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ABSTRACT

We investigate the travel time in a navigation problem from a geometric perspective, with respect to a
new class of Finsler metrics. We present the λ−Funk Finsler Metrics. The setting involves an open disk
centered at the origin, representing a circular lake perturbed by a symmetric wind flow proportional to the
distance from the origin with proportionality factor λ. The Randers metric, which is an important Finsler
metric, derived from this physical problem, generalizes the well-known Euclidean metric (λ = 0) on the
Cartesian plane and the Funk metric on the unit disk (λ = 1). We obtain the formula for distance, or travel
time, from point to point, and the circumference equations. In addition, we obtain the distance formulas
from point to line and vice versa.
Keywords: Navigation problem; λ−Funk metric; Finsler metric

RESUMO

Estudamos o tempo de viagem em um problema de navegação desde o ponto de vista geométrico, com
respeito a uma nova classe de métricas de Finsler. Apresentamos as métricas λ−Funk. O problema
envolve um disco aberto do plano Euclidiano, que representa um lago circular e é perturbado por um
fluxo de vento simétrico e proporcional à sua distância a partir da origem com fator de proporcionalidade
λ. A métrica de Randers, que é uma importante métrica Finsler, obtida deste problema f́ısico generaliza
as já conhecidas métrica Euclidiana sobre o plano cartesiano (λ = 0) e métrica de Funk sobre o disco
unitário (λ = 1). Obtemos fórmula de distância, ou tempo de viagem, de ponto a ponto e equação da
circunferência. Adicionalmente, obtemos as formulas de distancia de ponto a reta e vice-versa.
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Published by Ciência e Natura under a CC BY-NC-SA 4.0 license.

https://orcid.org/0000-0001-5492-2068
https://orcid.org/0000-0002-2082-6665
https://orcid.org/0000-0001-9102-8620
https://orcid.org/0000-0002-3172-2765
https://creativecommons.org/licenses/by-nc/4.0/


2 | Geometry of a navigation problem: the λ−Funk...

1 INTRODUCTION

This work addresses travel time in a navigation problem from a geometric
perspective, exploring a new class of Finsler metrics called λ-Funk metrics. The
problem occurs in an open disk on the Euclidean plane, representing a circular lake,
and is perturbed by a symmetric wind flow whose intensity is proportional to the
distance from the origin, with a proportionality factor λ. This approach is directly
connected to Randers metrics, a fundamental Finsler metric, which in this context
generalizes two well-known metrics: the Euclidean metric (λ = 0) and the Funk metric
(λ = 1).

Finsler metrics generalize Riemannian metrics by allowing the norm of tangent
vectors to depend not only on the position in the space but also on the direction. With
this, one can think of a Finsler manifold as “a space where the inner product depends
not only on where you are but also on in which direction you are looking”. In the
context of this work, we introduce the λ-Funk metrics as a particular example of Finsler
metrics derived directly from a navigation problem. These metrics provide an explicit
formulation for travel time, making them especially useful for describing optimized
trajectories in anisotropic environments. This study focuses on the two-dimensional
case of the unit disk in R2, enabling a detailed analysis of distance formulas and
associated geometric properties, such as circumferences and point-line distances.

There exist important Finsler metrics; one of them is the Randers metric, defined
as the sum of a Riemann metric and a 1−form. These metrics were first studied by the
physicist G. Randers in 1941 from the standard point of general relativity (Randers, 1941).
Later on, these metrics were applied to the theory of the electron microscope by R. S.
Ingarden in 1957, who first named them Randers metrics. Since then, Randers metrics
have been used in many areas like Biology, Ecology, Physics, Seismic Ray Theory, etc.

On the other hand, the Zermelo Navigation problem came to Zermelo’s mind
when the airship “Graf Zeppelin” circumnavigated the earth in August 1929. He
considered a vector field given in the Euclidean plane that describes the distribution of
winds as depending on place and time and treated the question of how an airship or
plane, moving at a constant speed against the surrounding air, has to fly in order to
reach a given point Q from a given point P in the shortest time possible (Ebbinghaus &
Peckhaus, 2015).
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In (Bao et al., 2004) the authors described Zermelo’s navigation problem on
Riemannian manifolds and showed that the path with shortest travel time is the
geodesic of Randers metrics. Conversely, they showed constructively that every
Randers metric arises as a solution to Zermelo’s navigational problem on some
Riemannian landscape under the influence of an appropriate wind. See Proposition 1.1
in Section 1.3 in (Bao et al., 2004). The Funk metric on the unit n-dimensional ball Bn(1)

given in Definition 2, which is one of the most important Randers metrics, can be
obtained by perturbing the Euclidean metric ∥ · ∥ by the vector field Wx = −x. A
physical interpretation of this could be a lake in the shape of the unit disk with a
concentric and symmetric wind current given by the vector field W (x1, x2) = (−x1,−x2).
The distance function (or the shortest traveling time from P to Q) induced by the Funk
metric, for P ̸= Q, is given by:

dF (P,Q) = ln

(√
⟨P,Q− P ⟩2 + (1− ∥P∥2)∥Q− P∥2 − ⟨P,Q− P ⟩√
⟨P,Q− P ⟩2 + (1− ∥P∥2)∥Q− P∥2 − ⟨Q,Q− P ⟩

)
, (1.1)

where ⟨·, ·⟩ and ∥ · ∥ are the usual inner product and the usual Euclidean norm,
respectively, and dF (P, P ) = 0. Both dF in equation (1.1) and F in Definition 2 could be
called Funk metric (see Sadeghi (2021); Shen (2001)). Chávez et al. (2021) proved that
dF given by (1.1) is not reversible (dF (P,Q) ̸= dF (Q,P )) and it is not translation invariant,
but the one is rotational invariant around the origin. Additionally, considering
O = (0, 0), it can be proved that (see Chávez et al. (2021) and Shen (2001))
lim

∥Q∥→1
dF (O,Q) = +∞ and lim

∥P∥→1
dF (P,O) = ln 2.

In other words, if a boat starts from the origin of the disk towards the boundary, it will
take an infinite time to reach the destination, meaning it never reaches the boundary.
And if a boat starts from the boundary of B2 towards the origin of the disk, the
minimum travel time is ln 2 units of time. Unlike classical definitions in the literature,
such as the one found in Example 1.1.2 in (Shen, 2001) or in (Sadeghi, 2021), the
approach adopted here is directly motivated by the navigation problem and aims to
simplify the derivation of explicit formulas for distances. While the definition may
appear distinct, it is equivalent under appropriate transformations, as discussed in
detail in Example 1.2.4 in (Shen, 2001).
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More about Funk metrics defined on any strongly convex bounded domain in Rn

can be found in (Funk, 1929; Sadeghi, 2021; Shen, 2001).
In this work, we consider the wind current given by the vector field

Wλ(x1, x2) = λ(−x1,−x2), where λ ≥ 0. (For λ < 0 the study is analogous). With this, we
define the λ−Funk metric (see Definition 4 below). Naturally, when λ = 0, we obtain the
Euclidean norm; when λ = 1, we get the Funk metric on B2. We note the λ−Funk metric
is spherically symmetric Finsler metric. While Randers metrics and Zermelo’s problem
have been extensively studied, the development of λ-Funk metrics in this specific
context is original, filling a gap in the literature by generalizing known metrics in
physical navigation problems. The λ-Funk metric describes the distance measured in a
space where travel cost depends on the direction and intensity of the external flow.
This model combines geometric and physical properties to capture the characteristics
of Zermelo’s navigation problem in a circular lake under perturbations. This study
contributes both to the geometric understanding of Finslerian metrics and to the
analysis of navigation problems in anisotropic environments. The formulas obtained
provide useful tools for modeling and optimizing trajectories in contexts such as
maritime and aerial transport.

In Section 2 we recall some basic results for the well development of the work.
In Section 3 we obtain and define the λ−Funk metric, recalling results about spherically
symmetric Finsler metrics we prove that their geodesics are straight lines. In Section 4
we obtain the λ−Funk distance (or traveling time), and we give some properties such as
their non-symmetry. In Section 5 we classify the circumference, and with this, we obtain
formulas for the distance from point to line and from line to point.

In conclusion, the contributions of the paper include:
1. Formulas for travel time: We derive the corresponding Finsler metric for the

navigation problem and obtain the distance formula (travel time) from one point
to another.

2. Geometric properties: We present the equation of the circumference in the
λ-metric and formulas for distances between a point and a line, as well as
between a line and a point.
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This study complements previous research on Zermelo’s problem and Randers
metrics, as explored by authors such as Bao, Shen, and others. In particular, while earlier
works focused on the study of Funk metrics in purely geometric or convex contexts, our
approach embeds these metrics into a physical context with an external perturbation.

The λ-Funk metric provides a natural generalization, unifying known metrics into a
single model that encompasses well-studied specific cases, such as the Euclidean metric
(λ = 0) and the Funk metric (λ = 1). This work offers novel contributions by explicitly
deriving travel time formulas, point-line distances, and circumference equations within
this new class of metrics.

2 PRELIMINARIES

In this section, some definitions and results necessary for the development of our
work are introduced. We adopt the definitions given in (Chávez et al., 2021), which can
also be found in (do Carmo, 2019), such as inner product, norm, regular curve, arc length
(which will be referred to as usual or Euclidean), and vector field.

Although a Finsler metric F is a function defined on the Fiber TM of a
differentiable manifold M . In this work, we present a simplified definition of a Finsler
metric on an open subset U of Rn. For a more comprehensive treatment of Finsler
metrics on general manifolds, we refer to Cheng & Shen (2012); Guo & Mo (2018); Shen
(2001).
Definition 1. The function F : U ×Rn → R, where U ⊂ Rn, is called Finsler metric on U , if
for x ∈ U and y ∈ Rn, F satisfies the following properties:

1. F (x, y) is C∞ for all x ∈ U and y ̸= 0;
2. F (x, y) > 0, for all x ∈ U and y ̸= 0;
3. F (x, δy) = δF (x, y), where δ is any positive real number;
4. The Hessian matrix of 1

2
F 2, denoted by [gij],

[gij] =

[
1

2

∂2F 2

∂yi∂yj

]

is positive definite.
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For example, Euclidean norm, Riemannian metrics or the Funk metric defined
below are Finsler metrics.
Definition 2. Let x = (x1, x2) ∈ B2 = {x ∈ R2; x2

1 + x2
2 < 1} and y = (y1, y2) ∈ R2. The

function
F (x, y) =

√
a11(x)y21 + 2a12(x)y1y2 + a22(x)y22 + b1(x)y1 + b2(x)y2,

where b1 =
x1

1− x2
1 − x2

2

, b2 = x2

1− x2
1 − x2

2

and [aij ] =
1

(1−x2
1−x2

2)
2

 1− x2
2 x1x2

x1x2 1− x2
1

, is called
the Funk metric on the unit disk B2.

Remembering that the usual Euclidean norm of the vector y is defined by
∥y∥ =

√
y21 + y22 , we have that the function F in the above definition can be interpreted

as a generalization or perturbation of the usual Euclidean norm. That is, F (x, y) can be
thought of as the “norm” of the vector y ∈ R2 at the point x ∈ B2. In the language of
Finsler geometry, this perturbed “norm” is called the Funk metric on the unit disk B2. In
general, the Finsler distance induced by Finsler metrics are not distance metrics (in the
classic sence), because Finsler distance can not be symmetric, since, F (−v) ̸= F (v).
Definition 3 (Finsler Arc Length). Let c : [a, b] → B2 ⊂ R2 be a piecewise regular curve.
The (Finsler-type) arc length of c is defined by
LF (c) :=

∫ b

a

F (c(t), c′(t))dt,

where F is a Finsler metric. For any points P,Q ∈ B2, the distance from P to Q induced
by F is defined as
dF (P,Q) := infc LF (c),

where the infimum is taken over the set of all piecewise regular curves c : [a, b] → B2

such that c(a) = P and c(b) = Q.
The Finsler-type arc length, when F is a Randers metric can be interpreted as

traveling time of a boat sailing along the curve c, from c(a) to c(b), for example, the
Funk metric models a boat sailing with unit speed in B2, where a wind current given by
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Wx = (−x1,−x2) is present with speed less than 1. (see Section 3 in (Chávez et al., 2021)).
The Funk metric in B2 is a special case of Randers metrics.

A Finsler metric F on an open subset U ⊂ Rn is said to be Projectively flat if all
geodesics are straight lines in U.

That is known that the Funk metric is projectively flat, it is, their shortest paths are
straight lines (see Example 9.2.1 in (Shen, 2001)). More details on geodesics and their
relation to shortest paths can be found in Section 3.2 in (Chern & Shen, 2005) and Section
2.3 in (Cheng & Shen, 2012).

Equation (1.1) can be more manageable using the following version of Theorem
5.1 in (Chávez et al., 2021).

Theorem 1 (Theorem 2.3 in (Chávez et al., 2024)). Let P,Q be points in B2 and r ≥ 1 be
a real number, then
dF (P,Q) = ln r ⇐⇒

∥∥∥∥Pr −Q

∥∥∥∥ =
r − 1

r
,

where ∥ · ∥ denotes the usual Euclidean norm.

3 ZERMELO NAVIGATION PROBLEM

It is worth noting that any Zermelo navigation problem in Ω ⊂ R2 (including in
broader domains like differentiable manifolds) results in a Randers metric on Ω (or on
larger domains). Furthermore, every Randers metric originates from a navigation
problem (see (Bao et al., 2004; Shen, 2003) and Chapter 2 in (Cheng & Shen, 2012)).

In this section, we will explore Randers metrics derived from the Zermelo
navigation problem modeled on an open subset Ω of R2.

Suppose that a boat is pushed by an internal force (like a motor force) with the
velocity vector Ux of constant length, ∥Ux∥ = 1. Without an external velocity vector, the
shortest paths are straight lines. In this case, the length of a straight line segment
corresponds exactly to the travel time of the boat. Specifically, if c : [0, t0] → R2 is the
position vector of the boat, such that c′(t) = Uc(t) (a unit velocity vector), then:
∫ t

0

∥c′(τ)∥dτ =

∫ t

0

1dτ = t.

Ci. e Nat., Santa Maria, v.47, e88467, 2025
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Now, suppose that there exists an external velocity vector Wx, like generated by
the wind, with ∥Wx∥ < 1. This condition ensures that the boat can move in all
directions. The combination of the two velocity vectors on the object, Tx = Ux + Wx,
gives the direction and speed of the object at the point x ∈ Ω. Once the internal
velocity vector Ux with ∥Ux∥ = 1 is chosen, we have:
∥Tx −Wx∥ = ∥Ux∥ = 1. (3.1)

For any vector yx ∈ R2, there exists (see Figure 1) a unique solution F = F (x, yx) >

0 to the following equation:∥∥∥∥ yx
F (x, yx)

−Wx

∥∥∥∥ = 1. (3.2)

Figure 1 – Existence of F

Source: the authors (2024)

By comparing (3.1) and (3.2), we obtain:
F (x, Tx) = 1.
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If c : [0, t0] → Ω is a smooth curve with c′(t) = Tc(t), then the arc length LF (c) of c is
equals to the travel time of the object along c. Indeed:
LF (c) =

∫ t0

0

F (c(τ), Tc(τ))dτ =

∫ t0

0

1dτ = t0.

Therefore, in the presence of an external force Wx, the search for shortest paths
is no longer in the Euclidean metric, but in the metric F .

We will now derive an expression for the function F = F (x, yx). To simplify
notation, we will omit the subscript x from yx and Wx going forward. Squaring both
sides of Equation (3.2) and expanding the squared norm, we get:
∥y∥2

F 2
− 2

⟨y,W ⟩
F

+ ∥W∥2 = 1.

Multiplying both sides of the above equality by F 2, we have:
(1− ∥W∥2)F 2 + 2⟨y,W ⟩F − ∥y∥2 = 0.

This last equality is a quadratic equation, whose roots are given by:

F = − ⟨W, y⟩
1− ∥W∥2

±
√

⟨W, y⟩2 + ∥y∥2(1− ∥W∥2)
1− ∥W∥2

.

Now, since:
√

⟨W, y⟩2 + ∥y∥2(1− ∥W∥2) ≥ |⟨W, y⟩| ≥ ⟨W, y⟩.

Equality holds if and only if y = 0. Thus, there will always be one positive root and
one non-positive root, ensuring that F > 0 for all y ̸= 0. Thus, we obtain:

F =

√
⟨W, y⟩2 + ∥y∥2(1− ∥W∥2)

1− ∥W∥2
− ⟨W, y⟩

1− ∥W∥2
. (3.3)

Given a non-negative constant λ, we are going to define the λ−Funk metric
considering W = Wx = −λ(x1, x2) (see Figure 2).
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Figure 2 – Wind Current: Wx = −λx

Source: the authors (2024)

Definition 4. The λ−Funk metric F : Ωλ × Rn → R is defined by

F =

√
λ2⟨x, y⟩2 + ∥y∥2(1− λ2∥x∥2)

1− λ2∥x∥2
+

λ⟨x, y⟩
1− λ2∥x∥2

, (3.4)
where Ωλ = {x ∈ R2; ∥x∥ < 1/λ} for λ > 0, and Ω0 = Rn.
Remark 1. It is straightforward to prove that the function (3.4) satisfies all the properties
of a Finsler metric in Definition 1. And, note thatF in (3.4) remains the classical Euclidean
norm when λ = 0 and the Funk metric on the unit disk in Definition 2 when λ = 1.

We recall the following result, which characterizes spherically symmetric Finsler
metrics that are projectively flat (i.e. geodesics are straight lines).
Theorem 2 (Theorem 1.1 in (Huang & Mo, 2013)). Let F = ∥y∥ϕ

(
∥x∥, ⟨x,y⟩∥y∥

) be a
spherically symmetric Finsler metric in Bn(µ) = {x ∈ Rn; ∥x∥ < µ}. Then, F is
projectively flat if, and only if, ϕ = ϕ(r, s) satisfies rϕss − ϕr + sϕrs = 0, where the
sub-index r, s represent the partial derivatives with respect to r and s, respectively.
Theorem 3. The λ−Funk metric defined in (3.4) is projectively flat.
Proof. Note that (3.4) can be rewritten as F = ∥y∥ϕ

(
∥x∥, ⟨x,y⟩∥y∥

) where

ϕ(r, s) =

√
1 + λ2(s2 − r2)

1− λ2r2
+

λs

1− λ2r2
. (3.5)
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Chávez, N. M. S., León, V. A. M., Rodrigues Filho, A. H., & Souza, M. A. de. | 11

By differentiating ϕ with respect to r and s in (3.5), we obtain
ϕr =

λ2r(1 + λ2[2s2 − r2])

(1− λ2r2)2(1 + λ2[s2 − r2])1/2
+

2λ3sr

(1− λ2r2)2
(3.6)

and
ϕs =

λ2s

(1− λ2r2)(1 + λ2[s2 − r2])1/2
+

λ

1− λ2r2
. (3.7)

Now, by differentiating (3.6) and (3.7) with respect to s, we have
ϕrs =

λ4rs(3 + λ2[2s2 − 3r2])

(1− λ2r2)2(1 + λ2[s2 − r2])3/2
+

2λ3r

(1− λ2r2)2
(3.8)

and
ϕss =

λ2

(1 + λ2[s2 − r2])3/2
. (3.9)

Thus, using (3.6), (3.8), and (3.9), we obtain
rϕss − ϕr + sϕrs =

λ2r

(1 + λ2[s2 − r2])3/2
− λ2r(1 + λ2[2s2 − r2])

(1− λ2r2)2(1 + λ2[s2 − r2])1/2
− 2λ3sr

(1− λ2r2)2

+
λ4rs2(3 + λ2[2s2 − 3r2])

(1− λ2r2)2(1 + λ2[s2 − r2])3/2
+

2λ3rs

(1− λ2r2)2

=
λ2r {(1− λ2r2)2 − (1 + λ2[2s2 − r2])(1 + λ2[s2 − r2]) + λ2s2(3 + λ2[2s2 − 3r2])}

(1− λ2r2)2(1 + λ2[s2 − r2])3/2

=
λ2r {1 + λ2[3s2 − 2r2] + λ4[2s4 − 3r2s2 + r4]− (1 + λ2[2s2 − r2])(1 + λ2[s2 − r2])}

(1− λ2r2)2(1 + λ2[s2 − r2])3/2

= 0.

Therefore, by Theorem 2, we have that λ−Funk metric given by (3.4) is projectively flat
on Ωλ.

4 INDUCED DISTANCE

By Theorem 3 and inspired by Chávez et al. (2021) we obtain the distance from P

to Q denoted by dF (P,Q).

Theorem 4. Let λ > 0, Ωλ = B2(1/λ). Given P,Q ∈ Ωλ, then, the distance (or traveling
Ci. e Nat., Santa Maria, v.47, e88467, 2025
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time) induced by the λ−Funk metric, for P ̸= Q, is given by:

dF (P,Q) =
1

λ
ln

(√
λ2⟨P,Q− P ⟩2 + (1− λ2∥P∥2)∥Q− P∥2 − λ⟨P,Q− P ⟩√
λ2⟨P,Q− P ⟩2 + (1− λ2∥P∥2)∥Q− P∥2 − λ⟨Q,Q− P ⟩

)
, (4.1)

where ⟨·, ·⟩ and ∥ · ∥ are the usual inner product and the usual Euclidean norm,
respectively, and dF (P, P ) = 0.

Proof. Let P,Q ∈ Ωλ ⊂ R2 be distinct points. By Theorem 3, since “λ−Funk” metric F is
projectively flat, we consider the parametric curve c : [0, 1] → Ωλ defined by:

c(t) = tQ+ (1− t)P (4.2)
which connects the points P and Q. Note that c(0) = P and c(1) = Q. Differentiating (4.2)
with respect to t:
c′(t) = Q− P (4.3)
By the Definition 3, the “λ−Funk” distance from P to Q, denoted by dF (P,Q), is given by:

dF (P,Q) = LF (c) =

∫ 1

0

F (c(t), c′(t)) dt (4.4)
where F is given by (3.4). Substituting (4.2) and (4.3) into (4.4), we have:
dF (P,Q) = dF (P,Q)1 + dF (P,Q)2

where
dF (P,Q)1 =

∫ 1

0

√
∥Q− P∥2(1− λ2∥P∥2) + λ2⟨P,Q− P ⟩2

(1− λ2∥P∥2)− 2λ2⟨P,Q− P ⟩t− λ2∥Q− P∥2t2
dt (4.5)

and
dF (P,Q)2 =

∫ 1

0

λ∥Q− P∥2t+ λ⟨P,Q− P ⟩
(1− λ2∥P∥2)− 2λ2⟨P,Q− P ⟩t− λ2∥Q− P∥2t2

dt. (4.6)
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We define k as follows to simplify the notation:
k = ∥Q− P∥2(1− λ2∥P∥2) + λ2⟨P,Q− P ⟩2. (4.7)
Note:
(1−λ2∥P∥2)−2λ2⟨P,Q−P ⟩t−λ2∥Q−P∥2t2 = −λ2∥Q−P∥2

[
t2 + 2

⟨P,Q− P ⟩
∥Q− P∥2

t− 1− λ2∥P∥2

λ2∥Q− P∥2

]
.

Now, factorizing the right-hand side of the above equation, we obtain:
(1− λ2∥P∥2)− 2λ2⟨P,Q− P ⟩t− λ2∥Q− P∥2t2 = −λ2∥Q− P∥2(t− τ1)(t− τ2) (4.8)
where
τ1 =

−λ⟨P,Q− P ⟩ −
√
k

λ∥Q− P∥2
(4.9)

and
τ2 =

−λ⟨P,Q− P ⟩+
√
k

λ∥Q− P∥2
. (4.10)

Substituting (4.7) and (4.8) into (4.5), we have:

dF (P,Q)1 = −
√
k

λ2∥Q− P∥2

∫ 1

0

1

(t− τ1)(t− τ2)
dt.

This time, using the method of partial fractions, we have:

dF (P,Q)1 = −
√
k

λ2∥Q− P∥2

∫ 1

0

[
1

(τ1 − τ2)(t− τ1)
− 1

(τ1 − τ2)(t− τ2)

]
dt.
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Therefore, integrating, we obtain:

d(P,Q)1 = −
√
k

λ2∥Q− P∥2

[
ln |t− τ1|
τ1 − τ2

− ln |t− τ2|
τ1 − τ2

]1
0

= −
√
k

λ2∥Q− P∥2
1

(τ1 − τ2)

[
ln

∣∣∣∣t− τ1
t− τ2

∣∣∣∣]1
0

= −
√
k

λ2∥Q− P∥2
1

(τ1 − τ2)
ln

∣∣∣∣τ2(1− τ1)

τ1(1− τ2)

∣∣∣∣ .
(4.11)

Note that, by (4.9) and (4.10), we have:
1

τ1 − τ2
= −λ∥Q− P∥2

2
√
k

. (4.12)
Thus, substituting (4.12) into (4.11), we have:
dF (P,Q)1 =

1

2λ
ln

∣∣∣∣τ2(1− τ1)

τ1(1− τ2)

∣∣∣∣ . (4.13)
On the other hand, note
[(1− λ2∥P∥2)− 2λ2⟨P,Q− P ⟩t− λ2∥Q− P∥2t2]′ = −2λ2[∥Q− P∥2t+ ⟨P,Q− P ⟩]. (4.14)
Thus, substituting (4.14) into (4.6), we have:
dF (P,Q)2 = − 1

2λ

∫ 1

0

[(1− λ2∥P∥2)− 2λ2⟨P,Q− P ⟩t− λ2∥Q− P∥2t2]′

(1− λ2∥P∥2)− 2λ2⟨P,Q− P ⟩t− λ2∥Q− P∥2t2
dt.

By the Fundamental Theorem of Calculus, we obtain:
dF (P,Q)2 = − 1

2λ

[
ln
∣∣(1− λ2∥P∥2)− 2λ2⟨P,Q− P ⟩t− λ2∥Q− P∥2t2

∣∣]1
0
. (4.15)

Thus, substituting (4.8) into (4.15), we have:
dF (P,Q)2 = − 1

2λ

[
ln
∣∣−λ2∥Q− P∥2(t− τ1)(t− τ2)

∣∣]1
0
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or, equivalently, we obtain:
dF (P,Q)2 = − 1

2λ
ln

∣∣∣∣(1− τ1)(1− τ2)

τ1τ2

∣∣∣∣ . (4.16)
Substituting (4.12) and (4.16) into (4.4), we have:
dF (P,Q) =

1

2λ
ln

∣∣∣∣τ2(1− τ1)

τ1(1− τ2)

∣∣∣∣− 1

2λ
ln

∣∣∣∣(1− τ1)(1− τ2)

τ1τ2

∣∣∣∣
=

1

2λ
ln

(
τ 22

(1− τ2)2

)
(4.17)

=
1

λ
ln

∣∣∣∣ τ2
τ2 − 1

∣∣∣∣ .
Claim 1. τ2 > 1.

In fact, note that, from the definition of τ2 in (4.10), we have τ2 > 1 if and only if
√
λ2⟨P,Q− P ⟩2 + (1− λ2∥P∥2)∥Q− P∥2 > λ(⟨P,Q− P ⟩+ ∥Q− P∥2). (4.18)

Now, two situations arise:
• If ⟨P,Q− P ⟩+ ∥Q− P∥2 < 0, then (4.18) is clearly true.
• If ⟨P,Q− P ⟩+ ∥Q− P∥2 ≥ 0, then (4.18) is true if and only if
λ2⟨P,Q− P ⟩2 + (1− λ2∥P∥2)∥Q− P∥2 > λ2

(
⟨P,Q− P ⟩2 + 2⟨P,Q− P ⟩∥Q− P∥2 + ∥Q− P∥4

)
⇔ (1− λ2∥P∥2)∥Q− P∥2 > 2λ2⟨P,Q− P ⟩∥Q− P∥2 + λ2∥Q− P∥4

Since P ̸= Q, dividing both sides of the above inequality by ∥Q− P∥2, we have:
1− λ2∥P∥2 > 2λ2⟨P,Q− P ⟩+ λ2∥Q− P∥2 ⇔ 1 > λ2 (∥P∥2 + 2⟨P,Q− P ⟩+ ∥Q− P∥2)

⇔ 1 > λ2∥P + (Q− P )∥2

⇔ 1

λ2
> ∥Q∥2,

which is also true.
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16 | Geometry of a navigation problem: the λ−Funk...

Therefore, in either case, (4.18) is true. This concludes the proof of the claim.
Using Claim 1 in (4.17), we have that the distance from P to Q is given by:
dF (P,Q) =

1

λ
ln

(
τ2

τ2 − 1

)
. (4.19)

Replacing (4.10) in (4.19), and using
⟨P,Q− P ⟩+ ∥Q− P∥2 = ⟨Q,Q− P ⟩

we obtain the result.
Remark 2. For λ ̸= 0, we have

1. dF is not symmetric. In fact, consider O as the origin and P any point in Ωλ distinct
from O. Thus, from equation (4.1) in Theorem 4, we observe:

dF (O,P ) =
1

λ
ln

( √
∥P∥2√

∥P∥2 − λ⟨P, P ⟩

)

=
1

λ
ln

(
1

1− λ∥P∥

)
= −1

λ
ln(1− λ∥P∥)

̸= 1

λ
ln(1 + λ∥P∥)

=
1

λ
ln

(√
λ2∥P∥4 + (1− λ2∥P∥2)∥P∥2 − λ⟨P,−P ⟩√

λ2∥P∥4 + (1− λ2∥P∥2)∥P∥2

)
= dF (P,O).

Theorem 5, below, provides a better visualization of this asymmetry.
2. dF is not invariant under translations. In fact, consider T : Ωλ → Ωλ given by T (x) =

x+ P0 where P0 ∈ Ωλ \ {O}. Note:
dF (O,−P0) = dF (O,P0) ̸= dF (P0, O) = dF (T (O), T (−P0)).

3. dF is invariant under rotations around the origin. It suffices to note that the
Euclidean inner product and the Euclidean norm are invariant under rotations
around the origin.
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5 GEOMETRY OF THE λ−FUNK METRIC ON Ωλ

In this section, we will examine some geometric properties of basic geometry,
such as the distance from one point to another, the distance from a point to a line, and
the study of the circle, using the distance obtained in (4.1) induced by the λ−Funk metric
(3.4).
Theorem 5. Let P, Q be points in Ωλ (λ > 0) and r ≥ 1 a real number, then
dF (P,Q) =

1

λ
ln r ⇐⇒

∥∥∥∥Pr −Q

∥∥∥∥ =
1

λ

(
r − 1

r

)
. (5.1)

Proof. If r = 1, we have
dF (P,Q) =

1

λ
ln 1 = 0 ⇔ P = Q ⇔ 1

λ

(
1− 1

1

)
= 0 =

1

λ
∥P −Q∥ =

1

λ

∥∥∥∥P1 −Q

∥∥∥∥ .
If r > 1, we have∥∥∥∥Pr −Q

∥∥∥∥ =
1

λ

(
r − 1

r

)
⇔
∥∥∥∥P (r − 1

r

)
+ (Q− P )

∥∥∥∥ =
1

λ

r − 1

r
⇔
∥∥∥∥P +

(
r

r − 1

)
(Q− P )

∥∥∥∥2 = 1

λ2

⇔ 1− λ2∥P∥2 = λ2

(
r

r − 1

)2

∥Q− P∥2 + 2λ2

(
r

r − 1

)
⟨P,Q− P ⟩.

Note that P ̸= Q since r > 1, thus ∥P −Q∥ ̸= 0 and r − 1 ̸= 0. Therefore, multiplying the
above equality by (r − 1)2∥Q− P∥2 we get
⇔ (r − 1)2(1− λ2∥P∥2)∥Q− P∥2 = λ2r2∥Q− P∥4 + 2λ2r(r − 1)⟨P,Q− P ⟩∥Q− P∥2

⇔
(r − 1)2 (λ2⟨P,Q− P ⟩2 + ∥Q− P∥2(1− λ2∥P∥2))

= λ2 ((r − 1)⟨P,Q− P ⟩+ r∥Q− P∥2)2 .
(5.2)

Now, since ⟨Q, rQ− P ⟩ < 1

λ
∥rQ− P∥ =

r − 1

λ2
(since Q ∈ Ωλ) and r − 1 > 0, we have

λ2 [(r − 1)⟨P,Q− P ⟩+ r∥Q− P∥2] = λ2⟨rQ− P,Q− P ⟩

= λ2 [∥rQ− P∥2 − (r − 1)⟨Q, rQ− P ⟩]

> λ2[(r − 1)2 − (r − 1)2] = 0.
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18 | Geometry of a navigation problem: the λ−Funk...

Thus, being r − 1 > 0, (5.2) is equivalent to
⇔ (r− 1)

√
λ2⟨P,Q− P ⟩2 + ∥Q− P∥2(1− λ2∥P∥2) = λ[(r− 1)⟨P,Q−P ⟩+ r∥Q−P∥2]. (5.3)

Since Q ∈ Ωλ and P ̸= Q we have that
λ2[⟨Q,Q− P ⟩2 − ⟨P,Q− P ⟩2] = λ2

[
∥Q∥2 − ∥P∥2

]
∥Q− P∥2 ̸= (1− λ2∥P∥2)∥Q− P∥2

⇔
√

λ2⟨P,Q− P ⟩2 + (1− λ2∥P∥2)∥Q− P∥2 − λ⟨Q,Q− P ⟩ ≠ 0.

Therefore, we obtain that (5.3) is equivalent to

⇔ r =

√
λ2⟨P,Q− P ⟩2 + (1− λ2∥P∥2)∥Q− P∥2 − λ⟨P,Q− P ⟩√
λ2⟨P,Q− P ⟩2 + (1− λ2∥P∥2)∥Q− P∥2 − λ⟨Q,Q− P ⟩

⇔ 1

λ
ln r =

1

λ
ln

(√
λ2⟨P,Q− P ⟩2 + (1− λ2∥P∥2)∥Q− P∥2 − λ⟨P,Q− P ⟩√
λ2⟨P,Q− P ⟩2 + (1− λ2∥P∥2)∥Q− P∥2 − λ⟨Q,Q− P ⟩

)
= dF (P,Q).

Note that, in the proof of the previous theorem, the properties of the Euclidean
norm were used, that is, the theorem remains valid for points P and Q in Bn(1/λ), n ≥ 2.
Remark 3. Note that using equation (5.1) it is easier to show that dF is invariant under
rotations around the origin, that is,
dF (RP,RQ) = dF (P,Q), (5.4)

where P,Q ∈ Ωλ and R =

 cos θ sin θ

− sin θ cos θ

.

Remark 4. Consider P = (0, 0) in (5.1), then ∥Q∥ =
1

λ

r − 1

r
. When ∥Q∥ → 1

λ
, that is, when

Q approaches the boundary of Ωλ then r → +∞, consequently dF (P,Q) → +∞. This
means, together with Property 2 in Remark 2.8 in Chávez et al. (2021), that from any
point in Ωλ, our boat will not be able to leave Ωλ. On the other hand, consider Q = (0, 0)

in (5.1), then ∥P∥ =
r − 1

λ
. When ∥P∥ → 1

λ
, then r → 2, consequently dF (P,Q) → ln 2

λ
.

Thus, from the boundary of Ωλ, our boat can reach the origin in a time equal to ln 2

λ
.
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5.1 Circumference

Since the Funk distance is not symmetric, that is, dF (P,Q) ̸= dF (Q,P ), we have two
interpretations for the notion of circumference, these are, the “output” from the center,
called type 1; and the “input” to the center, called type 2.
Definition 5. Given P a point in Ωλ and r ≥ 1 a real number, we define the type 1 Funk

circumference, with center P and radius ln r

λ
, as the points X ∈ Ωλ that satisfy the

following equation:
dF (P,X) =

ln r

λ
.

By (5.1), we have that the equation of the type 1 Funk circumference with center
P = (a, b) and radius ln r

λ
, is given by:

(
x1 −

a

r

)2
+

(
x2 −

b

r

)2

=

(
r − 1

λr

)2

. (5.5)

Figure 3 – dF (P,X) = ln r
λ

Source: the authors (2024)
Equation (5.5) describes the graph of a Euclidean circle in R2 with center at P

r
and

radius r−1
λr

(see Figure 3).
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Definition 6. Given P a point in Ωλ and r ≥ 1 a real number, we define the type 2 Funk

circumference, with center P and radius ln r

λ
, as the points X ∈ Ωλ that satisfy the

following equation:
dF (X,P ) =

ln r

λ
.

By (5.1), we have that the equation of the type 2 Funk circumference with center
P = (a, b) and radius ln r

λ
, is part of the Euclidean circle with center at (ra, rb) and radius

r − 1

λ
. (see Figure 4).

(
a− x1

r

)2
+
(
b− x2

r

)2
=

(
r − 1

λr

)2

,

or, equivalently,

(x1 − ra)2 + (x2 − rb)2 =

(
r − 1

λ

)2

. (5.6)

Figure 4 – dF (X,P ) = ln r
λ

Source: the authors (2024)
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5.2 λ−Funk distance from a Line to a Point

Definition 7. Let s a line in R2. We define the distance, dF (sλ, Q), from sλ = s ∩ Ωλ to the
point Q ∈ Ωλ as:
dF (sλ, Q) := min{dF (P ′, Q); P ′ ∈ sλ}.

We say that the point P∗ ∈ sλ realizes the distance from sλ to the point Q, if
dF (P∗, Q) ≤ dF (P

′, Q), for all P ′ ∈ sλ.

Theorem 6. Let s : x2 = mx1 + c a line in R2. The λ−Funk distance from sλ = s ∩ Ωλ to
the point Q = (a, b) ∈ Ωλ is given by:
dF (sλ, Q) =

ln r

λ
=

1

λ
ln

(
1− λ2c cos θ(b cos θ − a sin θ) + λ|c cos θ − b cos θ + a sin θ|

1− λ2(b cos θ − a sin θ)2

)
, (5.7)

where θ = arctanm. And, this distance is realized by

P∗ =

 cos θ − sin θ

sin θ cos θ

 ar cos θ + br sin θ

c cos θ

 . (5.8)

Proof. Given a line s : x2 = mx1 + c and a point Q = (a, b) ∈ Ωλ, we will first analyze
the particular case where m = 0 and then analyze the general case. To determine the
distance from the line s to the point Q, we take a Funk circumference containing Q and
centered at some point on the line. The radius is ln r

λ
and the center is at P = (x1, c) ∈ s.

According to Equation (5.6), we have:

(x1 − ra)2 + (c− rb)2 =

(
r − 1

λ

)2

. (5.9)
This is a quadratic equation in the variable x1, and depending on r, it is possible to find
two, one, or no solutions for x1. We are only interested in finding a single solution, the
one that minimizes the distance. Thus, from Equation (5.9), we have the uniqueness
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conditions, x1 = ra and
(c− rb)2 =

(
r − 1

λ

)2

.

Expanding the squares, we get a quadratic equation in r:
(1− λ2b2)r2 + 2(λ2bc− 1)r + (1− λ2c2) = 0,

whose roots are given by:

r =
(1− λ2bc)±

√
(1− λ2bc)2 − (1− λ2b2)(1− λ2c2)

1− λ2b2
. (5.10)

Note that:
(1− λ2bc)2 − (1− λ2b2)(1− λ2c2) = λ2(c− b)2.

Thus, equation (5.10) becomes r =
1− λ2bc± λ|c− b|

1− λ2b2
. Remembering that r > 1, we

obtain:
r =

1− λ2bc+ λ|c− b|
1− λ2b2

. (5.11)
Thus, the Funk distance from sλ to the point Q = (a, b), for the case where m = 0, is given
by:
dF (sλ, Q) =

ln r

λ
=

1

λ
ln

(
1− λ2bc+ λ|c− b|

1− λ2b2

)
. (5.12)

This distance is realized by the point, P∗ = (ar, c) ∈ s. We will later see how to
determine this distance for any line s. To do this, we first observe that the force field is
symmetric with respect to the origin (see equation (5.4)). Thus, we can apply a rotation
around the origin to the axes and find values for x1 and r based on the results already
obtained.
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Given a line s : x2 = mx1+c, we rotate the coordinate axes by θ degrees, such that
m = tan θ. Note that, in the new rotated axes, the line s is a horizontal line (parallel to the
x1 axis), falling into the particular case where m = 0. We determine the new coordinates
of Q = (a, b):
 a′

b′

 =

 cos θ sin θ

− sin θ cos θ

 a

b


Thus, the new coordinates of Q are (a cos θ + b sin θ, b cos θ − a sin θ).

From (5.9) and (5.11), we obtain:
r =

1− λ2c cos θ(b cos θ − a sin θ) + λ|c cos θ − b cos θ + a sin θ|
1− λ2(b cos θ − a sin θ)2

and x = r(a cos θ + b sin θ).

Thus, we obtain the Funk distance from the line s to the point Q, given by (5.7).
Moreover, this distance is realized by the point P ∗ ∗ = (r(a cos θ+ b sin θ), c cos θ). And, to
obtain the point on the original line (without rotation around the origin), it is sufficient
to rotate the line back to its original position.
Remark 5. The distance dF (s̃λ, Q̃) where s̃λ : x1 = c̃ and Q̃ = (ã, b̃), by clockwise rotation

of the coordinate axis, is equivalent to obtain the distance dF (sλ, Q), where sλ : x2 = c̃ and

P = (−b̃, ã). That is, from equation (5.12),
dF (s̃λ, Q̃) = dF (sλ, Q) =

1

λ
ln

(
1− λ2ãc̃+ |c̃− ã|

1− λ2ã

)
.

Example 1. Considering the vector field W (x1, x2) = −2/5(x1, x2), the line s : x2 = x1 + 1,
and the point Q = (1, 1/10), (see Figure 5). From Theorem 6, we have, dF (sλ, Q) = 1.36,
and P ∗ = (0.45, 1, 45).
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Figure 5 – dF (sλ, Q) = dF (P
∗, Q) = 1.36

Source: the authors (2024)

5.3 λ−Funk Distance from a Point to a Line

Definition 8. Let s a line in R2. We define the distance, dF (P, sλ), from the point P ∈ Ωλ

to sλ = s ∩ Ωλ as:
dF (P, sλ) := min{dF (P,Q′); Q′ ∈ sλ}.

We say that the point Q∗ ∈ sλ realizes the distance from P to sλ, if
dF (P,Q∗) ≤ dF (P,Q

′), for all Q′ ∈ sλ.

Theorem 7. Let s : x2 = mx1 + c a line in R2. The λ−Funk distance from the point
P = (a, b) ∈ Ωλ to sλ = s ∩ Ωλ is given by:
dF (P, sλ) =

ln r

λ
=

1

λ
ln

(
1− λ2c cos θ(b cos θ − a sin θ) + λ|c cos θ − b cos θ + a sin θ|

1− λ2c2 cos2 θ

)
, (5.13)

where θ = arctanm. And, this distance is realized by

Q∗ =

 cos θ − sin θ

sin θ cos θ

 a
r
cos θ + b

r
sin θ

c cos θ

 . (5.14)
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Proof. Given the point P = (a, b) and the line s : x2 = mx1 + c, we will proceed similarly
as we did before to determine the Funk distance from the line to the point. We take a
Funk circumference centered at P , with radius ln r

λ
and intersecting with the line s. We

take the point Q ∈ s to be one of these intersections. First, we will verify the particular
case where m = 0. Thus, by Equation (5.1), we have:
(
x1 −

a

r

)2
+

(
c− b

r

)2

=

(
r − 1

λr

)2

. (5.15)
Similarly, this is a quadratic equation in the variable x1, and depending on r. However,
we are only interested in finding a single solution, the one that minimizes the distance.
To obtain a unique solution of (5.15), the discriminant of the quadratic equation in x1

above must be equal to zero. Consequently, we will have a quadratic equation in r:
r2(λ2c2 − 1) + 2r(1− bcλ2) + λ2b2 − 1 = 0,

whose roots are given by:

r =
(λ2bc− 1)±

√
(λ2bc− 1)2 − (λ2c2 − 1)(λ2b2 − 1)

λ2c2 − 1
.

We observe:
(λ2bc− 1)2 − (λ2c2 − 1)(λ2b2 − 1) = λ2(c− b)2.

Thus, r =
(λ2bc− 1)± λ|c− b|

λ2c2 − 1
. To ensure that r > 1, we have r =

λ2bc− 1− λ|c− b|
λ2c2 − 1and x1 =

a

r
. Thus, the Funk distance from the point P to the line s (case where m = 0) is

given by:
dF (P, s) =

ln r

λ
=

1

λ
ln

(
λ2bc− 1− λ|c− b|

λ2c2 − 1

)
. (5.16)

This distance is realized by the point Q∗ =
(a
r
, c
).

For the case where s is any line, rotate the axes, as we did before, and we obtain
(7) which is realized by the point Q∗∗ =

(
a cos θ + b sin θ

r
, c cos θ

)
. Then, we rotate back to

obtain the point on the original line.
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Remark 6. The distance dF (P̃ , s̃λ) where s̃λ : x1 = c̃ and Q̃ = (ã, b̃), by clockwise rotation

of the coordinate axis, is equivalent to obtain the distance dF (P, sλ), where sλ : x2 = c̃ and

P = (−b̃, ã). That is, from equation (5.16),
dF (P̃ , s̃λ) = dF (P, sλ) =

1

λ
ln

(
λ2ãc̃− 1− λ|ã− c̃|

λ2c̃2 − 1

)
.

Example 2. Considering the vector field W (x1, x2) = −2/5(x1, x2), the line s : x2 = x1 + 1,
and the point P = (1, 1/10), (see Figure 6). From Theorem 7, we have, dF (Q, sλ) = 1.4,
and Q∗ = (−0.19, 0.81).

Figure 6 – dF (P, sλ) = dF (P,Q
∗) = 1.4

Source: the authors (2024)

6 CONCLUSION

The Zermelo’s navigation problem considered in this work was a boat navigating
through a lake-like suitable disk, and the wind current was modeled by vector field
Wλ(x1, x2) = λ(−x1,−x2), where λ ≥ 0. With this, we defined the λ−Funk metric
(Definition 4) which generalize the usual Euclidean norm (λ = 0) and the Funk metric
given by (1.1) (λ = 1). We prove that λ−Funk metric is spherically symmetric Finsler
metric, with this, we prove the shortest path are straight lines (Theorem 3). The time
traveling or the called λ−Funk distance induced by the λ−Funk metric was obtained in
Theorem 4. Although the expression of this distance is complicated, Theorem 5 gives
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us a useful tool to obtain the equation of the circumferences (equations (5.5) and
(4.16)), the distance from line to point (Theorem 6) and from point to line (Theorem 7).

The λ-Funk metrics have potential applications in trajectory optimization and
route planning in environments subject to external flows, such as ocean currents or
winds. Moreover, the geometric study presented here provides analytical tools that
can be applied to other areas, including control theory, dynamical systems analysis,
and even computational modeling. The explicit formulas derived in this paper lay a
foundation for future studies involving more complex geometric or physical problems.
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