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ABSTRACT

Inverse problems of neutral particle transport have significant applications in engineering and medicine.
In this study, we present a new application of the ANN-MoC method to solve inverse problems of source
characterization. It involves estimating the source parameters based on measurements of particle
density at the boundaries of a one-dimensional computational domain. In summary, the method
employs an artificial neural network (ANN) as a regression model. The neural network is trained using
data generated from solutions of the method of characteristics (MoC) for the associated direct transport
problem. Results of three test cases are presented. In the first, we highlight the advantage of
preprocessing the input data. For all cases, sensibility tests are provided to study the advantages and
limitations of the proposed approach in solving inverses problems with noisy data.
Keywords: Artificial neural network; Method of characteristics; Particle neutral transport; Inverse
problem

RESUMO

Problemas inversos de transporte de part́ıculas neutras têm aplicações significativas em engenharia e
medicina. Neste estudo, apresentamos uma nova aplicação do método ANN-MoC para resolver
problemas inversos de caracterização de fonte. Isso envolve a estimativa dos parâmetros da fonte com
base em medidas da densidade de part́ıculas nas fronteiras de um doḿınio computacional
unidimensional. Em resumo, o método emprega uma rede neural artificial (ANN) como um modelo de
regressão. A rede neural é treinada usando dados gerados a partir de soluções do método das
caracteŕısticas (MoC) para o problema direto de transporte associado. Resultados de três casos de teste
são apresentados. No primeiro, destacamos a vantagem do pré-processamento dos dados de entrada.
Para todos os casos, testes de sensibilidade são fornecidos para estudar as vantagens e limitações da
abordagem proposta na resolução de problemas inversos com dados ruidosos.
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Problemas inversos

1 INTRODUCTION

The inverse problem of neutral particle transport has significant applications in
engineering and medicine. For instance, in the context of radiative transport (Modest,
2013), applications include the development of quality control and safety protocols in
high temperatures manufacturing processes, such as glass and ceramic manufactures
(Larsen, Thömmesand, Klar, Seaıd, e Götz, 2002). In the realm of nuclear transport
(Lewis e Miller, 1984; Stacey, 2007), safety protocols hold evident importance. In optical
medicine (Hielscher, Alcouffe, e Barbour, 1998; Tarvainen, Vauhkonen, e Arridge, 2008;
Wang e Wu, 2012), applications involving radiative transport (e.g., computed
tomography) and neutron transport are found.

We assume that particle transport is modeled by the linear Boltzmann equation
in a medium with isotropic scattering (Lewis e Miller, 1984; Modest, 2013)
∀µ : µ

∂I

∂x
+ σtI(x, µ) = σsΨ(x) + qα,β(x), x ∈ D, (1)

where I = I(x, µ) represents the particle intensity at point x ∈ D = (0, 1) and in the
direction µ ∈ (−1, 1) \ 0. The medium properties are given by the total absorption
coefficient σt = κ + σs > 0, where κ > 0 is the absorption coefficient and σs > 0 is the
scattering coefficient. Furthermore, we have the particle density
Ψ(x) :=

1

2

∫ 1

−1

I(x, µ), dµ (2)
and given boundary conditions
µ > 0 : I(0, µ) = I0, (3a)
µ < 0 : I(1, µ) = I1, (3b)
where I0, I1 denote the given particle intensities entering the domain through the
boundary. The source of the transport problem is characterized by the parameters
α, β > 0, which is defined according to the problem at hand.
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Inverse problems are commonly formulated as optimization problems (Nocedal
e Wright, 1999), where the aim is to minimize an objective function measuring the
error between observed and model-predicted data. To solve these problems,
optimization methods such as the conjugate gradient method (Li, 1997) and the
Levenberg-Marquardt method (Mengüç e Manickavasagam, 1993) are employed.

In addition to traditional optimization methods, heuristic methods have been
studied to solve global optimization problems in the context of inverse problems.
Among these methods are the genetic algorithm (Kim, Baek, Kim, e Ryou, 2004) and
the particle swarm optimization algorithm (Qi, Ruan, Zhang, Wang, e Tan, 2007).

In other cases, as an alternative, the Monte Carlo method (Kaipio e Somersalo,
2006) is used to address the uncertainty and non-uniqueness in estimating the model
parameters from observed data. This method is based on random number sampling
to generate approximate solutions to the inverse problem, thereby allowing a robust
estimation of the probability distribution of the model parameters.

In this work, we apply the ANN-MoC method (Roman, Santos, e Konzen, 2023) to
solve the inverse problem of source characterization based on measurements of the
particle density at the domain’s boundaries. The method involves training an artificial
neural network (ANN) (Haykin, 2009) to estimate the parameters α and β of the source.
The training set is generated from solutions of the method of characteristics (MoC)
(Evans, 2010) of the associated direct problem. In previous the work of Santos, Melo, e
Konzen (2022), the methodology was employed for distinct problems of source
determination and localization. Here, the source characterization is pursued with a
single ANN.

Next, we present a description of the ANN-MoC method. Subsequently, we
present results from its application, followed by some final considerations.

2 METHOD ANN-MOC

The ANN-MoC method consists of training an artificial neural network (ANN) to
solve the inverse transport problem based on solutions of the method of characteristics
(MoC) of the associated direct problem.
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2.1 MoC - Direct Problem Solutions

The training and validation sets for the ANN are obtained from solutions of the
direct problem for selected values of α and β, considering the properties of the medium
to be known.

The application of the MoC is carried out using the discrete ordinates method
(DOM) approximation and the source iteration (SI) scheme (Modest, 2013). Assuming
the Gaussian quadrature {(µi, ωi)}Ni=1, the DOM & SI formulation of (1)-(3) is given as
follows:

1 ≤ i ≤ N : µi ·
∂

∂x
I
(j)
i (x) + σtI

(j)
i = σsΨ

(j−1)(x) + q(x, µi), ∀x ∈ D, (4a)
∀µi > 0 : I

(j)
i (0) = I0, (4b)

∀µi < 0 : I
(j)
i (1) = I1, (4c)

where I(j)i ≈ I(j)(x, µi), j = 1, 2, . . . , L, with a given initial approximation Ψ(0)(x). The j-th
approximation of the particle density is given by

Ψ(j)(x) =
1

2

N∑
i=1

ωiI
(j)
i (x). (5)

The problem (4) consists of a system of first-order partial differential equations with
boundary conditions. The method of characteristics (MoC) provides the following
solution along the characteristics x(s) = x0 + sµi, s ∈ R,
I
(j)
i (s) = I

(j)
i (0)e−

∫ s
0 σt ds′ +

∫ s

0

[
Ψ(j)(s′) + q(s, µi)

]
e−

∫ s
s′ σt ds′′ ds′, (6)

where I
(j)
i (s) = I

(j)
i (x(s)). Refer to the works of Santos et al. (2022) and Roman et al.

(2023) for further details on our implementation of the MoC.
2.2 ANN - Solving the Inverse Problem

To solve the inverse problem, we apply a multilayer perceptron (MLP) neural
network (Haykin, 2009). The MLP is designed as a nonlinear regression model of the
given particle density values at the domain boundaries (Ψ(0),Ψ(1)) to the expected
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values of α and β for source characterization qα,β (see Figure 1). Through a supervised
training approach, a training set (calibration) {ψψψ(s), γγγ(s)}ntrain

s=1 , where
ψψψ(s) =

(
Ψ(s)(0),Ψ(s)(1)

), with ntrain samples, is computed for selected parameters
γγγ(s) =

(
α(s), β(s)

) using the MoC solution of the direct problem. Here, with some
notation overlap, the superscript denotes the sample indexing.
Figure 1 – The MLP neural network architecture 2− nn × nh − 2

Source: the authors (2024)

In the context of this work, the ANN is denoted by
γ̃γγ = N

(
ψψψ;

{(
W (l), bbb(l), fff (l)

)}nh+1

l=1

)
, (7)

where (
W (l), bbb(l), fff (l)

)denotes the triple of weightsW (l), biases bbb(l), and activation function
fff (l) in the l-th layer of the MLP, l = 1, 2, . . . , nh + 1.

Given a network architecture 2 − nn × nh − 2 (2 inputs, nh hidden layers with nn

neurons each, 2 outputs), and the activation functions, training the network involves
solving the following minimization problem

min
{(W (l), bbb(l))}∀l

1

ns

ns∑
s=1

∥∥∥γ̃γγ(s) − γγγ(s)
∥∥∥2

︸ ︷︷ ︸
=:ε

, (8)

where ε denotes the loss function to be minimized.
More concisely, training the network involves calibrating its weights and biases

to minimize the mean squared error (MSE) function. To achieve this, we apply the
Ci. e Nat., Santa Maria, v.47, spe. 1, e89819, 2025
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backpropagation method (Haykin, 2009) with the Adam optimizer (Kingma e Ba, 2017).
The implementations were carried out in the Python language with the help of the
PyTorch machine learning package. The code parameters are problem-dependent and
will be given later along with the following discussed test cases. Model validation is
performed with a new data set {ψψψ(s), γγγ(s)}nvalid

s=1 and different from the training one, also
obtained from MoC solutions of the direct problem presented earlier.

3 RESULTS

In this section, we present the results of applying the ANN-MoC method to solve
three inverse problems of source characterization.

The numerical solution of the direct problem by the MoC depends on the
parameters nx (number of cells in the computational mesh) and N (number of pairs in
the Gaussian quadrature). Numerical experiments indicated that the choices
nx = N = 100 are sufficient to obtain solutions with an accuracy of at least 3 significant
digits for the particle density. In all the following cases, the domain is assumed
[a, b] = [0, 1] with boundary conditions I0 = I1 = 0.

For the training of the ANN models the loss tolerance of ε ≤ 10−5 has been set as
a stop criterion. All the tests assume a model architecture of 2 − nn × nh − 2 (2 inputs,
nh hidden layers each with nn neurons, and 2 outputs), and the tangent hyperbolic and
the identity as the activation functions in hidden and output layers, respectively.
3.1 Inverse Problem 1

The inverse problem 1 consists of estimating the parameters of the particle source
characterized as

qα,β(x) :=

 α , |x− β| ≤ 0.1,

0 , |x− β| > 0.1,
(9)

where, here, the source intensity is 0.1 ≤ α ≤ 1.0 and its location 0.1 ≤ β ≤ 0.9 (see
Figure 2). The medium properties are assumed κ = 0.75 and σs = 0.25.
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Figure 2 – Inverse Problem 1: source illustration

Source: the authors (2024)
The ANN model is trained from a set of ntrain = 170 samples, which were generated

from solving the direct problem for each of the combinations of α = 0.1 + (i − 1)0.1,
i = 1, 2, . . . , 10, and β = 0.1 + (j − 1)0.05, j = 1, 2, . . . , 17. For the model validation, a set
of 200 samples was generated with random values (uniform distribution) 0.1 ≤ α ≤ 1.0

and 0.1 ≤ β ≤ 0.9.
The ANN model architecture has been chosen after several tests. Due to the

stochasticity of the training method, each test has been repeated three times. Table 1
presents the results with no data preprocessing. The tabulated values correspond to
n̄e/ε̄, where n̄e is the average number of epochs required (maximum fixed at 5000) and
ε̄ is the average final value of the error function (stopping criterion ε < 10−5). It is
observed that an MLP with architecture 2 − 20 × 4 − 2 is sufficient to learn the training
data in fewer than 3000 epochs. To enhance the training, we have then performed
trials with data preprocessing. Inputs of the training samples have been scaled with
the Standard Scaler, several MLP architectures have been tested, and the results can
be found in Table 2. The enhancement with the preprocessing is notable, especially for
the 2 − 40 × 4 − 2 architecture, which has been chosen in the following presented
results.
Table 1 – Inverse Problem 1: choice of network architecture without datapreprocessing - tabulated values n̄e/ε̄

nn\nh 1 2 3 4
5 5000/1.5× 10−3 5000/2.1× 10−4 5000/6.2× 10−5 5000/8.7× 10−5

10 5000/1.1× 10−3 5000/7.8× 10−5 5000/2.4× 10−5 3632/ < 1× 10−5

20 5000/1.0× 10−3 5000/2.5× 10−5 3689/ < 1× 10−5 2723/ < 1× 10−5

30 5000/8.6× 10−4 5000/2.5× 10−5 5000/1.6× 10−5 3954/ < 1× 10−5

40 5000/1.1× 10−3 5000/7.6× 10−5 3840/ < 1× 10−5 3652/ < 1× 10−5

Source: the authors (2024)
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Table 2 – Inverse Problem 1: choice of network architecture with data preprocessing -tabulated values n̄e/ε̄

nn\nh 1 2 3 4
5 5000/5.6× 10−4 5000/2.1× 10−5 5000/2.6× 10−5 5000/4.4× 10−5

10 5000/1.7× 10−4 5000/3.7× 10−5 3700/ < 1× 10−5 3506/ < 1× 10−5

20 5000/7.3× 10−5 2974/ < 1× 10−5 1847/ < 1× 10−5 1863/ < 1× 10−5

30 5000/6.8× 10−5 2785/ < 1× 10−5 1736/ < 1× 10−5 1603/ < 1× 10−5

40 5000/6.6× 10−5 2465/ < 1× 10−5 1594/ < 1× 10−5 1305/ < 1× 10−5

Source: the authors (2024)

With the chosen architecture and the network trained, we proceed to analyze the
results in solving the inverse transport problem. Figure 3 shows the training curves
for the parameters α (a) and β (b) that characterize the source. The points represent the
results for each training sample, and the dashed line is line fitted by least squares. It can
be observed that the network provides estimates α̃, β̃ with high precision compared to
the expected values. For both parameters, the coefficient of determination R2 = 0.9998

has been reached.
Figure 3 – Inverse Problem 1: training curves

(a) (b)

Source: the authors (2024)

Training an ANN as a regression model can lead to overfitting, where the network
fits the training data very well but fails to accurately estimate new data. To validate the
robustness and stability of the trained MLP in this problem, we tested it on the validation
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set {ψψψ(s), γγγ(s)}nvalid
s=1 described above. Additionally, a sensitivity test was applied, involving

adding uniformly distributed noise to the input data.
The results indicate that the MLP model is relatively robust to moderate and

slightly high levels of noise in the input data. Table 3 shows the results of the mean
squared error R2 and the mean absolute squared error (MAPE) for different levels of
noise. The noise is propagated to the output by a factor of 1.6 times for α (Table 3, left)
and 1.7 times for β (Table 3, right). An R2 > 0.90 is achieved even with a noise level of
up to 10%. Figure 4 displays the expected versus estimated α (a) and β (b) of the test
dataset with noise levels of 0%, 4%, 6%, and 8%. In the figures, the identity line is
plotted as a dashed line as a guide. We observe the absence of outliers, which also
indicates good generalization of the ANN-MoC method.
Table 3 – Inverse Problem 1: sensitivity tests for α (left) and β (right)
Noise(%) R2 MAPE(%)

0 0.9999 0.531 0.9998 0.542 0.9997 0.803 0.9992 1.484 0.9973 3.015 0.9939 4.156 0.9874 6.487 0.9779 8.118 0.9604 11.369 0.9417 13.5010 0.9920 15.49

Noise(%) R2 MAPE(%)

0 0.9999 0.751 0.9997 0.772 0.9995 1.033 0.9987 1.734 0.9967 3.005 0.9904 4.466 0.9845 6.527 0.9616 8.728 0.9420 11.629 0.9181 13.8910 0.8961 17.56
Source: the authors (2024)

3.2 Inverse Problem 2

The inverse problem 2 consists of estimating the parameters of the particle source
characterized as

qα,β(x) :=


α , 0.4 ≤ x ≤ 0.5

β , 0.5 < x ≤ 0.6,

0 ,otherwise,
(10)

where, here, the source intensities are 0.1 ≤ α, β ≤ 1.0 (see Figure 5). The medium
properties are assumed κ = 0.5 and σs = 0.5.
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Figure 4 – Inverse Problem 1: validation curves for different levels of noise

(a) (b)

Source: the authors (2024)

Figure 5 – Inverse Problem 2: source illustration

Source: the authors (2024)

The training set has been generated with ntrain = 100 samples by selecting all
combinations of α, β = 0.1 + (i − 1)0.1, i = 1, 2, . . . , 10. For the validation, a set of 200
samples was generated with random values (uniform distribution) 0.1 ≤ α, β ≤ 1.0.

Here, we directly apply the Standard Scaler to preprocessing the inputs of the
model. Several network architectures have been tested, each trained three times, due
to the stochastic nature of the training approach. Analogous for the inverse problem 1,
Table 4 presents the values of n̄e/ε̄, where n̄e is the average number of epochs required
(with a maximum of 5000) and ε̄ is the average final value of the error function. It is
observed that with an MLP architecture of 2 − 40 × 2 − 2, it is sufficient to learn the
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training data in less than 1000 epochs. Increasing the network size does not guarantee
better learning results.

With the chosen architecture and the trained network, we proceed to analyze
the results of the network in solving the inverse transport problem.Figure 6 shows the
training curves for the parameters α (a) and β (b) that characterize the source. The
points represent the results for each training sample, and the dashed line is line fitted
by least squares. It can be observed that the network provides estimates α̃, β̃ with high
precision compared to the expected values α and β. For both parameters, the
coefficient of determination R2 was greater than 0.9998.
Table 4 – Inverse Problem 2: choice of network architecture with data preprocessing -tabulated values n̄e/ε̄

nn\nh 1 2 3 4
5 3402/ < 1× 10−5 3997/ < 1× 10−5 5000/1.18× 10−5 5000/1.6× 10−5

10 1634/ < 1× 10−5 1325/ < 1× 10−5 1915/ < 1× 10−5 1563/ < 1× 10−5

20 1138/ < 1× 10−5 717/ < 1× 10−5 1201/ < 1× 10−5 1467/ < 1× 10−5

30 967/ < 1× 10−5 563/ < 1× 10−5 1040/ < 1× 10−5 2367/ < 1× 10−5

40 1119/ < 1× 10−5 464/ < 1× 10−5 1145/ < 1× 10−5 1671/ < 1× 10−5

Source: the authors (2024)

Figure 6 – Inverse Problem 2: training curves

(a) (b)
Source: the authors (2024)
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We now discuss the validation and test the sensibility of the model for this inverse
problem. See Figure 7, for the validation and sensitivity curves, and Table 5 for the R2

and MAPE obtain with different levels of noise,for α (Table 5, left) and for β (Table 5,
right).
Figure 7 – Inverse Problem 2: validation curves for different levels of noise

(a) (b)

Source: the authors (2024)

Table 5 – Inverse Problem 2: sensitivity tests for α (left) and β (right)
Noise(%) R2 MAPE(%)

0 0.9999 0.491 0.9995 1.152 0.9933 4.483 0.9716 8.804 0.9185 17.485 0.7955 25.876 0.6602 36.757 0.5539 52.948 0.3579 64.049 0.3008 80.4710 0.2181 105.77

Noise(%) R2 MAPE(%)

0 0.9999 0.511 0.9996 1.152 0.9943 4.563 0.9749 9.854 0.9155 19.005 0.8480 26.536 0.6808 42.727 0.5506 53.708 0.4385 67.969 0.2975 92.0810 0.2044 104.15

Source: the authors (2024)

The results indicate that, without noise, the estimation error is just about 0.5%.
The sensibility test, indicates that errors remain moderate (less than 10%) for a noise
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level up to 3%. However, here, the errors grow exponentially with the noise. AnR2 > 0.90

is achieved with a noise level up to 4%.
3.3 Inverse Problem 3

The inverse problem 3 consists of estimating the parameters of the particle source
characterized as

qα,β(x) :=

 α , 0.5− β · 0.2 ≤ x ≤ 0.5 + (1− β) · 0.2,

0 ,otherwise, (11)

where, here, the source intensity is 0.1 ≤ α ≤ 1.0 and 0.1 ≤ β ≤ 1.0 is the factor of
displacement from the center of the domain (see Figure 8). The medium properties are
assumed κ = 0.5 and σs = 0.5.

Figure 8 – Inverse Problem 3: source illustration

Source: the authors (2024)

The training set has been generated with ntrain = 100 samples by selecting all
combinations of α, β = 0.1 + (i− 1)0.1, i = 1, 2, . . . , 10. For validation, a set of 200 samples
was generated with random values (uniform distribution) 0.1 ≤ α, β ≤ 1.0.

Following and analogous study of the previous inverse problems, network
architecture is chosen after the tests presented in Table 6 presents the values of n̄e/ε̄,
where n̄e is the average number of epochs required (with a maximum of 5000) and ε̄ is
the average final value of the loss function in training. It is noteworthy that an MLP
architecture of 2 − 40 × 2 − 2, is sufficient to learn the training data in less than 1000
epochs. However, increasing the size of the network does not guarantee an
improvement in learning outcomes.
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Table 6 – Inverse Problem 3: choice of network architecture with data preprocessing -tabulated values n̄e/ε̄

nn\nh 1 2 3 4
5 5000/1.6× 10−5 5000/2.6× 10−5 5000/1.1× 10−5 5000/3.0× 10−5

10 5000/4.9× 10−5 2288/ < 1× 10−5 2093/ < 1× 10−5 2214/ < 1× 10−5

20 5000/8.7× 10−5 1911/ < 1× 10−5 1125/ < 1× 10−5 1260/ < 1× 10−5

30 5000/4.4× 10−5 1643/ < 1× 10−5 1233/ < 1× 10−5 1067/ < 1× 10−5

40 5000/5.6× 10−5 1291/ < 1× 10−5 1069/ < 1× 10−5 844/ < 1× 10−5

Source: the authors (2024)
Figure 9 – Inverse Problem 3: training curves

(a) (b)

Source: the authors (2024)

With the chosen architecture and the trained network, we proceed to analyze
the results of the network in solving the inverse transport problem. Figure 9 shows the
training curves for the parametersα (a) and β (b) that characterize the source. The points
represent the results for each training sample, and the dashed line is line fitted by least
squares. For no noisy data, it can be observed that the network provides estimates α̃,
β̃ with good precision compared to the expected values α and β. For both parameters,
the coefficient of determination R2 was greater than 0.9998.
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Figure 10 – Inverse Problem 3: validation curves for different levels of noise

(a) (b)
Source: the authors (2024)

Table 7 – Inverse Problem 3: sensitivity tests for α (left) and β (right)
Noise(%) R2 MAPE(%)

0 0.9999 0.691 0.9999 0.712 0.9998 0.883 0.9997 1.064 0.9992 1.815 0.9983 2.476 0.9961 3.927 0.9923 5.598 0.9881 7.239 0.9767 9.8810 0.9693 11.88

Noise(%) R2 MAPE(%)

0 0.9997 0.751 0.9995 1.082 0.9949 3.193 0.9813 6.984 0.9180 14.325 0.8418 19.986 0.7506 28.767 0.6814 33.918 0.5257 50.459 0.3853 56.1710 0.3057 67.08
Source: the authors (2024)

We now discuss the validation and sensitivity of the model for this inverse
problem. See Figure 10 for the validation and sensitivity curves, and Table 7 for the R2

and MAPE obtained with different levels of noise for α (Table 7, left) and for β (Table 7,
right).

One can observe how the noise propagates in the output of Figure 10 (b)
compared to Figure 10 (a). This indicates that our MLP architecture is more sensitive in
estimating β, where the noise propagates by a factor of 6.9 times. This suggests that it
is necessary to improve the precision of the data generated by the direct solver. To
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achieve this, one could consider further refining the spatial mesh and increasing the
number of quadrature points.

4 FINAL CONSIDERATIONS

In this work, we have presented the application of the ANN-MoC method to solve
three inverse transport problems for the characterization of a source of neutral particles.
The problems consist of estimating the source parameters based on measurements of
particle density at the domain boundaries. The method involves training an ANN with
data generated from MoC solutions of the associated direct transport problem. An MLP
neural network type was employed as a regression model to provide estimates of the
source parameters.

After several numerical tests, we found that small MLPs could provide good
estimates. Better results were obtained by preprocessing the input data with the
Standard Scaler. A sensitivity test was also reported for each problem to study noise
propagation. The training and validation results indicate the robustness of the network
in providing accurate estimates based on density measurements.

Applying the ANN-MoC method to more realistic problems requires the use of
an appropriate transport model and the effort should be focused on generating high-
quality data (both for training and validation) for network training. Finally, the use of the
proposed methodology for realistic problems depends on how good the direct transport
model is for the intended application.
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