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ABSTRACT

In the present work we propose a modified decomposition method to derive approximate solutions for
non-linear problems. Depending on the type of non-linearity, the source terms of the differential
equations to be solved in each recursion step may result in extensive expressions, impractical for
computational implementations and applications. This shortcomings are circumvented by the present
methodology, which contemplates as a solution procedure in each recursion step a combined variable
separation method together with Duhamel’s principle, where the non-linearity appears as
inhomogeneity. The source terms of the equation in each step of recursion are interpolated by
polynomials and, using the Gröbner basis of the set points, the polynomial of reduced degree is
obtained so that the integration may be carried out easily. As an application we considered a simplified
version of the Navier-Stokes equation, which was used to simulate the wind field making use of the
micrometeorological data from the Copenhagen experiment. The derived solution was evaluated
against these experimental data from the field experiments showed that the computed results are
acceptable and thus the solution may be considered an acceptable one and may be used as a simulation
device for these type of field experiments. For almost all experiments twenty eigenvalues and ten
recursion steps were sufficient. As results the wind speed at certain positions was simulated and
compared to the measured values. The results obtained allow us to affirm that the presented
methodology works satisfactorily and, therefore, can be considered a promising tool for solving
non-linear problems, which are not tractable with the conventional decomposition method
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RESUMO

No presente trabalho propomos um método de decomposição modificado para derivar soluções
aproximadas para problemas não lineares. Dependendo do tipo de não linearidade, os termos fontes
das equações diferenciais a serem resolvidas em cada etapa de recursão podem resultar em
expressões extensas, impraticáveis para implementações e aplicações computacionais. Estas
deficiências são contornadas pela presente metodologia, que contempla como procedimento de
solução em cada etapa de recursão um método combinado de separação de variáveis juntamente com
o prinćıpio de Duhamel, onde a não linearidade aparece como heterogeneidade. Os termos fonte da
equação em cada etapa da recursão são interpolados por polinômios e, utilizando a base de Gröbner
dos pontos de ajuste, obtém-se o polinômio de grau reduzido para que a integração possa ser realizada
facilmente. Como aplicação consideramos uma versão simplificada da equação de Navier-Stokes, que
foi usada para simular o campo de vento fazendo uso dos dados micrometeorológicos do experimento
de Copenhagen. A solução derivada foi avaliada em relação a estes dados experimentais dos
experimentos de campo e mostrou que os resultados computados são aceitáveis e, portanto, a solução
pode ser considerada aceitável e pode ser usada como um dispositivo de simulação para este tipo de
experimentos de campo. Para quase todos os experimentos vinte autovalores e dez etapas de recursão
foram suficientes. Como resultados, a velocidade do vento em determinadas posições foi simulada e
comparada com os valores medidos. Os resultados obtidos permitem afirmar que a metodologia
apresentada funciona satisfatoriamente e, portanto, pode ser considerada uma ferramenta promissora
para resolução de problemas não lineares, que não são tratáveis com o método de decomposição
convencional
Palavras-chave: Equação de Navier-Stokes; Base de Gröbner; Interpolação bidimensional; Polinômio de
menor grau

1 INTRODUCTION

Solving nonlinear problems is still a challenge in science. Although several
methods have been proposed some of them numerical others stochastic and only a
few of them are based on analytical approaches such as the present one. One of the
analytical methods is the so-called Adomian decomposition method, which was
designed to solve in principle a variety of non-linear dynamical problems with several
successful applications. A prominent feature of this method is that it makes use of a
recursion prescription and further preserves the non-linearity without resorting to
linearization or other simplifications, while providing an analytical expression as a
solution. If the recursive scheme is convergent, then the method provides a solution,
which in principal approaches the exact solution to any prescribed precision and is
controlled by the depth of the recursive scheme, i.e. the number of differential
equations to be solved in order to compose the final solution.
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However, as the forthcoming discussion will show, even if the implementation is
convergent, depending on the type of non-linearity, the source terms which
contemplate the non-linearities that appear in each recursion step may be
considerably extensive so that, even with programs that are suitable for symbolic
manipulations, computer hardware imposes limits on the execution of advanced
recursion steps. Due to this shortcoming one may either abandon the method, or as
proposed in the present work resort to modifications and simplifications of the original
decomposition scheme as proposed by Adomian. Although sacrificing exactness of the
obtained solution in the present procedure, this should not be a final verdict for the
modified method, as long as an approximate solution is close enough to the exact
solution, by virtue of the fact that an adopted model, i.e. the partial differential
equation that determines the dynamics of interest, is already an idealization with its
associated model error.

A first attempt into this direction was a rather “brute force” approach as
reported in Athayde et al. (2018). Although, application of the variable separation
method together with Duhamel’s Principle (Athayde et al. (2018), Duchateau and
Zachmann (2002), Ozisik (1993)) in each recursion step should in principle make it
feasible to compute the integrals of the inhomogeneous solution of this recursion, in
practice this becomes increasingly tedious according to the combinatorial nature of
constructing the Adomian polynomials for each new recursion step.

Nevertheless, the idea of constructing solutions of the inhomogeneous
differential equations using a convolution of on the one hand a homogeneous solution
composed by orthogonal functions and on the other hand the term from the
inhomogeneity may be modified using the framework of the theory of Gröbner basis
(Adams and Loustaunau (1994), Becker et al. (1993), Buchberger (1965), Farr and Gao
(2006)). The scope of this theory is increasing and one can find applications in several
areas, as shown for instance in references Berthomieu and Din (2022), Eder and
Hofmann (2021), Liu et al. (2019), Bourgeois (2009), Zhang and Cheng (2004), Kwiecinsk
(1991), Rabern (2007), Gerdet (1997), Hajnová and Pribylová (2019) and Gerdet (2004),
where the majority refer to Symbolic Computation and Algebra.

Since the focus of this work is to provide expressions that may be implemented
in a computationally efficient fashion (such as to allow for real time computing of flow
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fields) instead of using the rigor and functional considerations of Gröbner’s
mathematical theory, we determined the polynomials using a finite set of space points
only. As a consequence, the solution constructed in such a way is no longer exact as
the polynomials have the character of interpolating functions instead of being selected
by mathematical orthogonality criteria in functional space. The latter is substituted by
an optimization of polynomials to data calculated from the respective inhomogeneities
in each recursion step.

A wind velocity profile in a planetary boundary layer scenario was chosen as an
application and validated against the wind field data of the Copenhagen experiment.
2 A NAVIER-STOKES EQUATION BASED MODEL

Wind velocity fields in the planetary boundary layer are relevant in a variety of
studies, from harnessing the wind up to the dispersion of substances by using the
wind as a vehicle. Thus, as a starting point we consider the Navier-Stokes equation for
a Newtonian, incompressible fluid and neglect external forces and the presence of
pressure gradients, which shall describe the dominant dynamics of a velocity field U⃗ in
domains with length scales of the order of 101 km

ρ
DU⃗

Dt
= µ∇2U⃗ , (1)

where U⃗ = (u, v, w)T . In general one may choose the orientation of the coordinate
system, which allows to align the dominant direction of the wind field with the x-axis.
Then the equation for the dominant component u reads,
[
∂u

∂t
+ u

∂u

∂x

]
= ν

(
∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2

)
, (2)

where ν = µ/ρ (in units [m2/s]) is the kinematic viscosity. Since in the boundary layer
turbulent contributions are typically caused by thermal effects from vertical heat
fluxes, we consider as a second spatial dimension the vertical coordinate z and render
the model a two dimensional one. Further, in the equation above ∂2u

∂y2
→ 0 is used.

The rectangular domain is defined by the dimensions 0 ≤ x ≤ L, 0 ≤ z ≤ H , the
initial condition for the entering wind profile is represented by a known function f(x, z)
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and at the domain boundaries the following conditions are assumed to hold.
u(x, z, 0) = f(x, z), (3)
∂u

∂x
(0, z, t) = 0 , (4)

∂u

∂x
(L, z, t) = 0 , (5)

∂u

∂z
(x, 0, t) = 0 , (6)

∂u

∂z
(x,H, t) = 0 . (7)

Following now the prescription of Adomian’s decomposition method the wind
field is represented as the limit of a series u(x, z, t) = lim

K→∞

K∑
i=0

ui(x, z, t), which upon
insertion in Equation (2) results in one equation for K + 1 unknown functions ui,
∂u0

∂t
+

∂u1

∂t
+ · · ·+ ∂uK

∂t
+ (u0 + u1 + · · ·+ uK)

(
∂u0

∂x
+

∂u1

∂x
+ · · ·+ ∂uK

∂x

)
=

= ν

(
∂2u0

∂x2
+

∂2u1

∂x2
+ · · ·+ ∂2uK

∂x2
+

∂2u0

∂z2
+

∂2u1

∂z2
+ · · ·+ ∂2uK

∂z2

)
. (8)

The sub-determination of Equation (8) is now exploited to define the recursive scheme
as the constitutive equation system for each component ui. Note, that depending on
the initial and boundary conditions restrictions the decomposition shall be setup such
as to avoid the trivial solution. One of the possibilities for the recursive set of equations
is,
i = 0 :

∂u0

∂t
− ν

(
∂2u0

∂x2
+

∂2u0

∂z2

)
= 0 ,

i = 1 :
∂u1

∂t
− ν

(
∂2u1

∂x2
+

∂2u1

∂z2

)
= −u0

∂u0

∂x
,

... (9)
i = K :

∂uK

∂t
− ν

(
∂2uK

∂x2
+

∂2uK

∂z2

)
= FK(x, z, t) ,

where

FK(x, z, t) = −uK−1
∂uK−1

∂x︸ ︷︷ ︸
K>0

− ∂

∂x

(
uK−1

K−2∑
j=0

uj

)
︸ ︷︷ ︸

K>1

,
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and the source term of each equation is formed from the nonlinear terms of the
recursive equations whose solutions were already obtained in the previous recursion
steps. By inspection one verifies that in the limit K → ∞ all terms of Equation (8) are
taken care of. Each of the equations in the recursive scheme have a unique solution,
where the initial condition is satisfied already in the recursion initialization and all
remaining initial conditions and all boundary conditions are homogeneous. Explicitly,
conditions (3), (4) to (7) read,
ui(x, z, 0) = δi0f(x, z) , (10)
∂ui

∂x
(0, z, t) = 0 , (11)

∂ui

∂x
(L, z, t) = 0 , (12)

∂ui

∂z
(x, 0, t) = 0 , (13)

∂ui

∂z
(x,H, t) = 0 , (14)

for i ∈ {0, . . . , K} and δi0 is the Kronecker symbol.
The solution of the recursion initialization (for u0) is obtained by the well

established variable separation method with u0(x, z, t) = X(x)Z(z)T (t),

u0(x, z, t) =
∞∑

m,n=0

Amne
−λmnνt cos

(mπ

H
z
)
cos
(nπ
L

x
)

, (15)

with m,n ∈ N, λmn =
(mπ

H

)2
+
(nπ
L

)2,
Amn =

κ

LH

∫ L

0

∫ H

0

f(x, z) cos
(mπ

H
z
)
cos
(nπ
L

x
)

dz dx , (16)
and

κ =


1 if m = n = 0

2 if mn = 0 and m+ n ̸= 0

4 if mn ̸= 0

. (17)

The differential equations for the recursion steps (i ≥ 1) were solved using
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Duhamel’s principle (Duchateau and Zachmann (2002), Ozisik (1993)). This principle
provides an analytical solution for inhomogeneous equations whose solution to the
associated homogeneous problem is known. These solutions are given by

ui(x, z, t) =
∞∑

m,n=0

v(i)mn(t) cos
(mπ

H
z
)
cos
(nπ
L

x
)

,

where the time dependent coefficients are
v(i)mn =

κ

LH

∫ t

0

∫ L

0

∫ H

0

Fi(x, z, τ) cos
(mπ

H
z
)
cos
(nπ
L

x
)

dz dx eλmnν(τ−t) dτ . (18)
A comment is in order here, by inspection of the recursion prescription (9) one

observes the increase in terms composing the source term with each new recursion
step. In cases where a higher number of recursions is necessary to attain a certain
precision of the solution, this property can impose limits especially if automatization
of this procedure is desired or needed.

Generically, the individual terms of the velocity field expansion ui(x, z, t) may be
written as a product of two polynomials, one with the dependence on spatial variables
and the other presenting the time evolution of the respective term
ui(x, z, t) ≈ Pi(x, z)Ti(t) . (19)
A similar reasoning is applied to the source terms Fi(x, z, t),
Fi(x, z, t) ≈ Ri(x, z)Si(t) . (20)
In the next section, we will discuss how to determine the polynomials Pi(x, z) and Ri(x, z)

using on the one hand some ideas of the theory of Gröbner basis together with a discrete
set of source term points generated from the original expression, to be represented by
the polynomials. The calculated data points of the source term open pathways to make
use of interpolation algorithms, while theory of Gröbner basis allows to minimise the
degree of the polynomials that represent the source terms in the solution procedure of
each recursion step.
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3 A GRÖBNER MODIFICATION TO THE ADOMIAN DECOMPOSITION
METHOD

In this section we present the optimization procedure, which provides the
polynomial with the smallest degree that represents best the source term for a finite
set of spatial points. To this end we follow the reasoning of reference Farr and Gao
(2006) and more detailed literature on the Gröbner basis formalism and some
applications, which can be found in references Adams and Loustaunau (1994), Becker
et al. (1993) and Buchberger (1965). Suppose, that a polynomial h with high degree
describes satisfactorily the discrete set of points that characterize the source term in a
specific recursion step. The objective is then to find the polynomial p with the smallest
degree, that substitutes the source term with a certain fidelity.

Next, we will present part of the theory of Gröbner basis and, in particular, the
algorithm that determines the reduced Gröbner basis from this discrete set of points,
which renders executable the Adomian decomposition method for this type of
non-linearity. To this end, consider for two spatial dimensions (x, z) the ring of
polynomials with real coefficients K = R[x, z], where for convenience one fixes a
monomial ordering on K. For a set of polynomials M = {m1, . . . ,ms} with M ⊆ K,
consider the set
B(M) = {xα : α ∈ Nn and LT (mi) ∤ xα, 1 ≤ i ≤ s} , (21)
with xα a monomial and LT (mi) the leading term of the polynomial mi, that cannot be
divided by LT (mi), for all mi, with 1 ≤ i ≤ s. Indivisibility LT (mi) ∤ xα implies xα belongs
to the set of monomials that form the rest of the division of a given polynomial by M .

Now, given the subset S ⊆ K, one defines the variety, V (S), in Kn for the set of
points P such that
V (S) = {P ∈ Kn

: ϕ(P ) = 0 for all ϕ ∈ S} , (22)
where K is an extension of K in order to contain all the roots of polynomials with
coefficients in K. In the methodology presented in this work, V (S) will be the set of
points considered for the interpolation. Also this subset V ⊆ Kn with ideal I(V ) in

Ci. e Nat., Santa Maria, v. 46, n. spe. 1, e87459, 2024
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R[x, z],
I(V ) = {ϕ ∈ R[x, z] : ϕ(P ) = 0 for all P ∈ V } , (23)
is characterized by the set of distinct points V = {P1, . . . , Pm} which are the common
roots of the polynomials of I(V ). A set G ⊂ I is a Gröbner basis of I if and only if
∥B(G)∥ = m, that corresponds to the number of points P . In the methodology
presented in this work, the polynomials of the set G will divide the polynomial h and
the combination of the monomials of the set B(G), where the number of elements
shall be equal to the number of points used in the interpolation, will then form the
polynomial p.

Moreover, the Gröbner basis of the ideal of a finite set of points is constricted
considering the points one by one, so that the polynomials obtained at each step always
assume a zero value in all points already added. More specifically, for a finite set V ⊂ K

with Gröbner basis G = {g1, . . . , gt} of ideal I(V ) and P = (a1, . . . , an) ̸∈ V then, if gi is the
polynomial in G that has the smallest leading term such that gi(P ) ̸= 0, then the set
G̃ = {g̃1, . . . , g̃i−1, g̃i+1, . . . , g̃t, gi1, . . . , gin}, (24)
with
g̃j = gj −

gj(P )

gi(P )
gi, j ̸= i (25)

and
gik = (xk − ak)gi, 1 ≤ k ≤ n, (26)
is a Gröbner basis for I(V ∪ {P}). Algorithm 1 shows the sequence of computational
steps, which determine the reduced Gröbner basis of ideal I(P1, P2, . . . , Pm), where NG(⋆)

is the remainder of the division of ⋆ by G.
The smallest degree for a polynomial that represents the source term in each

recursion step at a set of given spatial points P1, . . . , Pm is
p(Pi) = ri , 1 ≤ i ≤ m .

Ci. e Nat., Santa Maria, v. 46, n. spe. 1, e87459, 2024
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Algorithm 1 Algorithm to determine the reduced Gröbner basis of the ideal of a finiteset of points (Farr and Gao (2006))
Require: P1, . . . , Pm ∈ Kn and fix the monomial order with increasing degree (x1 < x2 <

· · · < xn)
Ensure: G = {g1, . . . , gt} the reduced Gröbner basis for I(P1, . . . , Pm), in increasing orderwith respect to leading terms

1: G := {1} {the i-th polynomial in G is denoted gi}2: For k = 1, . . . ,m do
3: Find the smallest i so that gi(Pk) ̸= 0
4: For j = i+ 1, . . . , ∥G∥ do
5: gj = gj −

gj(Pk)

gi(Pk)
gi

6: End
7: G := G\{gi}8: For j = 1, . . . , n do
9: If xjLT (gi) not divisible by any LT of G then

10: q = NG((xj − aj)gi)11: Insert q in ordered fashion into G
12: End
13: End
14: End

Following the reasoning of reference Farr and Gao (2006), once determined a polynomial
h ∈ K such that h(Pi) = ri, for i = 1, . . . ,m, then the polynomial p with smallest degree
is obtained by determining p = NG(h) which still preserves equality at the spatial points
p(Pi) = ri for i = 1, . . . ,m. The polynomial h may be constructed as follows. Recalling
that the points P1, . . . , Pm are mutually distinct one defines
hij =

xk − ajk
aik − ajk

, (27)
so that hij(Pi) = 1 and hij(Pj) = 0 for i ̸= j. This guarantees that for each i = 1, . . . ,m,
the polynomial

hi = ri

m∏
j=1
j ̸=i

hij , (28)

coincides with the desired values of the source term at a specific spatial point hi(Pi) = ri

and hi(Pj) = 0, for all j ̸= i. The polynomial that satisfies the desired properties is then
h =

∑
i hi and the polynomial with the smallest degree passing through the specified

spatial points Pi with value ri is then given by p = NG(h), that is, the rest of the division
Ci. e Nat., Santa Maria, v. 46, n. spe. 1, e87459, 2024
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of polynomial h by the Gröbner basis G polynomials. The Algorithm 2 summarizes this
procedure.
Algorithm 2 Algorithm to determine the polynomial p with smallest degree

1: Determine the reduced Gröbner basis of the ideal generated by the points Pi with
i = 1, . . . ,m using Algorithm 1,

2: determine the polynomial h,
3: determine p = NG(h).

Step 3 of Algorithm 2 ensures that polynomial p assumes the same values as
polynomial h at the points considered, since if p is the remainder of the division of h by
the polynomials of G, then one can write h in the form h = ω1g1 + · · · + ωtgt + p, with
ωj ∈ K and 1 ≤ j ≤ t. For each point P considered gj(P ) = 0 holds and therefore
h(P ) = p(P ). Concerning the theory of Gröbner bases, these are the necessary tools
that shall allow in the further to compute results that simulate the wind field of the
Copenhagen experiment as obtained by the solution from the modified decomposition
method using the parametrization as described in Equations (19) and (20).
4 VALIDATION OF THE TWO DIMENSIONAL MODEL AGAINST

EXPERIMENTAL DATA

The modification of Adomian’s decomposition method, i.e. substituting the
source terms and velocity field expansion by the use of Gröbner’s theory (see
Equations (19) and (20)), was applied to observed data in the Copenhagen experiment.
Although, the objective of this experiment was to provide data for substance
dispersion modelling, some of the micrometeorological findings were used, i.e. the
vertical wind field profile in the initial condition and the wind field evolution in the
domain was simulated by the elaborated approximate solution of the Navier-Stokes
equation. Details of the experiment may be found in references Gryning et al. (1987),
Gryning (1981), Gryning and Lyck (1984) and Gryning and Lyck (2002), where for our
purposes we extracted the wind field data at positions of interest. The relevant data of
the experiment for fixing the vertical wind profile of the initial condition are given in
Table 1, where u is the mean wind speed as measured at a certain height and mean
signifies the time average over the measuring interval.

Further, in accordance with experimental observations, the initial condition was
Ci. e Nat., Santa Maria, v. 46, n. spe. 1, e87459, 2024
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Table 1 – Mean wind field data of the Copenhagen experiment for two heights,
z = 10 m and 115 m, respectively
Experiments Mean speed u (ms−1) Mean speed u (ms−1)

at z = 10 m at z = 115 m

Experiment 1 - 20 September 2.1 3.4
Experiment 2 - 26 September 4.9 10.6
Experiment 3 - 19 October 2.4 5.0
Experiment 4 - 03 November 2.5 4.6
Experiment 5 - 09 November 3.1 6.7
Experiment 6 - 30 April 7.2 13.2
Experiment 7 - 27 June 4.1 7.6
Experiment 8 - 06 July 4.2 9.4
Experiment 9 - 19 July 5.1 10.5
Source: Gryning et al. (1987), Gryning (1981), Gryning and Lyck (1984), Gryning and Lyck (2002)

parametrized as follows,
u(x, z, 0) = f(x, z) =

(
1 + b cos

x

a

)
Ur

(
z

Zr

)η

, (29)
where η is a positive real number and varies between 0 and 1 (Irwin (1979)), Zr = 10 m

is a reference height where the wind speed Ur was measured during the execution of
the experiment (Table 1). This initial condition is a power law profile with the addition of
a disturbance in the variable x where the parameter b represents the amplitude of the
disturbance, a its periodicity (Athayde et al. (2018)) and simulates a small variation of
the velocity profile in the x direction. The numerical values of the remaining parameters
considered for the simulation are: η = 0.1, a = 3 and b = 0.01.

The comparison for the time evolution of the term u0 from the recursion
initialization for t0 = 2177 s to the optimized, i.e. the polynomial term p from the
Gröbner formalism and a higher order polynomial h describing the same set of points
as p, is shown in Figure 1, where the sum in Equation (15) was over ten eigenvalues for
each spatial dimension.

Ci. e Nat., Santa Maria, v. 46, n. spe. 1, e87459, 2024
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Figure 1 – Initial condition u0(x, z, t0), the optimized polynomial p(x, z) of smallestdegree and a h(x, z) polynomial of higher degree for a set of eight spatial points
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Source: the authors (2024)

To determine the polynomials p and h, respectively, the specific points in space
for u0(x, z, t0) are given below.
x0 = 3700, z0 = 115, u0(x0, z0, t0)

x1 = 0, z1 = 1980, u0(x1, z1, t0)

x2 = 7000, z2 = 0, u0(x2, z2, t0)

x3 = 7000, z3 = 1980, u0(x3, z3, t0)

x4 = 0, z4 = 0, u0(x4, z4, t0)

x5 = 0, z5 = 594, u0(x5, z5, t0)

x6 = 0, z6 = 1386, u0(x6, z6, t0)

x7 = 0, z7 = 1584, u0(x7, z7, t0)

(30)

Then, the explicit Gröbner basis G for this finite set of points is formed by the
following polynomials,
g1 = x3 − 10700 x2 + 25900000 x , (31)
g2 = zx2 − 7000 zx− 115 x2 + 805000 x , (32)
g3 = z2x− 1980 zx− 64.992424242424590 x2 + 4.549469696969704× 105 x , (33)
g4 = z5 − 5544 z4 + 11016324 z3 − 9.144097776× 109 z2+

− 2.235174179077148× 10−7 zx+ 2.58208207488× 1012 z+

+ 1.570955461048121× 107 x2 − 1.099668822733682× 1011 x . (34)
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A polynomial h that passes through the same spatial points, but with degree larger than
p, is given by
h = −5.169433944689662× 10−45z7x7 + 7.237207522565526× 10−41z7x6+

− 2.533022632897933× 10−37z7x5 − 6.034856638502280×−32z7x3+

+ 1.068169625014903× 10−27z7x2 − 6.083135491610295× 10−24z7x+

+ 1.094119508560463× 10−20z7 + 3.889482099984502× 10−41z6x7+

− 5.444652939533052× 10−37z6x6 + 1.905616088827663× 10−33z6x5+

+ 3.713312374954596× 10−28z6x3 − 6.572562903669636× 10−24z6x2+

+ 3.743018873954233× 10−20z6x− 6.732235335792683× 10−17z6+

− 1.136936559742312× 10−37z5x7 + 1.591302167643970× 10−33z5x6+

− 5.569475783554841× 10−30z5x5 − 8.255530580814937× 10−25z5x3+

+ 1.461228912804243× 10−20z5x2 − 8.321574825461456× 10−17z5x+

+ 1.496727694301747× 10−13z5 + 1.600271647147885× 10−34z4x7+

− 2.239267255246806× 10−30z4x6 + 7.837212783211774× 10−27z4x5+

+ 7.181626257687949× 10−22z4x3 − 1.271147847610767× 10−17z4x2+

+ 7.239079267749451× 10−14z4x− 1.302028840518825× 10−10z4+

− 1.069421254107544× 10−31z3x7 + 1.495636759036660× 10−27z3x6+

− 5.234418057285528× 10−24z3x5 − 1.894666155459486× 10−20z3x3+

+ 3.353559095163288× 10−16z3x2 − 1.909823484703163× 10−12z3x+

+ 3.435029739848025× 10−09z3 + 2.642884739720159× 10−29z2x7+

− 3.688980907360812× 10−25z2x6 + 1.290922163011336× 10−21z2x5+

− 2.940656782108457× 10−16z2x3 + 5.204962504331970× 10−12z2x2+

− 2.964182036365324× 10−08z2x+ 5.331410745962633× 10−05z2+

− 3.408704151135992× 10−25zx6 + 1.261220535920317× 10−21zx5+

+ 1.042718781790766× 10−13zx3 − 1.845612243769655× 10−09zx2+

+ 1.051060532045092× 10−05zx− 0.018904491513867z+

+ 2.675157563463385× 10−23x6 − 9.898082984814524× 10−20x5+

− 8.183277022569647× 10−12x3 + 1.448440032994828× 10−07x2+

− 8.248743238750202× 10−04x+ 1.483628124191877 . (35)
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Upon executing the algorithm presented in Table 1 the smallest degree polynomial,
obtained by NG(h) that results is
p = −1.646204569424873× 10−14z4 + 2.403567130497672× 10−10z3+

− 8.589302313205728× 10−07z2 + 3.422180970202794× 10−12zx+

+ 0.001251849712247z + 8.749688551399750× 10−10x2+

− 6.110897644636018× 10−06x+ 1.483628124191877 . (36)
Note that polynomial p is considerably simpler than polynomial h because of its
smaller degree. The test that G = {g1, g2, g3, g4} is really a Gröbner basis follows from
B(G) = {1, x, x2, z, zx, z2, z3, z4} with ∥B(G)∥ = 8 and the fact that eight spatial points
were employed to determine p. Evidently, the monomials of B(G) are also monomials
of p.
4.1 Results

To validate the model and verify if it is possible to reproduce a real situation, the
methodology was used to simulate the Copenhagen experiment, obtaining the values
for the mean wind. In Table 2 we show the results obtained in two dimensions. For the
simulations 20 eigenvalues and 10 recursions were used, where uo signifies the observed
mean wind speed and up is the predicted mean wind speed from the simulations. The
comparison shows that the predicted values for the mean wind speed are fairly close to
the measured values by the experiment.
5 CONCLUSIONS

The developments of the present work focussed on a non-linear problem in
form of a partial differential equation and a procedure, that leads to an approximate
solution but in analytical representation. In the literature one finds the Adomian
decomposition method, which is claimed to solve any non-linear problem whether
deterministic or stochastic. Independent of the veracity of this statement in practical
applications one faces the problem of increasingly extensive and complex expressions
of the inhomogeneity of the equation in each recursion step, which turns it tedious if
not impossible to determine the terms in each recursion which in the end composes
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Table 2 – Comparison of the results with the Copenhagen experiments using an initialcondition based on the mean wind speed in 10 meters, 20 eigenvalues and 10recursions
Observed Predictedmean wind speedExperiments Distance uo up

(m) (m/s) (m/s)Experiment 1 1900 2.1 2.24Experiment 1 3700 2.1 2.31Experiment 2 2100 4.9 5.25Experiment 2 4200 4.9 5.39Experiment 3 1900 2.4 2.55Experiment 3 3700 2.4 2.61Experiment 3 5400 2.4 2.61Experiment 4 4000 2.5 2.74Experiment 5 2100 3.1 3.35Experiment 5 4200 3.1 3.38Experiment 5 6100 3.1 3.34Experiment 6 2000 7.2 7.61Experiment 6 4200 7.2 7.82Experiment 6 5900 7.2 7.69Experiment 7 2000 4.1 4.37Experiment 7 4100 4.1 4.50Experiment 7 5300 4.1 4.48Experiment 8 1900 4.2 4.51Experiment 8 3600 4.2 4.55Experiment 8 5300 4.2 4.58Experiment 9 2100 5.1 5.51Experiment 9 4200 5.1 5.64Experiment 9 6000 5.1 5.54

Source: the authors (2024)

the solution of the problem. In this discussion we considered a simplified version of
the Navier-Stokes equation with its non-linear term by the velocity field times its
gradient.

In order to circumvent the afore mentioned laboriousness of the traditional
decomposition method a new methodology was presented in order to resuscitate the
method but in modified fashion. The elaborated procedure leads to an approximate
solution in form of an analytical expression, where the variable separation method in
the spatial part together with Duhamel’s principle for the time dependence was
applied in each recursion step to solve the respective inhomogeneous differential
equations. The key for rendering the decomposition method tractable is based on the
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approximation of the non-linear terms which appear as the inhomogeneity of the
recursive equations. Recalling, that the original decomposition method constructs the
inhomogeneity of the differential equations using the solutions of the previous
recursion steps so that these are known. This allows to represent the inhomogeneity
by a discrete set of coordinates, which are interpolated by a polynomial. One the one
hand polynomials simplify integration but on the other hand invoke oscillations which
in general introduce significant deviations of the formally determined solution and the
exact solution. The use of a Gröbner basis and its reduction to the remainder of the
division of any polynomial that represents the set of points for which the
inhomogeneity is calculated leads to the smallest polynomial that best represents the
inhomogeneity and also minimizes possible oscillations in the resulting interpolation
of the points.

Evidently a solution constructed in such a way is at best an approximate solution
and, therefore, it is important to use experimental data or reference data to validate it.
To this end the micrometeorological data of the Copenhagen experiment were
selected and the wind field was simulated at the locations, where the wind speed was
measured. Most of the experimental findings could be described with fairly good
agreement using 20 eigenvalues and 10 recursion steps, which lead to an analytical
expression and allows for computational simulations in real time – a useful feature for
this type of field experiments.

Nevertheless, the authors believe that with the novel method we opened
pathways for applications of the modified decomposition method to other non-linear
problems, where we expect that an approximate solution may be determined in
analytical representation reflecting the characteristic dynamical features of the model
in consideration, i.e. the underlying partial differential equation.
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