0 for any 0 < t < f2. As a result, we have θ2(t = 0) = 0

as the corresponding initial condition. When the vigil begins, we have θ2(t = f2) = F2.
The absence of pain, that is, when an organism does not present pain, will be defined
by a fraction f3 of the cycle θ3(t). We then assume that pain does not occur throughout
the interval [0, f3[, consequently, θ3(t) = 0 for any 0 < t < f3. It results in the initial
condition θ3(t = 0) = 0. When pain arises, we have θ3(t = f3) = F3. It is important to
emphasize that the values f2 and f3 are not necessarily the same. To fix the ideas, we
assume that f2 > f3. The other cases can be analyzed in a similar way. The assumption
that f2 > f3 can interpret that pain manifests itself when the body is still in the sleep
stage. Finally, body temperature peaks in the late afternoon and then declines
significantly in the early morning hours (Hasting et al., 2003). Thus, at less than a scale
factor, we will assume that the initial condition θ1(t = 0) = 0 is satisfied.
2.1 Well-posedness for the fractional PIM model and memory effects

In this subsection, we will prove the well-posedness of the nonlinear fractional
system of three coupled oscillators (1)-(9) with homogeneous initial conditions and for
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orders of derivatives α ∈]0, 1].
Lemma 1. Let α ∈ ]0, 1]. Then

i) There is a unique continuous solution (θ1(t), 0, 0)
T for the fractional PIM (1)-(9) with

homogeneous initial conditions in the interval [0, f3].

ii) There is a unique continuous solution (θ1(t), 0, θ3(t))
T for fractional PIM (1)-(9) with

θ1(f3) = F3, θ2(f3) = θ3(f3) = 0 in the interval [f3, f2].

iii) There is a unique continuous solution (θ1(t), θ2(t), θ3(t))
T for fractional PIM (1) -(9) with

θ1(t = f2) = θ1(f2) and θ2(f2) = 0 and θ3(f2) = F2 for t > f2.

Proof. Since cos(X) ≤ 1 + |X|, it follows that the right-hand side of the system (1) -(9), is
continuous with respect to Lipschitz continuous with respect to the second argument
in any of the intervals of the lemma assertions. Therefore, from (Diethelm, 2004,
Theorems 8.7 - 8.11 ), it follows the existence and uniqueness of a continuous solution
(θ1(t), 0, 0) for some T ∗ > 0. Furthermore, (Diethelm, 2004, Corolary 6.3), guarantees the
continuous extension of the solution in [0, f3], concluding item i). In particular,
θ1(f3) := F3 is well defined. Repeating the same arguments as above, we arrive at the
conclusion stated at item ii) and iii), respectively.
Theorem 2. Let α ∈]0, 1]. Then fractional PIM (1)-(9) has a unique piecewise-continuous

solution.

The solution continuously depends on the initial conditions, the parameters of the

system, and the order of the derivatives α ∈ ]0, 1].

Proof. The existence and uniqueness follow from the lemma 1. The continuous
dependence of the solution on the initial conditions, the model parameters and the
fractional order α follows from (Diethelm, 2012, Theorems 6.7 - 6.11).

Next, we justify the ”memory” effect of the fractional derivatives in the dynamics
of the fractional PIM modelo (1)-(9).

It follows from the factional integration in each line of the model (1)-(9) with order
α that the solution θj(t) satisfies the Volterra system of equations.

θj(t) =
1

Γ(α)

∫ t

0

(t− s)α−1fj(s, θ1(s), θ2(s), θ3(s)))ds. (10)

Ci. e Nat., Santa Maria, v.47, spe. 1, e89844, 2025
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where fj corresponding the right function of the j-line on the hand side of the fractional
PIM model (1)-(9), for j = 1, 2, 3, respectively. Moreover, Γ(z) is the Gamma function
(Diethelm, 2004).

From (10), it follows that any of the coordinates θj(t) of the solution for the
fractional PIM model (1)-(9) is such that, for any time t1 ≤ t2,
θj(t2)− θj(t1) =

1

Γ(α)

∫ t1

0

[(t2 − s)α−1 − (t1 − s)α−1]fj(s, θ1(s), θ2(s), θ3(s))ds (11)
+

1

Γ(α)

∫ t2

t1

(t2 − s)α−1fj(s, θ1(s), θ2(s), θ3(s)))ds .

When α = 1, the expression within parentheses in equation (11) is zero, resulting
in the nullification of the first integral in equation (11). Therefore, to calculate the
solution θj(t) of the PIM model (with derivative of order 1 as studied in (Glaeser et al.,
2023a)) at t2, it depends only on the value of θj(t1) and the functions fj corresponding
to the right-hand side of (1)-(9). However, if α < 1, then the first integral does not
vanish in general. As a result, the history of the dynamics from 0 to t2 must be
considered to evaluate the solution θj(t2) of the fractional PIM model (1)-(9). This
phenomenon we call “memory”.

3 SYNCHRONIZATION FOR THE FRACTIONAL PIM MODEL

In this section, we will analyze the synchronization results for the fractional PIM
model (7)-(9).
Definition 1 ((Strogatz, 2000)). Two phase oscillators are said to be synchronized in the

interval [a, b] if and only if, for all t ∈ [a, b], the phase difference between the oscillators is

constant.

It follows from the Definition 1 and the results in Theorem 2 that synchronization
only makes sense for t ≥ f2, that is, when the equations of the fractional PIM model are
given by equations (7)-(9).

Ci. e Nat., Santa Maria, v.47, spe. 1, e89844, 2025
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3.1 Total synchronization for Fractional PIM Model

It follows from the Definition (1) that total synchronization occurs when θ1(t) =

θ2(t) + K2 = θ3(t) + K3. For simplicity, assume that K2 = K3 = 03. Therefore, it follows
from the equations (7)-(9) that the fractional PIM model, during synchronization, is such
that

Dαθ1(t) = ωα
1 −Bα

1 − Cα
1

Dαθ2(t) = ωα
2 + Aα

1 + Cα
2 (12)

Dαθ3(t) = ωα
3 + Aα

2 −Bα
2 .

Integrating on both sides of (13) with orderα and using the conditions that θ2(f2) =
F2, and θ3(f3) = F3, we obtain that the total synchronized solution is given by

θ1(t) =
(ωα

1 −Bα
1 − Cα

1 )

α Γ(α)
tα ,

θ2(t) =
(ωα

2 + Aα
1 + Cα

2 )

αΓ(α)
(t− f2)

α + F2 , (13)
θ3(t) =

(ωα
3 + Aα

2 −Bα
2 )

α Γ(α)
(t− f3)

α + F3 .

In the following, we will make some considerations about the total
synchronization for the fractional PIM model (7)-(9).

• The hipoteses that K2 = K3 = 0 above are the same as to translate the total
synchronized solutions of θ2(t) and θ3(t) to the origin. In these cases, we have
f2 = f3 = 0, as well as F2 = F3 = 0 in (13).

• For α = 1, (13) are the same conditions as obtained in (Glaeser et al., 2023a).

• Furthermore, since the Caputo fractional derivative of a constant is zero (Diethelm,
2004), it follows from (13) that, a sufficient condition for the total synchronization

3Otherwise, a change of variables θ̃j = θj(t)−Kj , for j = 2, 3 in the fractional PIM model (7)-(9) shall beconsidered, which does not affect the analyses.
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of the fractional PIM model, is given by
Aα

1 +Bα
1 = |ωα

1 − ωα
2 |

Aα
2 + Cα

1 = |ωα
1 − ωα

3 | (14)
Bα

2 + Cα
2 = |ωα

3 − ωα
2 |.

The conditions (14) are the generalized Winfree conditions for syncrhonization
(Strogatz, 2000).

3.2 Partial synchronization for the fractional PIM model

We will assume that two phase oscillators, θ1(t) and θ2(t), are synchronized with
each other, but not necessarily with the third, θ3(t). The other cases can be studied in
a similar way. According to Definition 1 (with K1 = 0), the dynamic equations of the
fractional PIM model, during such partial synchronization, fulfill

Dαθ1(t) = ωα
1 −Bα

1 − Cα
1 cos(2π(θ3(t)− θ1(t))) (15)

Dαθ2(t) = ωα
2 + Aα

1 + Cα
2 cos(2π(θ3(t)− θ2(t))) (16)

Dαθ3(t) = ωα
3 + Aα

2 cos(2π(θ1(t)− θ3(t)))−Bα
2 cos(2π(θ2(t)− θ3(t))). (17)

Since θ1(t) and θ2(t) are synchronized and the Caputo fractional derivative of a
constant is zero, hence, Dα(θ1(t)− θ2) = 0. Therefore, it follows from (15)-(16) that

ωα
1 − ωα

2 −Bα
1 − Aα

1 − Cα
1 cos(2π(θ3(t)− θ1(t)))− Cα

2 cos(2π(θ3(t)− θ2(t))) = 0. (18)
Define the phase difference as

ψ4(t) = θ1(t)− θ3(t) = θ2(t)− θ3(t). (19)
It follows from (18) and (19), that

ψ4(t) =
1

2π
arccos

Ω4 − E4

D4

, (20)
where Ω4 = ωα

1 − ωα
2 is the difference of the intrinsic frequencies of the synchronized

oscillators; E4 = Aα
1 + Bα

1 is the sum of the coupling strengths between synchronized
Ci. e Nat., Santa Maria, v.47, spe. 1, e89844, 2025
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oscillators; and D4 = Cα
1 + Cα

2 is the sum of the oscillator coupling strengths θ3(t), all of
them depending on the memory level α.

Here is an interesting consequence of (20). Since the domain of the function
arccos ∈ ] − 1, 1[, then the oscillator θ3(t) synchronizes to the system generated by the
oscillators θ1(t) and θ2(t) if

|D4| > |Ω4 − E4| ⇐⇒ |Cα
1 + Cα

2 | > |(ωα
1 − ωα

2 )− (Aα
1 +Bα

1 )|. (21)
Therefore, (21) implies that the synchronization of θ3(t) with the system

generated by θ1(t) and θ2(t) depends on the coupling forces C1 and C2, which come
from θ3(t), from the intensity of synchronization between oscillators θ1(t) and θ2(t), and
the memory parameter α. From this follow the following comments:

• If the oscillators θ1(t) and θ2(t) are strongly coupled, that is, if E3 >> |Ω3|, then the
θ3(t) oscillator will only synchronize with the θ1(t) and θ2(t) oscillators if the coupling
strengths influenced by the system memory, Cα

1 + Cα
2 , is large. Therefore, pain

will have to strongly influence at least one of the oscillators, body temperature, or
sleep-wake.

• If the oscillators θ1(t) and θ2(t) are weakly coupled but still synchronized, that is, if
E3 > |Ω3|, but E3 − |Ω3| ∼= 0, then the θ3(t) oscillator will synchronize with the
oscillators θ1(t) and θ2(t) even though the coupling strengths Cα

1 +Cα
2 are relatively

small. Therefore, it is enough for pain to at least weakly influence one of the
oscillators, body temperature or sleep-wake, for it to synchronize with the others.

Remark 1. We conjecture that if the intensity of synchronization between oscillators θ1(t)

and θ2(t) with the memory effect is low, then synchronization with θ3(t) is made easier. In the

latter case, pain becomes frequent on a daily basis. We plan to examine this supposition by

utilizing real data in future works.

By substituting equation (20) into the system equations (15)-(17), it follows that
Ci. e Nat., Santa Maria, v.47, spe. 1, e89844, 2025
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during the partial synchronization of θ1(t) and θ2(t), we obtain that
Dαθ1(t) =

Cα
1 ω

α
2 + Cα

2 ω
α
1 + Aα

1C
α
1 −Bα

1C
α
2

Cα
1 + Cα

2

(22)
Dαθ2(t) =

Cα
1 ω

α
2 + Cα

2 ω
α
1 + Aα

1C
α
1 −Bα

1C
α
2

Cα
1 + Cα

2

(23)
Dαθ3(t) =

((ωα
1 − ωα

2 )− (Aα
1 +Bα

1 ))(A
α
2 −Bα

2 )

Cα
1 + Cα

2

+ ωα
3 . (24)

The integration of both sides of the identities in fractional order α yields the
synchronized solution

θ1(t) =
(Cα

1 ω
α
2 + Cα

2 ω
α
1 + Aα

1C
α
1 −Bα

1C
α
2 )

α Γ(α)(Cα
1 + Cα

2 )
tα

θ2(t) =
(Cα

1 ω
α
2 + Cα

2 ω
α
1 + Aα

1C
α
1 −Bα

1C
α
2 )

α Γ(α)(Cα
1 + Cα

2 )
(t− f2)

α + F2 (25)
θ3(t) =

(
((ωα

1 − ωα
2 )− (Aα

1 +Bα
1 ))(A

α
2 −Bα

2 )

α Γ(α)(Cα
1 + Cα

2 )
+

ωα
3

α Γ(α)

)
(t− f3)

α + F3.
From the analytical solution (25) for the synchronized fractional PIM model, we

can make some comments as follows.
• The phase difference between the oscillators θ1(t) and θ2(t) is zero when we move

the synchronized solution from θ2(t) to the origin, which is the same as setting
f2 = F2 = 0.

• From the solutions (25), it is evident that the phase difference between θ1(t) and
θ3(t), as well as the phase difference between θ2(t) and θ3(t), is not constant, even
when f2 = f3 = F2 = F3 = 0. This implies that the oscillators are not synchronized.

• In the case where α = 1, the synchronized solutions coincide with those of the PIM
model with integer derivatives studied in (Glaeser et al., 2023a)

• It is deduced from (25) that the analytical solutions for the synchronized
oscillators θ1(t) and θ2(t) are determined by their intrinsic frequencies, the
coupling strengths of the interaction between them, the coupling forces they
receive from the oscillator θ3(t) and the memory parameter α. However, the
intrinsic frequency of θ3(t) and the coupling forces of θ1(t) and θ2(t) to θ3(t) do not
affect the solutions. In conclusion, oscillators that are in sync rely solely on their
interactions with each other and any external influences they may receive.
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4 NUMERICAL SIMULATIONS

In this section, we will present some numerical simulations, which represent the
synchronization situations studied above. It is important to note that the results
presented for synchronization and desynchronization are concerned with the phase
difference (refer to Definition 1) rather than the rhythms themselves. According to (26)
the expected behavior of synchronized rhythms are given by parallel ”curves” for α ̸= 1

and parallel lines for α = 1 (see Glaeser et al. (2023a)). In all simulations, the solutions
were transferred to the origin; this is equivalent to considering f2 = f3 = F2 = F3 = 0.
The other parameters in each of the simulations are presented, respectively, by each
line of the table 1.
Table 1 – Table with the parameter values corresponding to each of the simulations

Parameter values
A1 A2 B1 B2 C1 C2 τ1 τ2 τ30,0008 0,004 0,0007 0,009 0,0016 0,0045 18 20 340,005 0,0003 0,009 0,0006 0,00028 0,0001 20 22 320,0003 0,0002 0,0001 0,00035 0,0006 0,0004 17 20 28

Source: the authors (2024)

Figure 2 – Total synchronization
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Caption: Parameters according to the first line of Table 1 and with α = 0.6. Total synchronization
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Figures 2-3 illustrate the simulations performed with the parameters in the first
row of Table 1. It should be noted that when α = 0.6 (Figure. 2), the system is completely
synchronized, while for α = 1 (Figure. 3), the system is completely desynchronized. This
example demonstrates that memory can be used to synchronize rhythms.
Figure 3 – Total desynchronization
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Caption: Parameters according to the first line of Table 1 and with α = 1

Figure 4 – Partial synchronization
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Caption: Parameters according to the second line of Table 1 and with α = 0.7
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Figures 4 and 5 illustrate the simulations conducted for the parameters in the
second and third lines of Table 1, with derivative orders of α = 0.7 and α = 0.8,
respectively. The results of the simulations suggest partial synchronization in Figure 4
and complete desynchronization in Figure 5.
Figure 5 – Total desynchronization
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Caption: Parameters according to the third line of Table 1 and with α = 0.8

5 CONCLUSIONS AND FUTURE DIRECTIONS

This paper presents a model to investigate the impact of external factors, such as
pain, on the synchronization / desynchronization of biological sleep-wake rhythms and
body temperature when memory is taken into account. The model is an extension of the
models studied in (Glaeser et al., 2023a,2; Strogatz, 1987), as it considers a larger number
of oscillators and the presence of memory given by fractional order derivatives. We
demonstrate the well-posedness of the proposed model and derive analytical solutions
for the synchronized oscillator system. Numerical simulations suggest that the presence
of memory contributes to the synchronization of the oscillator system.

The numerical results suggest that a bifurcation analysis should be performed
to determine the memory (order α of the derivative) at which the oscillators are
synchronized. Additionally, a comparison with real data should be performed for the
purpose of calibration and model validation. It will be addressed in future
contributions.
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