

Ci. e Nat., Santa Maria, v. 46, n. esp. 2, e87610, 2024 • https://doi.org/10.5902/2179460X87610 Submissão: 26/04/24 • Aprovação: 12/09/24 • Publicação: 16/12/24

XIII Workshop Brasileiro de Micrometeorologia

Uso do termo de contra-gradiente baseado na teoria de Taylor e a sua influência na simulação de precipitação na região amazônica

Use of the counter-gradient term based on Taylor's theory and its influence on precipitation simulation in the Amazon region

Eduardo Rohde Eras ' , Haroldo Fraga de Campos Velho ' , Paulo Yoshio Kubota ' D

¹Instituto Nacional de Pesquisas Espaciais, São José dos Campos, SP, Brasil

RESUMO

A turbulência da Camada Limite Plantária (CLP) é parametrizada no Modelo Atmosférico Global Brasileiro (BAM) utilizando a teoria estatística de G. I. Taylor por meio de uma parametrização da CLP juntamente com o termo γ_{χ} de Contra-Gradiente. O uso desse termo γ_{χ} gerou bons resultados para simulação de precipitação na região amazônica.

Palavras-chave: Contra-gradiente; Camada Limite Planetária; G. I. Taylor

ABSTRACT

The Planetary Boundary Layer (PBL) turbulence is parameterized in the Brazilian Global Atmospheric Model (BAM) using G. I. Taylor's statistical theory, through a PBL parameterization together with the Counter-Gradient term γ_{χ} . The use of the γ_{χ} generated good results simulating precipitation in the Amazon region.

Keywords: Counter-gradient; Planetary Boundary Layer; G.I. Taylor

1 INTRODUÇÃO

Regida por ciclos diurnos e pelas diferenças geográficas regionais, a Camada Limite Planetária (CLP) é de grande importância para previsão meteorológica e sua natureza turbulenta representa um desafio para modelagem numérica da atmosfera, onde no Modelo Atmosférico Global Brasileiro (BAM) utilizado pelo Instituto Nacional de Pesquisas Espaciais (INPE), essa modelagem é feita por parametrizações físicas. Uma nova parametrização para CLP sugerida para o modelo global baseada na teoria de G. I. Taylor (Eras et al., 2023), mostrou bons resultados especialmente para precipitação. Em adição a essa parametrização, Welter (2006) sugere o uso do termo de contra-gradiente (CG) também com base na teoria de Taylor, que obteve bons resultados em um modelo regional de alta resolução (20*Km* na horizontal e 40 níveis verticais). O presente trabalho mostra os primeiros resultados com o modelo global BAM-INPE usando a parametrização da CLP junto ao termo de CG baseados na teoria de Taylor, com foco na região amazônica.

2 O MODELO BAM

O BAM é o modelo espectral desenvolvido para previsão numérica do tempo e simulação climática, com um código hidrostático tridimensional de núcleo dinâmico euleriano e semi-lagrangiano, desenvolvido para ser utilizado em escalas de tempo que vão de dias a estações, e em resoluções horizontais da ordem de 10km a 200km (Figueroa et al., 2016). Originalmente, o modelo BAM conta com três parametrizações para a CLP: A parametrização de primeira ordem de *Holtslag & Boville* Holtslag and Boville (1993) (HB), a parametrização de primeira ordem de *Bretherton & Park* (Bretherton and Park, 2009) (BP) e a parametrização de segunda ordem de *Mellor & Yamada* (Mellor and Yamada, 1982) (MY). O presente trabalho no entanto está utilizando a nova parametrização de primeira ordem de *Taylor & Campos-Velho* (TCV) para CLP, baseada na teoria estatística de G. I. Taylor (Eras et al., 2023).

3 A PARAMETRIZAÇÃO DE TAYLOR E O TERMO DE CONTRA-GRADIENTE

A teoria de transporte gradiente, ou "teoria K", propõe a substituição de primeira ordem de um termo turbulento da Reynolds pelo gradiente local de uma propriedade

Ci. e Nat., Santa Maria, v. 46, n. esp. 2, e87610, 2024

 χ multiplicado por um termo de difusividade K, como visto na Equação 1:

$$\overline{w'\chi'} = -K_{\chi}\left(\frac{\partial\chi'}{\partial z}\right) \tag{1}$$

A representação da turbulência pelo termo de difusividade K é chamada de "parametrização da turbulência". Uma das formas de se aproximar o termo K é utilizando uma parametrização baseada na teoria de G. I. Taylor De acordo com Degrazia et al. (2000), a difusividade turbulenta baseada na teoria de Taylor é descrita como:

$$K_{\alpha\alpha} = \frac{\sigma_i^2 \beta_i}{2\pi} \int_0^\infty F_i(n) \left[\frac{\sin(2\pi nt/\beta_i)}{n} \right] dn$$
⁽²⁾

sendo $\alpha = (x, y, z)$ as direções cartesianas, i = (u, v, w) a direção do vento, σ^2 a variância da velocidade do vento, β_i a relação entre as escalas lagrangiana e euleriana, F_i o espectro adimensional da energia cinética, n uma frequência adimensional e t o tempo. Quando $t \rightarrow \infty$ (longos tempos de difusão), a expressão assintótica da difusividade é expressa como:

$$K_{\alpha\alpha} = \frac{1}{4} [\sigma_i^2 \beta_i F_i(0)] \tag{3}$$

Fazendo as substituições apropriadas para σ_i^2 , $\beta_i \in F_i(0)$, usando de argumentos de similaridade local e dados experimentais, são obtidas as expressões de difusividade vertical K_{zz} para as Camada Limite Neutra (CLN) e Camada Limite Estável (CLE), vista na Equação 4, e também para a Camada Limite Convectiva (CLC), vista na equação 5:

$$\frac{K_{zz}}{u_*h} = \frac{0.33(1-z/h)^{\alpha_1/2}(z/h)}{1+3.7(z/h)(h/\Lambda)}$$
(4)

sendo u_* uma escala de velocidade, h a altura da CLP e Λ o comprimento de Monin-Obukhov local;

$$\frac{K_{zz}}{w_*h} = 1.6\psi^{1/3} \left[1 - \exp\left(-4\frac{z}{h}\right) - 0.0003 \exp\left(8\frac{z}{h}\right) \right]^{4/3}$$
(5)

onde w_* é uma escala de velocidade convectiva e psi é uma função de dissipação adimensional. Uma vez definido o termo de difusividade vertical K_{zz} , a difusão

Ci. e Nat., Santa Maria, v. 46, n. esp. 2, e87610, 2024

turbulenta de uma quantidade χ é comumente tratada de forma local, como visto na Equação 1, onde transporte vertical é proporcional ao gradiente local, e isso é válido nas CLE e CLN onde os vórtices turbulentos são menores que a altura h da CLA (Holtslag and Boville, 1993). No entanto, o transporte turbulento na CLC é muitas vezes feito por vórtices convectivos não-locais que se estendem por até toda extensão h da CLA, permitindo que o fluxo de uma quantidade χ ocorra até mesmo em direção contrária ao gradiente local (Holtslag et al., 1990).

$$\overline{w'\chi'} = -K_{\chi} \left(\frac{\partial\chi'}{\partial z} - \gamma_{\chi}\right)$$
(6)

A Equação 6 originalmente proposta por Deardorff (1966), mostra o termo γ_{χ} que representa o transporte não-local da quantidade χ , normalmente calor e umidade. De acordo com Troen and Mahrt (1986), o termo γ_{χ} não é utilizado para o transporte de momento, dado que as as térmicas não transportam eficientemente o momento em grandes distâncias devido aos efeitos da pressão. No transporte de umidade, os efeitos não-locais costumam atuar na mesma direção do gradiente local, porém no transporte de temperatura a influência do termo γ_{χ} costuma atuar no sentido oposto ao gradiente local, de onde a expressão "contra-gradiente" (CG) é tradicionalmente associada a esse termo (Holtslag and Boville, 1993). O termo de CG é descrito pela Equação 7 utilizando a notação vista em Welter (2006):

$$\gamma_{\chi} = \beta_g \ell \frac{w_*^2}{\sigma_w} \frac{\chi_*}{h}$$
⁽⁷⁾

onde β é uma constante experimental, w_*^2 é a escala de velocidade convectiva, σ_w é a raiz quadrada da variância da velocidade vertical, h é a altura da camada limite e χ_* é quantidade média da propriedade χ dada pela Equação 8 (Cuijpers and Holtslag, 1998):

$$\chi_* = \frac{1}{hw_*} \int_0^h \overline{w'\chi'} dz \tag{8}$$

Seguindo a sugestão de Welter (2006), é utilizada a mesma calibração do termo CG, onde o mesmo valor da constante experimental $\beta = 0.02$ é mantido durante todas as simulações.

4 EXPERIMENTO E CONFIGURAÇÕES DO MODELO

Para avaliar o uso do termo de CG, foram realizadas 6 simulações com o BAM em modo euleriano, resolução horizontal TQ126 (aproximadamente 106km), resolução vertical de 28 camadas sigma e parametrização da CLP de TCV. Os resultados foram comparados com os *dados horários de reanálise do ERA5 de 1959 até o presente* (Hersbach et al., 2018) utilizando três métodos, onde *a* é o dado simulado e *b* é dado de reanalise:

- Diferença Média (percentual): $DM(a,b) = \frac{1}{N} \sum_{i=0}^{N} (a_i b_i);$
- Erro Relativo Médio (superestimação ou subestimação): $ERM(a,b) = \frac{1}{N} \sum_{i=0}^{N} \frac{|a_i b_i|}{|a_i|}$;
- Erro Médio Quadrático (diferença absoluta): $EMQ(a,b) = \left[\frac{1}{N}\sum_{i=0}^{N}(a_i b_i)^2\right]^{\frac{1}{2}}$.

As simulações foram feitas em dois períodos de 360 horas (duas semanas): o período "úmido", entre 15 de Janeiro de 2014 às 12h00 e 30 de Janeiro de 2014 às 12h00 e o período "seco", entre 15 de Setembro de 2014 às 12h00 e 30 de Setembro de 2014 às 12h00 ¹. Para cada período foram feitas três simulações: uma usando a implementação do termo de CG de HB, uma usando a implementação de TCV e uma última não utilizando nenhum termo de CG. Seguindo a sugestão vista em Eras et al. (2023), os resultados foram avaliados para a região definida entre latitude -12.5 até 0 e longitude -70 até -50, aqui denominado *região amazônica*. As variáveis avaliadas foram a temperatura média à 2 metros (*K*), altura da CLP (*m*), radiação de topo (Wm^{-2}), cobertura de nuvens (%) e precipitação média total ($kg(m^2 \times dia)^{-1}$).

5 RESULTADOS

O perfil do CG visto na Figura 1 foi obtido fazendo a média de todos os valores de γ_z gerados pela implementação do CG de TCV durante o período de 2 horas de simulação, separados pela altura adimensional z/h. O perfil obtido é condizente com a descrição de Campos Velho et al. (1998) que diz que a formulação do CG baseada na teoria de Taylor atua mais intensamente próxima ao topo da camada limite.

¹As nomenclaturas "seco" e "úmido" referenciam às chamadas estações seca e úmida da bacia amazônica que ocorrem nos períodos avaliados.

Ci. e Nat., Santa Maria, v. 46, n. esp. 2, e87610, 2024

Figura 1 – Perfil to termo de CG adimensional da implementação de TCV

Fonte: Autores (2023)

5.1 Estação seca

Observando a Tabela 1, é notado que a implementação do CG de TCV obteve o menor erro para Precipitação em relação aos dados de reanálise do ERA5 nos três cálculos de diferença. Também é notada um menor erro para Radiação de Topo, indicando um bom equilíbrio de energia para simulação usando o CG de TCV. A implementação de HB obteve o melhor resultado de temperatura e altura da CLP nos três cenários. Em praticamente todas as circunstâncias, a simulação sem nenhum CG obteve os piores resultados apontando uma clara vantagem no uso do termo γ_x . O bom resultado numérico para precipitação pode ser observado visualmente fazendo o acumulado de chuva sobre a região amazônica nas duas semanas de simulação em relação as duas diferentes implementações do CG. Na Figura 2 é notada uma menor diferença do EMQ em relação aos dados do ERA5 para simulação utilizando o CG de TCV, especialmente no acumulado das partes norte e oeste da Amazônia.

Tabela 1 – DM, ERM e EMQ em relação aos dados do ERA5 na região amazônica na estação seca com a resolução TQ126. Os valores em negrito ressaltam o menor erro de cada variável

Erro	Método	Temp.	Alt. CLP	Rad. Topo	Nuvens	Precipitação
DM	Taylor	1.9172° <i>K</i>	486.5812 <i>m</i>	$21.2835 \mathrm{Wm^{-2}}$	0.1412%	$\textbf{-0.0200} kg(m^2 day)^{-1}$
	Holtslag	0.0737 °K	131.6978 m	$22.2554Wm^{-2}$	0.1019%	$1.7273 kg(m^2 day)^{-1}$
	Nenhum	1.9808° <i>K</i>	434.0991 <i>m</i>	$25.6630 Wm^{-2}$	0.0982%	$0.3559 kg (m^2 day)^{-1}$
ERM	Taylor	0.6636° <i>K</i>	129.9477 <i>m</i>	8.8049Wm ⁻²	0.3157%	$3.6657 kg (m^2 day)^{-1}$
	Holtslag	0.5204 °K	69.1960 m	8.9917Wm ⁻²	0.3001%	4.9422 $kg(m^2 day)^{-1}$
	Nenhum	0.7069° <i>K</i>	123.9015 <i>m</i>	9.7478 <i>Wm</i> ⁻²	0.3141%	$4.1067 kg (m^2 day)^{-1}$
EMQ	Taylor	3.2269° <i>K</i>	652.5201 <i>m</i>	38.4345 <i>Wm</i> ⁻²	0.3922%	$10.8219 kg (m^2 day)^{-1}$
	Holtslag	2.6349 °K	408.0517 m	$38.0463 \mathrm{Wm}^{-2}$	0.3819%	$12.3050 kg(m^2 day)^{-1}$
	Nenhum	3.4375° <i>K</i>	607.9832 <i>m</i>	$41.6002Wm^{-2}$	0.3931%	11.8335 $kg(m^2 day)^{-1}$

Fonte: Autores (2023)

Figura 2 – Raiz do erro quadrático médio do acumulado de precipitação de duas semas na estação seca sobre a Amazônia, usando as implementações do CG de HB na Figura 2a e de TCV na Figura 2b, em relação aos dados de reanálise do ERA5

(a) CG de HB. Fonte: Autores (2023)

(b) CG de TCV.

5.2 Estação úmida

Observando a Tabela 2, é notado que o CG de TCV teve a menor DM para Precipitação, mas perdeu para HB no ERM e no EMQ. Na radiação de Topo os resultados foram muito próximo para as duas implementações sendo melhores para TCV nos ERM e EMQ. Novamente a implementação de HB manteve os melhores resultados para altura da CLP e a simulação sem nenhum termo de CG ficou majoritariamente com os piores resultados. Mesmo que o CG de TCV não tenha tido o melhor resultado numérico de Precipitação na estação úmida na região amazônica, ainda é possível observar na Figura 3 um menor erro no acumulado nas partes central e leste da Amazônia em relação a simulação feita utilizando HB.

Tabela 2 – DM, ERM e EMQ em relação aos dados do ERA5 na região amazônica na estação úmida com a resolução TQ126. Os valores em negrito ressaltam o menor erro de cada variável

Erro	Método	Temp.	Alt. CLP	Rad. Topo	Nuvens	Precipitação
DM	Taylor	0.3905 °K	194.3592 <i>m</i>	43.2331 <i>Wm</i> ⁻²	0.0161%	-0.6839kg $(m^2 day)^{-1}$
	Holtslag	-0.7043°K	19.7096 m	$41.8347 \mathrm{Wm^{-2}}$	0.0132%	$-1.6260 kg (m^2 day)^{-1}$
	Nenhum	0.4774° <i>K</i>	181.7449 <i>m</i>	43.1196 <i>Wm</i> ⁻²	0.0128%	$-0.8714 kg(m^2 day)^{-1}$
ERM	Taylor	0.3996°K	66.0388 <i>m</i>	17.9143Wm ⁻²	0.1278%	$10.3379kg(m^2day)^{-1}$
	Holtslag	0.4429° <i>K</i>	47.0669 m	$17.9468 Wm^{-2}$	0.1258%	$9.8378 \rm kg (m^2 day)^{-1}$
	Nenhum	0.4310° <i>K</i>	65.6748 <i>m</i>	18.3532 <i>W</i> m ⁻²	0.1281%	$10.5672 kg (m^2 day)^{-1}$
EMQ	Taylor	2.0190 °K	400.5924 <i>m</i>	60.6039Wm ⁻²	0.1970%	21.9740 $kg(m^2 day)^{-1}$
	Holtslag	2.1686° <i>K</i>	292.7037 m	$60.9253 Wm^{-2}$	0.1913%	$21.5308 \rm kg (m^2 day)^{-1}$
	Nenhum	2.1729° <i>K</i>	385.5080 <i>m</i>	62.1015 <i>W</i> m ⁻²	0.1953%	22.4186 $kg(m^2 day)^{-1}$

Fonte: Autores (2023)

Figura 3 – Raiz do erro quadrático médio do acumulado de precipitação de duas semas na estação úmida sobre a Amazônia, usando as implementações do CG de HB na Figura 3a e de TCV na Figura 3b, em relação aos dados de reanálise do ERA5

(a) CG de HB. Fonte: Autores (2023)

6 CONCLUSÃO

O termo γ_{χ} apresentou o perfil esperado e se mostrou benéfico em praticamente todos os cenários, mostrando a influência positiva do CG da CLP na simulação global. Comparando as duas implementações do CG, a implementação de TCV foi promissora na previsão de precipitação na Amazônia, uma variável importante para essa região dominada por florestas e grandes rios. A implementação de TCV, originalmente concebida para um modelo regional de alta resolução Welter (2006), mostrou boa escalabilidade aplicada a um modelo global de baixa resolução com esses resultados. Os resultados aqui apresentados fizeram uso da calibração original do termo de CG onde $\beta = 0.02$, sendo objeto de pesquisas futuras uma nova calibração desse termo visando melhores resultados globais ou mesmo outras regiões específicas além da bacia amazônica.

REFERÊNCIAS

Bretherton, C. S. & Park, S. (2009). A new moist turbulence parameterization in the community atmosphere model. *Journal of Climate*, 22(12):3422–3448.

- Campos Velho, H. F., Holtslag, A. M., Degrazia, G., & Pielke Sr, R. (1998). New parameterizations in rams for vertical turbulent fluxes. Technical report, Colorado State University, Fort Colins (CO), USA.
- Cuijpers, J. W. M. & Holtslag, A. A. M. (1998). Impact of skewness and nonlocal effects on scalar and buoyancy fluxes in convective boundary layers. *Journal of the Atmospheric Sciences*, 55(2):151–162.

Ci. e Nat., Santa Maria, v. 46, n. esp. 2, e87610, 2024

- Deardorff, J. W. (1966). The counter-gradient heat flux in the lower atmosphere and in the laboratory. *Journal of the Atmospheric Sciences*, 23(5):503–506.
- Degrazia, G., Anfossi, D., Carvalho, J., Mangia, C., Tirabassi, T., & Velho, H. C. (2000). Turbulence parameterisation for pbl dispersion models in all stability conditions. *Atmospheric environment*, 34(21):3575–3583.
- Eras, E. R., Kubota, P. Y., & de Campos Velho, H. F. (2023). Teoria estatística da turbulência aplicada ao modelo global bam-inpe. *Ciência e Natura*, 45(esp. 2):e78815–e78815.
- Figueroa, S. N., Bonatti, J. P., Kubota, P. Y., Grell, G. A., Morrison, H., Barros, S. R., Fernandez, J. P., Ramirez, E., Siqueira, L., Luzia, G., et al. (2016). The brazilian global atmospheric model (bam): performance for tropical rainfall forecasting and sensitivity to convective scheme and horizontal resolution. *Weather and Forecasting*, 31(5):1547–1572.
- Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., et al. (2018). Era5 hourly data on single levels from 1959 to present. *Copernicus Climate Change Service (C3S) Climate Data Store (CDS)*, 10(10.24381).
- Holtslag, A. A. M. & Boville, B. A. (1993). Local versus nonlocal boundary-layer diffusion in a global climate model. *Journal of climate*, 6(10):1825–1842.
- Holtslag, A. A. M., De Bruijn, E. I. F., & Pan, H. L. (1990). A high resolution air mass transformation model for short-range weather forecasting. *Monthly Weather Review*, 118(8):1561–1575.
- Mellor, G. L. & Yamada, T. (1982). Development of a turbulence closure model for geophysical fluid problems. *Reviews of Geophysics*, 20(4):851–875.
- Troen, I. B. & Mahrt, L. (1986). A simple model of the atmospheric boundary layer; sensitivity to surface evaporation. *Boundary-Layer Meteorology*, 37(1-2):129–148.
- Welter, M. E. S. (2006). Modelagem do termo de contra gradiente na parametrização de turbulência no modelo atmosférico brams. Mestrado em ciência da computação, Instituto Nacional de Pesquisas Espaciais, São José dos Campos.

Contribuições dos autores

1 – Eduardo Rohde Eras

Instituto Nacional de Pesquisas Espaciais INPE, Discente de doutorado em computação aplicada do Instituto Nacional de Pesquisas Espaciais, Mestre em computação aplicada https://orcid.org/0000-0002-5159-3569 • eduardorohdeeras@gmail.com Contribution: Escrita – Primeira Redação

2 – Haroldo Fraga de Campos Velho

Instituto de Pesquisas Espaciais, Pesquisador Sênior do Instituto Nacional de Pesquisas Espaciais, Doutor em Engenharia Mecânica https://orcid.org/0000-0003-4968-5330 • haroldo.camposvelho@inpe.br Contribution: Escrita, Supervisão e Revisão

3 – Paulo Yoshio Kubota

Instituto Nacional de Pesquisas Espaciais, Docente de meteorologia do Instituto Nacional de Pesquisas Espaciais, Doutor em Meteorologia https://orcid.org/0000-0003-4858-1337 • paulo.kubota@inpe.br Contribution: Supervisão e Revisão

Como citar este artigo

Eras, E. R., Velho, H. F. de C., & Kubota, P. Y.(2024)., Uso do termo de contra-gradiente baseado na teoria de Taylor e a sua influência na simulação de precipitação na região amazônica. *Ciência e Natura*, Santa Maria, v. 46, esp. 2, e87610. https://doi.org/10.5902/2179460X87610