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Fran Sérgio Lobato I�, João Jorge Ribeiro Damasceno I�,

Fabio de Oliveira Arouca I�

IUniversidade Federal de Uberlândia, MG, Brazil

ABSTRACT

In recent decades, the study of particulate materials has gained significant attention from the scientific
community. This is due to applications that can be developed, among which we can cite the risks to
human health and the environment. As a consequence of this concern, classifying nanoparticles is a
topic of considerable interest. One of the most used devices to classify nanoparticles in aerosols is the
Differential Mobility Analyzer. From a mathematical point of view, particle concentration profiles have
been obtained, preferably, considering constitutive relationships. In this contribution, the
Poisson–Nernst–Planck equation is used to determine the concentration of monodisperse nanoparticles
in aerosols subjected to an electric field. For this purpose, an inverse problem is proposed and solved
considering real data and the Differential Evolution algorithm as an optimization tool. The results
demonstrate that the proposed methodology was able to obtain good estimates considering the
phenomenological model in relation to experimental points, as well as accurate estimates for
intermediate profiles considering the Kriging approach. Finally, it is important to mention that the
novelty of this contribution lies in predicting the concentration of monodisperse nanoparticles in
aerosols subjected to an electric field using the Poisson–Nernst–Planck equation.
Keywords: Phenomenological model; Nanoparticles separation; Electric field; Inverse problem;
Differential Evolution; Kriging

RESUMO

Nas últimas décadas, o estudo de materiais particulados têm atráıdo a atenção da comunidade
cient́ıfica. Isto se deve as aplicações que podem ser desenvolvidas, entre as quais podemos citar os
riscos a saúde humana e ao meio ambiente. Como consequência desta preocupação, a classificação das
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nanopart́ıculas configura um tópico de grande interesse. Um dos dispositivos mais utilizados para a
classificação de nanopart́ıculas em aerossóis é o Analisador de Mobilidade Diferencial. Do ponto de
vista matemático, os perfis de concentração de part́ıculas têm sido obtidos considerando relações
constitutivas. Nesta contribuição, a equação de Poisson–Nernst–Planck é empregada para determinar a
concentração de nanopart́ıculas monodispersas em aerossóis submetidos a um campo elétrico. Para
esta finalidade, um problema inverso é proposto e resolvido considerando dados reais e o algoritmo de
Evolução Diferencial como ferramenta de otimização. Os resultados obtidos demonstram que a
metodologia proposta foi capaz de obter boas estimativas considerando o modelo fenomenológico em
relação aos pontos experimentais, bem como, boas estimativas para perfis intermediários
considerando Kriging. Finalmente, é importante mencionar que a novidade desta contribuição é a
capacidade de predição da concentração de nanopart́ıculas monodispersas em aerossóis submetidos a
um campo elétrico usando a equação de Poisson–Nernst–Planck.
Palavras-chave: Modelo fenomenológico; Separação de nanopart́ıculas; Campo elétrico; Problema
inverso; Evolução Diferencial; Kriging

1 INTRODUCTION

Nowadays, the study of nanoparticles is an area of great interest due to their
wide range of applications that can be developed, among which we can cite case
studies in biotechnology, semiconductor manufacturing, pharmaceuticals, medicine,
ceramics, climate change, environment and human health (Gonzalez et al., 2007;
Kauffeldt et al., 1995; Lee et al., 2011; Shi et al., 2010; Shu et al., 2005). More recently,
due to the importance of applications in catalysis and energy storage, the
monodisperse nanoparticles concentration have also gained attention (Camargo et al.,
2021; Gomes et al., 2021). As mentioned by Soysal et al. (2017), materials in
nano-scaleare more easily absorbed by cells, organs, and tissues, by having greater
bioavailability, and their toxicity increases with a high surface-to-volume ratio. As a
consequence, nanoparticles can cause greater damage to human health and the
environment.

In order to evaluate the characteristics of nanoparticles and, consequently,
predict aerosol behavior, their size is an important metric. In this case, the particle size
can be determined by considering different approaches, such as optical, electrical and
combined physical techniques (Kievit et al., 1995). In this scenario, various types of
equipment considering particle classification using an electric field can be found.
Among them, we can cite the Electrostatically Enhanced Fibrous Filter (EEFF), the
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Scanning Mobility Particle Sizer (SMPS), and the Differential Mobility Analyzer (DMA)
(Camargo et al., 2021; Gomes et al., 2021; Knight & Petrucci, 2003; Shu et al., 2005).

The mathematical modeling of concentration profiles in these devices is very
important because it helps to understand the behavior of nanoparticles and,
consequently, corroborates to evaluating parameters and operating conditions that
affect the process. Traditionally, models based on transfer functions have been
preferentially considered to predict the concentration profiles (Cai et al., 2017;
Camargo et al., 2021; Gomes et al., 2021; Hagwood et al., 1999; Karlsson & Martinsson,
2003; Seol et al., 2002; Song et al., 2006). However, the Langevin equation, a
phenomenological model, has been used to evaluate the dispersion of
ultrafine/nanoparticles in a medium DMA and a Long-DMA (Ramechecandane et al.,
2011). Similarly, Ju & Fan (2009) and Salama et al. (2015) investigated a mathematical
model for nanoparticle transport in porous and anisotropic media considering
experimental data. Dasgupta et al. (2022) evaluated the silica nanoparticle synthesis in
a flame spray pyrolysis reactor considering the computational fluid dynamics
modeling.

As an alternative to these models, the Poisson–Nernst–Planck (PNP) equation
has been considered to represent physical phenomena on a nanometric scale. Lu et al.
(2010) proposed an accurate finite element method for solving 3-D PNP equations with
singular permanent charges for simulating electrodiffusion in biomolecular systems.
Jubery et al. (2012) present the modeling and simulation of nanoparticle separation
through a solid-state nanopore. For this purpose, the PNP model is associated with
Navier–Stokes equations for fluid flow and on the Langevin equation for particle
translocation. Kumaran & Bajpai (2015) present a critical review of the extended
Nernst Planck model in the nanofiltration process. In this case, applications involving
modeling in nanofiltration for wastewater treatment, heavy metal removal, and
charged ion removal are revisited. Cartailler et al. (2017) evaluated the PNP equation
for modeling the voltage–current relation in neurobiological microdomains. Jaeger
et al. (2023) presented the nano-scale solution of the PNP equations in a fraction of
two neighboring cells, revealing the magnitude of intercellular electrochemical waves.

One of the research gaps in this area is due to the lack of studies addressing the
PNP equation to estimate monodisperse nanoparticle concentration in aerosols
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subject to an electric field. In this case, the present contribution aims to determine a
mathematical model based on the PNP equation to represent the monodisperse
nanoparticles in aerosol concentration subjected to an electric field in a
Nano-Differential Mobility Analyzer (N-DMA). An inverse problem considering real
experimental data and the mobility balance is formulated to determine the mass
diffusivity and the coefficient of a constitutive model employed to represent the
electric potential. To solve the proposed inverse problem, the classical Differential
Evolution (DE) algorithm is used as an optimization tool. The novelty of this
contribution is not only obtaining a phenomenological model but also estimating the
particle concentration profiles considering a set of points related to the concentration
of sodium chloride (used to generate the monodisperse solution). For this purpose, a
strategy based on the Kriging Interpolation Method (or simply Kriging) is presented.

This work is organized as follows. Section 2 presents the mathematical model that
describes the process of interest. Section 3 shows the numerical procedure to integrate
the phenomenological model used to represent the physical process. Sections 4 and 5
present a brief description of DE and Kriging, respectively. The proposed methodology
is presented in Section 6. The numerical results and discussions are described in Section
7, and the conclusions are outlined in Section 8.

2 MATHEMATICAL MODELING

In this contribution, the concentration of monodisperse nanoparticles in aerosols
subjected to an electric field is modeled considering the PNP equation. As mentioned
by Masliyah & Bhattacharjee (2006), the PNP equation can be used if the process occurs
in a microchannel long where the walls are isolated. As a consequence, the individual
ion species for a non-reaction system should be conserved. Mathematically, this model
is given by:
∂C

∂t
= −∇ · ji (1)

where t is the time, C is the concentration of the ion species and ji is the mass flux of
the i-th ion species.
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The mass flux can be divided into three contributions (Masliyah & Bhattacharjee,
2006): a convective due to fluid flow, a diffusive part due to Fick’s law and a third due
to the presence of an electric field. Thus, these contributions can be represented as
(Schofer, 2013):
ji = uC −Di∇C + CωiFie (2)
where u is the average velocity, Di is the mass diffusivity, ωi is the mobility and Fie is the
external force due to the electric field, defined in function of valence (zi), the
fundamental charge of the electron (e) and the potential Ψ, i.e.:
Fie = −zie∇Ψ (3)

Thus, the PNP equation can be described as:
∂C

∂t
= −∇ · (uC −Di∇C + Ciωizie∇Ψ) (4)

where the electric potential can be calculated by the following model:
−∇Ψ =

ρ

ε
(5)

where ρ is the charge density and ε is the electric permittivity. As mentioned by Gomes
et al. (2021) and Camargo et al. (2021), the DMA operation depends on the path that
particles take inside the analyzer. In this case, it is assumed that the average velocity (u)
is given by the following relation (Knutson & Whitby, 1975; Whitby & Clark, 1966):
u =

Q

π (r22 − r21)
(6)

where Q is the volumetric flow, r2 and r1 are the radius of the outer and inner cylinder,
respectively. In this case, it is considered that Q is equal to arithmetic mean between
the dilution and excess air.
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The particle electric mobility can be estimated by (Knutson & Whitby, 1975; Whitby
& Clark, 1966):
ωi =

neCun

3πµdp
(7)

where n is the number of elementary charge units,Cun is the Cunningham slip correction
factor, µ is the gas viscosity and dp is the particle diameter. Cun is given by the following
relation:
Cun = 1 +

2λ

dp

(
1.115 + 0.471 exp

(
−0.596

dp

2λ

))
(8)

where λ is the mean free path.
As observed in Equation 4, ω1 and Ψ are dependent on the dp. Thus, if u, Di and zi

are constants, the PNP equation in one-dimensional dimension can be written as:
∂C

∂t
= −u ∂C

∂dp
+Di

∂2C

∂dp2
− zie

∂

∂dp

(
ωiC

∂Ψ

∂dp

)
(9)

Expanding the last term and rearranging it, we obtain:
∂C

∂t
=

(
−u− zieωi

∂Ψ

∂dp

)
∂C

∂dp
+Di

∂2C

∂dp2
− zie

(
ωi
∂2Ψ

∂dp2
+
∂Ψ

∂dp

∂ωi

∂dp

)
C (10)

For the sake of simplicity, the above equation can be given as follows:
Ω1
∂C

∂t
+ Ω2

∂2C

∂dp2
+ Ω3

∂C

∂dp
+ Ω4C = 0 (11)

where
Ω1 = 1 (12)
Ω2 = −Di (13)
Ω3 = −

(
−u− zieωi

∂Ψ

∂dp

)
(14)

Ω4 = zie

(
ωi
∂2Ψ

∂dp2
+
∂Ψ

∂dp

∂ωi

∂dp

)
(15)
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The presented model is linear in relation to dependent variable C as the Ωi (i=1,
..., 4) are constants or functions of the independent variable dp. The numerical strategy
considered to solve this model will be presented in the next section.

3 NUMERICAL PROCEDURE

The phenomenological model addressed in this work was presented in the
previous section. This is presented again as follows:
Ω1
∂C

∂t
+ Ω2

∂2C

∂dp2
+ Ω3

∂C

∂dp
+ Ω4C = 0, 0 ≤ t ≤ tf and 0 ≤ dp ≤ dpm (16)

where tf is the final time and dpm is the maximum value for the particle diameter.
To integrate this model, the following initial and boundary conditions are

considered:
C = f (dp) , t = 0 and 0 ≤ dp ≤ dpm (17)
β1C + β2

∂C

∂dp
= β3, dp = 0, t > 0 (18)

β4C + β5
∂C

∂dp
= β6, dp = dpm, t > 0 (19)

where f is a function that defines the initial concentration profile, βs (s=1, 2, ..., 6) is a
constant that defines the boundary conditions.

To solve the presented model, the Finite Difference Method (Datta, 2010) is
considered. For this purpose, in a dp-direction, given the interval [0,dpm], the step size
∆dp=dpm/M (where M and ∆dp are the number of points and the integration step size
in the spatial direction, respectively) and the grid points dpp = (p-1)∆dp, p = 1, ..., M .
Similarly, in the time direction, given the interval [0,tf ], the step size ∆t = tf/N (where N
and ∆t are the number of points and the integration step size in the temporal
direction, respectively) and the grid points tk = (k-1)∆t, k = 1, ..., N . In order to
represent the differential terms, the following approximations are used (Datta, 2010):
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∂C

∂t

∣∣∣∣k
p

=
Ck

p − Ck−1
p

∆t
(20)

∂C

∂dp

∣∣∣∣k
p

=
Ck

p+1 − Ck
p−1

2∆dp
(21)

∂2C

∂dp2

∣∣∣∣k
p

=
Ck

p+1 − 2Ck
p + Ck

p−1

(∆dp)2
(22)

where Ck
p is the value of concentration in a generic point (tk,dpp).

Substituting these approximations into the partial differential equation, we have:
(

Ω2

(∆dp)2
+

Ω3

2∆dp

)
Ck

p+1 +

(
Ω1

∆t
− 2Ω2

(∆dp)2
+ Ω4

)
Ck

p +

(
Ω2

(∆dp)2
− Ω3

2∆dp

)
Ck

p−1 =

(
Ω1

∆t

)
Ck−1

p

(23)
This expression is valid for 2 ≤ p ≤M -1 and 2 ≤ k ≤ N . For p equal to 1, i.e.; dp=0,

the derivative is given by:
∂C

∂dp

∣∣∣∣k
p=1

=
Ck

p+1 − Ck
p

∆dp
(24)

Thus, the first boundary condition can be written as:
β1C

k
1 + β2

Ck
2 − Ck

1

∆dp
= β3 →

(
β1 −

β2
∆dp

)
Ck

1 +
β2
∆dp

Ck
2 = β3 (25)

Analogously for the second boundary condition (p = N , i.e.; dp = dpm), the
derivative is given by:
∂C

∂dp

∣∣∣∣k
p=N

=
Ck

N − Ck
N−1

∆dp
(26)

Thus, the second boundary condition is given by:
β4C

k
N + β5

Ck
N − Ck

N−1

∆dp
= β6 → − β5

∆dp
Ck

N−1 +

(
β4 +

β5
∆dp

)
Ck

N = β6 (27)
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Finally, the initial condition is given by:
C1

p = f (dp) (28)
The discretized equations can be organized as follows:



Φ1 Φ2 0 0 0 · · · 0 0 0 0 0

Φ3 Φ4 Φ5 0 0 · · · 0 0 0 0 0

0 Φ3 Φ4 Φ5 0 · · · 0 0 0 0 0

0 0 Φ3 Φ4 Φ5 · · · 0 0 0 0 0... ... ... ... ... . . . ... ... ... ... ...
0 0 0 0 0 · · · Φ3 Φ4 Φ5 0 0

0 0 0 0 0 · · · 0 Φ3 Φ4 Φ5 0

0 0 0 0 0 · · · 0 0 Φ3 Φ4 Φ5

0 0 0 0 0 · · · 0 0 0 Φ6 Φ7





Ck
1

Ck
2

Ck
3

Ck
4...

Ck
N−3

Ck
N−2

Ck
N−1

Ck
N



=
Ω1

∆t



β3
∆t
Ω1

Ck−1
‘2

Ck−1
3

Ck−1
4...

Ck−1
N−3

Ck−1
N−2

Ck−1
N−1

β6



(29)

where:
Φ1 =

(
β1 −

β2
∆dp

)
(30)

Φ2 =
β2
∆dp

(31)
Φ3 =

(
Ω2

(∆dp)2
− Ω3

2∆dp

)
(32)

Φ4 =

(
Ω1

∆t
− 2Ω2

(∆dp)2
+ Ω4

)
(33)

Φ5 =

(
Ω2

(∆dp)2
+

Ω3

2∆dp

)
(34)

Φ6 = − β5
∆dp

(35)
Φ7 =

(
β4 +

β5
∆dp

)
(36)

For the k-th time step, the concentration can be determined if the model and
numerical method parameters, boundary conditions, and the initial condition
(concentration at (k-1)th time step) are known.
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4 DIFFERENTIAL EVOLUTION ALGORITHM

The Differential Evolution (DE) algorithm, proposed by Storn & Price (1997) to
solve mono-objective optimization problems, is a population-based strategy widely
used by the scientific community. More recently, applications in mono- and
multi-objective contexts in different fields can be found in the specialized literature
(Garcia et al., 2024; Gomes et al., 2021; Lobato et al., 2023; Paes et al., 2022).

In general, the main steps of DE can be summarized as follows (Storn & Price,
1997):

• Initially, an initial population is randomly generated considering NP candidates
(formed by a set of design variables). It is important to mention that these design
variables should satisfy the domains imposed by the user;

• In its classic configuration,an individual (X1) is randomly selected in the population
to be replaced. Two other individuals (X2 andX3), also randomly selected, are used
to perform the vector subtraction;

• The result of the subtraction operation is weighed by the perturbation rate (F ). This
result (F × (X2 − X3)) is added to the individual (X1). Thus, a potential candidate
(X) is given by: X = X1 + F × (X2 − X3). It is important to mention that other
strategies to generate potential candidates can be used, as suggested by Storn &
Price (1997);

• The vector (X) can replace a previously chosen candidate. For this purpose, a
comparison between the crossover probability (CR) (defined by the user) with a
random number (rn) is realized. If rn is less than CR, this new candidate is
accepted. Otherwise, the previously chosen candidate survives in the next
generation. This procedure is repeated until a new population is formed.

The presented steps are repeated until the maximum number of generations
(defined by the user) is found. More details about this population-based optimization
strategy can be found in Storn & Price (1997).
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5 KRIGING INTERPOLATION METHOD

In order to increase the prediction capacity of a traditional polynomial model,
the mining engineer Danie G. Krige (Krige, 1951) proposed a combination between
polynomial and stochastic models applied to the geostatistics field. This approach,
called the Kriging Interpolation Method (or simply Kriging), was improved years later by
Matheron (1963). However, it was only with a study conducted by Sacks et al. (1989)
that this methodology gained prominence as a strategy for modeling engineering
systems.

In general terms, Kriging consists of treating the proposed model as capable of
representing a stochastic process (Forrester et al., 2008; Gaspar et al., 2014; Hussein &
Deb, 2016). For this reason, the mathematical model for Kriging approximation can be
represented as:
Y (x) = F (x) + Z (x) (37)
where Y (x) is the unknown response, F (x) is a simpler function (usually a polynomial
function) of independent variable x, and Z(x) is the zero-mean stochastic contribution,
with variance σ2 and non-zero covariance, called correlation functions. These functions
can be classified into two groups, one in which the functions have a parabolic behavior
close to the origin (Gauss, Cubic and Spline), and the other in which the functions present
a linear behavior close to the origin (Exponential, Linear and Spherical). According to
Lophaven et al. (2002), the choice of the correlation function should be motivated by
the characteristics of the phenomenon analyzed.

In a stochastic model, the change in experimental points presents a random
contribution. Thus, modeling a stochastic process in relation to experimental points
provides an insight into how this function may behave and how much it tends to
change as new points that present different quantities in each coordinate are
introduced (Lophaven et al., 2002).

From a mathematical point of view, in a stochastic process, it is assumed that
errors are dependent, i.e.; the correlation between errors is related to the distance
between the corresponding points. Thus, at this distance (d), the following expression

Ci. e Nat., Santa Maria, v.47, e88532, 2025
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can be modeled:

d
(
xi, xj

)
=

K∑
k=1

θk
∣∣xik − xjk

∣∣qk (38)

where θ and q are vectors of parameters that should be determined.
In Kriging,the random variables are correlated through the following relationship:

d
(
xi, xj

)
= exp

(
−

K∑
k=1

θk
∣∣xik − xjk

∣∣qk) (39)

By using Equation 39, the correlation matrix (θ) of all η samples can be determined:

Θ =


correlation (η (x1) , η (x1)) · · · correlation

(
η (x1) , η

(
xl
))

... . . . ...
correlation

(
η
(
xl
)
, η (x1)

) ... correlation
(
η
(
xl
)
, η
(
xl
))
 (40)

and the covariance matrix:
Covariance (η, η) = σ2Θ (41)

Considering the correlation and covariance matrix, the vector of parameters (θ
and q) can be estimated and, consequently, prediction models considering Kriging can
be obtained.

More details about the mathematical development of the Kriging approach can
be found in Lophaven et al. (2002).

6 METHODOLOGY

As mentioned earlier, the main aim of this contribution is to determine the mass
diffusivity and the coefficients of the proposed approximation for the potential
considering the PNP equation and experimental data. For this purpose, a model that
represents the mass transfer (Equation 4) and electric potential needs to be integrated
(Equation 5). As demonstrated by Gomes et al. (2021) and Camargo et al. (2021), there
is a theoretical relationship between the potential and particle diameters. Thus, in this
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study, a polynomial approximation will be used to represent this physical quantity. As
a consequence, an equation to represent the potential should not be considered, as
only the mass transfer model is required.
Figure 1 – Differential Evolution

Caption: Flowchart showing the numerical solving of the proposedinverse problem by using PNP and DE
Source: the authors (2024)

In this case, the proposed inverse problem can be formulated as:

minOF =

n1∑
i=1

(
Ψexp

i −Ψcal
i

)2
(max (Ψexp))2

+

n2∑
j=1

(
Cexp

i − Ccal
i

)2
(max (Cexp))2

(42)

where OF is the objective function, Γexp
i and Γcal

i (Γ=Ψ, C) are the experimental (or
theoretical in the case of the potential) and simulated (potential and concentration)
profiles, respectively, n1 and n2 represent the number of experimental (or theoretical)
points for potential and concentration profiles, respectively, and max(Γexp) is the
highest experimental (or theoretical) value observed. To represent the potential, a
cubic polynomial function (defined after preliminary tests) is considered:
Ψ = ψ1dp

3 + ψ2dp
2 + ψ3dp+ ψ4 (43)
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where ψi (i=1, 2, ..., 4) is the set of design variables that should be determined, as well
as the mass diffusivity in the PNP equation.

A flowchart showing the numerical solving of the proposed inverse problem
considering the PNP equation and DE algorithm is presented in Figure 1.

Figure 2 – Kriging strategy

Caption: Flowchart for numerical approximation by usingKriging and predicted models by using DE
Source: the authors (2024)

As observed in Camargo et al. (2021), three concentrations of sodium chloride
were considered to produce nanoparticles. As a consequence, three experimental
monodisperse flows were obtained. In order to estimate the concentration of
monodisperse flow in other concentrations for sodium chloride, the Kriging approach,
associated with predicted profiles by using DE, is considered.This strategy is presented
in Figure 2 and is summarized in the following points:

• Initially, the monodisperse flow profiles (Predicted Models (DE)) with limit
concentrations (highest and lowest concentrations of sodium chloride) obtained
by DE are used to define a set of points considered during the Kriging application.

• For each value of dp∗ belonging to interval [0,dpm], the concentrations of
monodisperse flow limit (computed by the Predicted Models (DE)), as well as
reference points (Kriging) are the input parameters in Kriging. Thus, for a given
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concentration of sodium chloride, the Predicted Model (Kriging) estimates the
value of the monodisperse flow concentration.

• After repeating this process for all dp values, the profile estimated by the Predicted
Model (Kriging) is compared with the experimental points to verify the quality of
the obtained prediction.

It is important to mention that this strategy aims to predict the monodisperse
flow concentration profiles for any concentration of sodium chloride (within the limits
established in the experimental procedure) considering the obtained profiles for solving
an inverse problem.

7 RESULTS AND DISCUSSION

In order to apply the proposed methodology, the following points should be
highlighted:

• To formulate the inverse problem, the experimental points for concentration of
monodisperse flow and the theoretical points for the potential obtained by
Camargo et al. (2021) considering an N-DMA were considered. The nanoparticles
were produced considering a solution comprising ultra-pure water (solvent) and
aqueous solutions of sodium chloride (NaCl). For this purpose, the following
concentrations of sodium chloride were considered: 0.01 g/L, 0.1 g/L and 0.2 g/L.

• To obtain the experimental points, the following parameters/operational
conditions were considered (Camargo et al., 2021): polydisperse flow (0.5 L/min),
monodisperse flow (0.5 L/min), sheath flow (5 L/min), excess flow (5 L/min),
length (23.5 cm), radii of the inner cylinder (1.5 cm) and radii of the outer cylinder
(4.9 cm), air viscosity (1,83×10−5 kgm−1s−1), a fundamental charge of the electron
(1.6×10−19 Coulomb), mean free path (0.067 µm). In the N-DMA, voltages
considered were defined in the range from 0 to 5000 V. In this case, the particle
diameter in the monodisperse flow ranged from 10 to 120 nm. Thus dpm is equal
to 120 nm in all simulations. The final time (tf ) is equal to 1000 s (based on the
experimental procedure conducted by Camargo et al. (2021)).
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• To integrate the PNP equation, a mesh with [N×M ]=[100×100] points along with
the t and dp were used (parameters chosen from preliminary simulations). In this
case, points equally spaced in space and time were considered. As the discretized
model is linear and tridiagonal, for each time step, the Thomas algorithm (Datta,
2010) is considered as a strategy to solve the model obtained from the
discretization process.

• The initial condition considered to integrate the PNP equation is given as: f (dp)=0.
This condition can be easily justified because if t is equal to zero, there are no
particles inside the N-DMA. The boundary conditions were defined based on the
experimental profiles presented by Camargo et al. (2021), i.e.; for dp equal to zero,
the particle concentration is zero. On the other hand, for dp equal to dpm, the mass
flow is equal to zero.

• To solve each inverse problem, the following parameters were used by the DE
algorithm: 50 individuals, the perturbation rate and probability crossover equal
0.8, respectively, 250 generations. In this case, the computational cost, in each
run of the optimization algorithm, is equal to 50+50×250 objective function
evaluations. Each inverse problem was run 10 times to obtain both the average
values and standard deviation.

• The design space for this problem was defined as: -10 ≤ ψi ≤ 10 (i=1, 2, ..., 4) and
10−12 ≤ Di ≤ 10−6. It is important to mention that the range for potential was
determined after the preliminary runs. In addition, the range for mass diffusivity
was based on values observed in the literature (Dasgupta et al., 2022; Jaeger et al.,
2023; Ju & Fan, 2009; Jubery et al., 2012).

• The association between quadratic and Gauss strategies was considered a
correlation function in all simulations performed by Kriging.

• To compute the CPU time, all simulations were carried out by using Scilab
software (version 6.1.1), considering a microcomputer Intel(R) Core(TM) i7-4770K
CPU 3.50GHz with 8GB RAM and a 64-bit operation system.
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7.1 Inverse Problem

Table 1 presents the average value and the standard deviation for each
estimated parameter considering three concentrations of sodium chloride ([0.01 0.1
0.2] g/L). Given the value of the standard deviation corresponding to each parameter,
it is clear that the proposed methodology is robust in the sense of estimating the
model parameters for the analyzed data set. This can also be observed for the value of
the obtained objective function (OF) in each inverse problem. Regarding the
processing time (τ ), it can be observed that this value is related to the number of runs
required by the DE algorithm, i.e.; for each potential candidate, the model for N points
discretized in time and for M points discretized in space need to be integrated. This
process is repeated along the generations considered, resulting in obtained processing
time. Regarding mass diffusivity, its value reduces when the concentration of sodium
chloride is increased.
Table 1 – Numerical results

Concentration of sodium chloride (0.01 g/L)
Di (nm2/s) ψ1 (V/nm3) ψ2 (V/nm2) ψ3 (V/nm) ψ4 (V) OF τ (s)

6.151×10−9∗ -6.912×10−4 3.219×10−1 -1.922×10−1 2.542×10−2 1.189×10−1 3542
3.599×10−11∗∗ 1.232×10−8 4.965×10−7 1.943×10−8 8.967×10−8 7.574×10−1 444

Concentration of sodium chloride (0.1 g/L)
Di (nm2/s) ψ1 (V/nm3) ψ2 (V/nm2) ψ3 (V/nm) ψ4 (V) OF τ (s)

3.489×10−9 -6.924×10−4 3.111×10−1 -1.807×10−1 2.566×10−2 2.223×10−1 3644
7.998×10−11 2.343×10−8 7.876×10−7 1.454×10−9 2.321×10−8 2.324×10−4 258

Concentration of sodium chloride (0.2 g/L)
Di (nm2/s) ψ1 (V/nm3) ψ2 (V/nm2) ψ3 (V/nm) ψ4 (V) OF τ (s)

2.107×10−9 -6.922×10−4 3.222×10−1 -1.920×10−1 2.555×10−2 5.574×10−1 3873
1.908×10−11 1.222×10−9 1.544×10−8 1.889×10−9 4.662×10−8 1.404×10−3 587

Caption: Design variables, objective function (OF ), and processing time (τ ) obtained considering eachproposed inverse problem. ∗Average value and ∗∗Standard deviationSource: the authors (2024)

Figure 3 presents the theoretical and simulated profiles. Visually, we can
observe an excellent agreement between the theoretical data and those simulated by
the polynomial approximation considered. This is due to the smooth behavior
between the potential and the diameter. From a physical point of view, it can be
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observed that a rise in the potential value implies an increase in the range of particles
collected by the classification slit, as mentioned and discussed by Camargo et al. (2021)
and Gomes et al. (2021).
Figure 3 – Potential profile

Caption: Theoretical and simulated electric potential
Source: the authors (2024)

Figure 4 shows the simulated profiles of the PNP model at the final time for all
the concentrations of sodium chloride ([0.01 0.1 0.2] g/L) compared with the
experimental data reported by Camargo et al. (2021). In each figure, the set of
estimated parameters may result in good agreement with the dynamics of the physical
profile. The obtained values for the objective function considering each inverse
problem (see Table 1) corroborates the similarity between the concentration profiles
and the analyzed data.

As observed in Figure 4, the monodisperse flow presents a maximum height at a
given diameter (related to a given potential); in other words, for this dp, we obtained the
highest particle concentration through the classification slit. Finally, in Figure 4(d), we
can observe that the increase in the value of sodium chloride concentration implies an
increase in the peak value obtained for the monodisperse flow profile. This was already
expected as the increase in the concentration of sodium chloride implies an increase in
the number of nanoparticles present in the solution that feeds the N-DMA.
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Figure 4 – Experimental and simulated monodisperse flow considering differentconcentrations of sodium chloride.

(a) (b)

(c) (d)

Caption: (a) 0.01 g/L, (b) 0.1 g/L, (c) 0.2 g/L and (d) all concentrations
Source: the authors (2024)

7.2 Prediction of Concentration Profile at 0.1 g/L

Figure 5(a) presents the simulated profiles for the concentration profile at 0.1
g/L by using the predicted models for solving two inverse problems (0.01 g/L and 0.2
g/L), i.e., for each concentration of sodium chloride, a different model was computed
by using the DE algorithm (see Table 1). In this case, to evaluate the capacity of
prediction of the proposed methodology, the obtained concentration of monodisperse
flow is compared with experimental data (Camargo et al., 2021). In general, a good
capacity of prediction can be observed for the Kriging procedure in relation to
experimental data. Similarly, Figure 5(b) presents the concentration of monodisperse
flow profiles considering different concentrations of sodium chloride in intervals [0.01
0.2] (g/L). In this case, all concentrations of sodium chloride [0.01 0.1 0.2] (g/L) were
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used for this purpose. As observed in this figure, a good capacity of prediction
considering the Kriging procedure is obtained in this range. This demonstrates that the
proposed methodology to estimate the monodisperse flow profiles in different values
of concentrations of sodium chloride resulted in good approximations.
Figure 5 – Estimated monodisperse flow considering the Kriging approach

(a) (b)

Caption: (a) Experiment versus predicted model and (b) 0.01-0.2 g/L
Source: the authors (2024)

8 CONCLUSIONS

In this work, an inverse problem to simulate the concentration of nanodisperse
flow considering the PNP equation and different values for the concentration of
sodium chloride was proposed and solved. For this purpose, the theoretical and
experimental points obtained by Camargo et al. (2021) were used to determine the
mass diffusivity and the potential by using DE. In order to estimate the particle
concentration profile for different values of the base solution, the Kriging approach
was associated with predicted models by using DE. The obtained results demonstrate
that the proposed methodology was able to obtain good estimates for all
concentration profiles when compared with theoretical and experimental data. In
addition, the Kriging approach was able to estimate the nanodisperse flow profiles
considering the predicted models obtained by using DE.

As mentioned earlier, empirical models based on transfer functions and the
Langevin equation have been used to represent the concentration of monodisperse
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nanoparticles in aerosols subjected to an electric field (Cai et al., 2017; Camargo et al.,
2021; Gomes et al., 2021; Hagwood et al., 1999; Karlsson & Martinsson, 2003;
Ramechecandane et al., 2011; Seol et al., 2002; Song et al., 2006). In this context, the
use of a more complex model (the PNP equation) represents an advancement over
simpler models (transfer functions and the Langevin equation). Although solving the
PNP equation requires more computational time, the results obtained from this model
account for the effects of convective, diffusive, and electric field terms. This constitutes
the main advantage of the proposed methodology.

Finally, it is important to highlight that the use of mathematical modeling
associated with the prediction of the monodisperse flow concentration in aerosols can
be explained by the difficulty of carrying out countless experiments, whether due to
the time dedicated or the cost required. Thus, knowledge of these profiles can
contribute to the broad discussion about the potential risks of these nanoparticles to
the environment and human health.

For future work, we intend to simulate this physical process considering the
Langevin equation, the type-Poisson equation to obtain the potential profile and
computational fluid dynamics to determine the velocity profile.
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