
Ci. e Nat., Santa Maria, v. 46, e87369, 2024 •  https://doi.org/10.5902/2179460X87369
Submitted: 25/06/2024 • Approved: 16/10/2024 • Published:29/11/2024 

Published by Ciência e Natura under a CC BY-NC-SA 4.0 license.

ISSN 2179-460X

Environment

A comprehensive analysis of weibull distribution 
parameter estimation methods to improve wind 

potential assessment

Uma análise abrangente dos métodos de estimativa de parâmetros de 
distribuição Weibull para melhorar a avaliação do potencial eólico

Amaury de SouzaI , Elias Silva de Medeiros II , 
Carolina Cristina BicalhoIII , Ricardo Alves de Olinda IV

I Universidade Federal de Mato Grosso do Sul, MS, Brazil 
IIUniversidade Federal da Grande Dourados, MS, Brazil

III Universidade Estadual de Mato Grosso do Sul, MS, Brazil
IV Universidade Estadual da Paraíba, PB, Brazil

ABSTRACT

The integration of various technologies and the techno-economic analysis are crucial for the successful 
deployment of renewable energies. This approach makes it possible to maximize the efficient use of clean 
energy sources, reduce costs, and improve system resilience. The work employs theoretical techniques 
to calculate specific characteristics of the Weibull distribution using experimental data collected by the 
Climate Research Unit (CRU Time-Series (TS) v. 4.0). 10 methods were used to estimate the Weibull 
distribution parameters. 10 methods were used to estimate the Weibull distribution parameters. The 
“Wreg” method has shown to be the most suitable for determining the Weibull distribution parameters 
in 23 Brazilian locations. On the other hand, the “PM” method proved to be suitable for four locations in 
Brazil, while the other methods were not considered adequate.

Keywords: Wind potential; Weibull distribution; Parameters; Determination methods; Wind speeds; 
Estimation; Wind energy density; Brazil

RESUMO

A integração de diversas tecnologias e uma análise técnico-econômica aprofundada são fundamentais 
para o sucesso da implementação de energias renováveis. Essa abordagem possibilita a maximização 
da utilização eficiente de fontes de energia limpa, a redução de custos e o aprimoramento da resiliência 
do sistema. No estudo, foram aplicadas técnicas teóricas para calcular características específicas da 
distribuição Weibull, utilizando dados experimentais coletados pela Unidade de Pesquisa Climática 
(CRU Time-Series (TS) v. 4.0). Foram testados 10 métodos diferentes para estimar os parâmetros dessa 
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distribuição. Entre os métodos avaliados, o “Wreg” destacou-se como o mais adequado para determinar 
os parâmetros da distribuição Weibull em 23 localidades brasileiras. Por outro lado, o método “PM” 
mostrou-se apropriado para quatro localidades do Brasil, enquanto os demais métodos não atenderam 
aos critérios de adequação.

Palavras-chave: Potencial eólico; Distribuição Weibull; Parâmetros; Métodos de determinação; 
Velocidades do vento; Estimativa; Densidade de energia eólica; Brasil

1 INTRODUCTION

The assessment of wind energy generation capacity in Brazil emphasizes the 

relevance of research aimed at measuring winds in areas suitable for the establishment 

of wind farms. These investigations cover the installation of measurement towers 

equipped with anemometers and other devices, designed to acquire information 

about the speed and direction of the wind at multiple altitudes.

Based on these analyzes and records, it is possible to discuss the feasibility 

of determining the energy generation capacity in a given location, considering the 

performance of wind turbines available on the market. Furthermore, it is essential to 

evaluate the existing electrical infrastructure, transmission capacity and local demand, 

in order to ensure the adequate integration of wind energy into the electrical grid.

Brazil has taken advantage of its significant wind potential and has experienced 

remarkable growth in installed wind power capacity in recent years. Government 

policies and incentives have boosted the wind sector, attracted investment and 

stimulated technological development in this area.

Wind energy assessment plays a crucial role in determining the localities more 

conducive to the implementation of wind farms, ensuring the effectiveness and 

financial sustainability of this resource as a renewable energy source of prominence 

in the national territory.

The use of the Weibull distribution function to determine the wind power of the 

investigated site and the references (Aziz et al., 2023; Hussain et al., 2023; Guariento 

et al., 2020; Badawi et al., 2020; Shoaib et al., 2017; Kapen et al, 2020; Tiam Kapen et 
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al, 2020; Sumair et al, 2021; Badawi et al, 2021, Andrade et al., 2014; and Costa et al., 

2012) who discuss numerical methods for estimating Weibull distribution parameters.

The need to prioritize renewable energy sources to reduce the negative impacts 

of carbon emissions, minimize dependence on exhausted resources and mitigate the 

challenges arising from non -renewable energy sources, thus contributing to a more 

sustainable and environmentally conscious future.

Numerous research endeavors have been conducted to compare and assess 

various numerical techniques for estimating the parameters of the Weibull distribution. 

These investigations are geared toward identifying the most accurate and suitable 

approach for estimating wind speed distribution parameters.

The objective of the study is to analyze the series of wind speeds in the 27 

Brazilian capitals, which estimation method stands out as the most accurate and 

reliable choice. Through an evaluation using various accuracy metrics.

2 METHODOLOGY

Study area and data series

Brazil, with its vast 8,515,767.0 km2 in length, is located between longitudes of -75° 

and -35° and latitudes of 5° and -30°, home to a diverse population distributed across 

five political regions distinct areas: North, Northeast, South, Southeast and Central-West 

(IBGE, 2023 and 2021). Brazilian geography is characterized by notable diversity, which 

encompasses variations in topography, proximity to the Atlantic Ocean and a wealth of 

biomes. These factors contribute to significant climate diversity, encompassing tropical, 

subtropical wet and dry patterns, with well-defined rainy and dry seasons.

In the agricultural context, climatic conditions play a crucial role. Regions with 

a tropical climate are suitable for growing tropical fruits and grains such as soybeans 

and corn, while humid subtropical areas are suitable for crops such as rice and coffee. 

On the other hand, semi-arid regions in the Northeast face challenges due to irregular 
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rainfall, requiring adapted agricultural practices, such as the use of irrigation systems.

Brazil also has vast potential for renewable energy, especially wind and solar 

energy, due to its favorable climate conditions. The analysis of wind potential is 

essential to identify suitable areas for the installation of wind farms. Furthermore, 

the country’s geographic diversity influences hydroelectric energy production, with the 

presence of large rivers and river basins in several regions.

These geographic and climatic characteristics play a crucial role in Brazil’s 

regional development. Regions with an abundance of natural resources, such as water 

and fertile land, tend to have a more developed agricultural economy. On the other 

hand, areas with adverse climatic conditions may face socioeconomic challenges, 

requiring specific regional development policies and investments in infrastructure.

Understanding these aspects is essential for the planning and sustainable 

development of different Brazilian regions, ensuring the efficient use of natural resources 

and promoting the well-being of the population (Alvares et al., 2014; Silva Junior et al., 2020; 

Reboita et al. al., 2010; Lyra et al., 2014; Shimizu and Ambrizzi, 2016; Abreu et al., 2020b).

CRU Data

Figure 1 – Location of the 27 Capitals of Brazil

The Climate Research Unit (CRU Time-Series (TS) v. 4.0 (Harris et al., 2014) for the study period was 
downloaded in grid form (0.5º × 0.5º) from the following website: https://crudata.uea.ac.uk/cru/. CRU TS4.0.1
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Table 1 – Capitals of Brazil with their identifiers (ID), latitude (°), longitude (°), altitude 

(m), period (years)

ID Capital Lat.(°) Long. (°) Alt.(m) Period(s)
1 Aracajú -10.95 -37.05 3.68 1960-2020
2 Belém -1.44 -48.44 7.13 1960-2020
3 Belo Horizonte -19.93 -43.95 915.47 1960-2020
4 Boa Vista 2.83 -60.66 84.18 1960-2020
5 Brasília -15.79 -47.93 1161.42 1960-2020
6 Campo Grande -20.45 -54.72 528.43 1960-2020
7 Cuiabá -15.62 -56.11 157.7 1960-2020
8 Curitiba -25.45 -49.23 923.5 1960-2020
9 Florianópolis -27.60 -48.62 4.64 1960-2020
10 Fortaleza -3.82 -38.54 29.89 1960-2020
11 Goiânia -16.67 -49.26 748.53 1960-2020
12 João Pessoa -7.10 -34.85 9.67 1960-2020
13 Macapá 0.04 -51.11 12.8 1960-2020
14 Maceió -9.55 -35.77 84.12 1960-2020
15 Manaus -3.10 -60.02 48.86 1960-2020
16 Natal -5.84 -35.21 47.68 1960-2020

17 Palmas -10.19 -48.30 291.68 1960-2020
18 Porto Alegre -30.05 -51.17 41.18 1960-2020
19 Porto Velho -8.79 -63.85 86.12 1960-2020
20 Recife -8.06 -34.96 11.3 1960-2020
21 Rio Branco -9.96 -67.87 160.71 1960-2020
22 Rio de Janeiro -22.90 -43.18 37.5 1960-2020
23 Salvador -13.01 -38.51 47.35 1960-2020
24 São Luiz -2.53 -44.21 32.58 1960-2020
25 São Paulo -23.50 -46.62 785.16 1960-2020
26 Teresina -5.03 -42.80 75.73 1960-2020
27 Vitória -20.32 -40.32 36.2 1960-2020

Numerical methods for determining the weibull parameters

Weibull distribution

The two-parameter webull distribution for wind speed is expressed by the 

probability density function:
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where the cumulative function of probability is given by:
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where c = scale factor (m.s-1), k = shape factor, dimensional and v = random 

variable. The K form factor is inversely related to the variance (σ2) of the wind velocity 

around the average [Bilir, et al., 2014; Usta, 2016]. These methods are all programmed 

in R software (R Core Team, 2023) through the ForestFit library (Teimouri et al., 2020).

Methods for estimating weibull parameters

Generalized Regression Type 1: This method uses regression techniques to fit 

data to the Weibull distribution. It can be useful when the relationship between the 

parameters of the distribution and the predictors is linear. However, its effectiveness 

may be limited in cases where the relationship is not linear or when the actual 

distribution diverges from the Weibull distribution. (Table 2)

Generalized Regression Type 2: Similar to GRT1, but with a different approach 

to data modeling. It may be more flexible in accommodating nonlinear relationships 

between parameters and predictors, but it also faces limitations when the actual 

distribution does not fit well into Weibull (Table 2).

Least Square: The least squares method seeks to minimize the difference 

between the observed values and the estimated values. Although it is widely used and 

relatively simple, it can be sensitive to outliers, affecting the results of the adjustment. 

In Weibull distributions, it can work well with well-behaved data (Table 2).

L-Moment: The L-moment method is an alternative to traditional moments 

and can be more robust against outliers. It can be useful when the data has extreme 

values or is asymmetric. However, its application can be more complex than that of 

traditional moments (Table 2).

 Maximum Likelihood: Maximum Likelihood is a powerful and widely used 

statistical method for estimating distribution parameters. It can provide efficient and 
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reliable estimates, especially with large data sets. However, it requires a certain level of 

statistical and mathematical knowledge for proper implementation (Table 2).

Method of Moments: The method of moments is straightforward and easy 

to implement. However, it may not be as effective as other methods for complex 

distributions or when there is little data available (Table 2).

Percentile Method: This method takes into account the percentiles of the 

observed data and can be useful for robust estimates, especially when there is little 

data or when the distribution of the data is unknown. However, it may not be as 

efficient as other methods with more information (Table 2).

Method of U-Statistic: The U-Statistic method is advantageous when the 

data do not follow a known distribution or when they are limited. However, it may 

be less effective with larger data, where other methods can provide more accurate 

estimates (Table 2).

Rank Correlation: This method is based on the ordering of the data and can be 

effective when the distribution of the data is unknown or does not follow a specific 

distribution. However, it may be less accurate compared to methods that use more 

detailed information from the data (Table 2).

Weighted Least Square: The weighted least squares method allows you to 

consider the relative importance of data points when adjusting the distribution. This 

can be useful for accommodating data points with different levels of accuracy. However, 

the assignment of weights can be subjective and affect the final results. (Table 2) 

In general, the choice of method depends on the characteristics of the data, 

previous knowledge about the distribution and the goals of the analysis. Each 

method has its advantages and limitations, and appropriate selection should be 

based on understanding the specific conditions and characteristics of the data in 

question (Table 2).
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Table 2 – Different estimation methods for Weibull distribution

Method abbreviation Citation
Generalized regression 
type 1

greg1 (Kantar, 2015; Evans et al., 2019)

Generalized regression 
type 2

greg2 (Kantar, 2015; Evans et al., 2019)

Least square Reg (Kantar, 2015; Evans et al., 2019)

L-moment Lm (Hosking, 1990; Boulange et al., 2021)

Maximum likelihood Ml
(Gove and Fairweather, 1989; Guenoukpati 

et., 2020)

Method of moments Moment
(Bailey and Dell, 1973; Guenoukpati et., 

2020)

Method of percentile Pm (Wang and Keats, 1995; Teimouri et al., 2020)

Method of U-statistic Ustat (Sadani et al., 2019)

Rank correlation Rank (Teimouri and Nadarajah, 2012)

Weighted least square wreg (Zhang et al., 2008; Kantar, 2015)

A study on uncensored datasets presented an overview of the statistical literature 

on Weibull distribution fitting methods, addressing comparisons between these 

methods, in particular on Generalized Regression and Least Square methods (Evans et 

al, 2019). The L-moment method has been applied to estimate Gumbel parameters in a 

study that investigated the impact of dams on flood mitigation (Boulange et al., 2021).

Research that aimed to calculate the characteristics of wind speed and wind 

energy density in coastal locations in West Africa, carried out an evaluation of the 

effectiveness of seven numerical methods to determine the shape and scale parameters 

of the Weibull distribution, concluding the maximum likelihood methods and moments 

have high accuracy (Guenoukpati et al., 2020).

The percentile method has been compared with other methods for estimating 

the parameters of the Weibull distribution applied to tree diameter data, in which it 

was concluded that this method presented the best results (Teimouri et al., 2020). A 
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simulation study comparing different methods for estimating the Weibull distribution 

found that the Method of U-statistic resulted in better performance in terms of bias 

when adjusted in scenarios with large sample sizes (Sadani et al., 2019).

The weighted minimum method method is used due to its computational 

simplicity and graphic representation. One study conducted simulations and concluded 

that this method, along with the general minimum squares, often produces better 

adjustments than maximum likelihood methods and other pet approaches. (Based on 

Kantar, 2015)

Performance analysis of the methods for determining and parameters 𝜶𝜶𝜶𝜶,𝜷𝜷𝜷𝜷 

 
Root Mean Square Error (RMSE): The Root Mean Square Error is a metric that 

quantifies the average difference between observed values and predicted values in a 

model. It measures the dispersion of errors and is calculated by taking the square root 

of the average of squared errors.

Mean Absolute Percentage Error (MAPE): The Mean Absolute Percentage Error 

is a measure of a model’s accuracy in terms of the percentage of error relative to 

observed values. It expresses the average of the absolute percentages of errors 

between predictions and actual values.

Relative Root Mean Square Error (Relative RMSE): The Relative Root Mean Square 

Error is a version of RMSE that is normalized by the mean values of the data. This allows 

for comparing the magnitude of errors relative to the variability of the original data.

Coefficient of Determination (R²): The Coefficient of Determination is a measure 

that indicates the proportion of total variability in dependent values explained by the 

statistical model. It ranges from 0 to 1, where a value closer to 1 indicates a better fit 

of the model to the observed data.

These statistical indices are used to assess the performance of statistical models 

and forecasts, providing insights into how well the models fit the data and the accuracy 

of the predictions made.
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Results and discussion

Table 3 shows the medium, median, maximum, minimal and standard deviation 

values of wind speeds for the 27 Brazilian capitals. The results revealed that over the 

years, the 27 seasons analyzed had similar average wind speeds, varying mainly at the 

intensity of these speeds. The annual average of the speeds was 2.06 m/s. The highest 

monthly speeds were recorded in September (2.30 m/s) and October (2.34 m/s), while 

the lowest occurred in April (1.80 m/s).

Table 3 – Statistical analysis of wind speed in Brazilian capitals

City n Min mean Median Sd .max
Aracaju 61 2.04 2.58 2.58 0.24 3.17
Belem 61 0.99 1.57 1.53 0.33 2.3
B.Horizonte 61 1.20 1.41 1.38 0.15 1.95
B.Vista 61 0.74 1.18 1.09 0.33 2.38
Brasilia 61 1.39 1.80 1.83 0.15 2.12
C.Grande 61 1.98 2.84 2.88 0.32 3.46
Cuiabá 61 1.2 1.43 1.41 0.14 1.82
Curitiba 61 1.61 1.74 1.71 0.10 2.11
Florianopolis 61 2.99 3.17 3.17 0.08 3.36
Fortaleza 61 1.81 2.74 2.7 0.45 3.65
Goiania 61 1.32 1.76 1.79 0.16 2.06
J.Pessoa 61 2.5 3.07 3.08 0.30 3.7
Macapa 61 1.19 1.69 1.72 0.26 2.24
Maceio 61 1.76 2.34 2.34 0.24 2.92
Manaus 61 0.8 1.15 1.1 0.2 1.75
Natal 61 2.45 3.2 3.24 0.37 3.96
Palmas 61 1.14 1.43 1.43 0.14 1.77
P.Alegre 61 2.88 3.16 3.15 0.14 3.56
P.Velho 61 0.84 1.03 1.01 0.11 1.3
Recife 61 2.22 2.78 2.79 0.26 3.35
R.Branco 61 0.99 1.19 1.16 0.12 1.58
R.Janeiro 61 2.07 2.66 2.65 0.15 3.08
Savador 61 2.17 2.59 2.6 0.19 3.16
S.Luiz 61 0.6 1.39 1.4 0.46 2.39
S.Paulo 61 1.9 2.12 2.12 0.12 2.43
Teresina 61 1.68 1.93 1.93 0.11 2.14
Vitoria 61 2.29 2.69 2.72 0.19 3.06
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Table 4 – Estimates of the best metrics of the Mean Absolute Percentage Error (MAPE), 

Relative Root Mean Squared Error (RRMSE) and Root Mean Squared Error (RMSE) when 

adjusted the ten methods for wind speed data in the 27 capitals of Brazil

Capital
MAPE RRMSE RMSE R²

Select
Method Value Method Value Method Value Method Value

Aracajú Pm 8,45% wreg 5,36% wreg 0,0283 Pm 99,61% wreg
Belém Pm 26,86% Pm 9,08% Pm 0,0695 Pm 98,20% Pm
Belo Horizonte Pm 10,86% wreg 5,92% wreg 0,0437 wreg 98,09% wreg
Boa Vista Ustat 18,80% wreg 5,25% wreg 0,0297 Pm 99,38% wreg
Brasília Rank 16,12% wreg 7,31% Ustat 0,0321 Pm 99,59% wreg
Campo Grande Moment 30,29% wreg 14,20% wreg 0,0591 Pm 99,25% wreg
Cuiabá Pm 21,32% wreg 8,23% wreg 0,0523 Pm 98,86% wreg
Curitiba Pm 12,64% wreg 9,47% wreg 0,0698 Pm 96,77% wreg
Florianópolis Moment 10,00% wreg 4,79% wreg 0,0256 Pm 99,72% wreg
Fortaleza Moment 10,56% wreg 5,15% wreg 0,0256 greg2 99,47% wreg
Goiânia Reg 13,44% wreg 6,19% wreg 0,0251 Pm 99,74% wreg
João Pessoa Moment 19,20% wreg 5,16% wreg 0,0273 wreg 99,34% wreg
Macapá Moment 17,11% wreg 4,87% wreg 0,0257 Pm 99,53% wreg
Maceió Moment 22,16% wreg 5,81% wreg 0,0292 wreg 99,46% wreg
Manaus Pm 14,85% Pm 7,44% Pm 0,049 Pm 98,86% Pm
Natal Pm 13,48% wreg 3,41% wreg 0,0171 greg2 99,78% wreg
Palmas Moment 23,61% Pm 6,30% Pm 0,039 Pm 99,33% Pm
Porto Alegre Ustat 39,80% wreg 8,58% wreg 0,0503 Pm 98,33% wreg
Porto Velho Moment 28,35% wreg 7,18% wreg 0,0395 Pm 99,20% wreg
Recife Ustat 20,02% wreg 8,51% wreg 0,0579 Pm 97,60% wreg
Rio Branco Pm 24,06% Pm 7,09% Pm 0,0302 Pm 99,59% Pm
Rio de Janeiro Pm 22,82% wreg 5,92% wreg 0,0299 wreg 99,34% wreg
Salvador Ustat 12,35% wreg 3,35% wreg 0,0187 Pm 99,71% wreg
São Luiz Ustat 11,92% wreg 5,74% wreg 0,034 wreg 99,09% wreg
São Paulo Pm 9,70% wreg 4,65% wreg 0,0274 Pm 99,55% wreg
Teresina Moment 33,57% wreg 6,88% wreg 0,0324 wreg 99,33% wreg
Vitoria wreg 11,62% greg1 5,16% Reg 0,0245 Moment 99,54% wreg

Table 4 shows estimates of the best average percentage error metrics (MAPE), 

average quadratic error of the relative root (RMSE) and average quadratic root error 

(RMSE) when the ten wind speed data methods are adjusted in 27 capitals From Brazil, 

showing that the Method Wreg and PM were the best adjusted. 
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The capitals Belo Horizonte, Manaus and Rio de Janeiro showed agreement in 

the results of the four statistical metrics (MAPE, RMSE, RRMSE and R²), and the pm 

method was selected. Differently, the cities of Brasília and Vitória were selected a 

distinct method for each metric, being selected for Brasilia the methods rank, wreg, 

ustat and pm and for Vitória the methods wreg, greg1, reg and moment according to 

the best metrics of MAPE, RMSE, RRMSE and R², respectively.  Bela Vista, João Pessoa, 

Maceió, Porto Alegre, Recife, São Paulo and Teresina presented similar methods in 

three of the four statistics. In the other capitals we had the same method, presenting 

the best results in two of the four statistics. The wreg method was selected in 17 of 

the 27 cities analyzed and the pm method in 4 capitals. The two methods obtained 

equivalent results in four more cities: Aracaju, Cuiabá, Curitiba and Salvador. From 

these results, it is evident that the WREG method demonstrated superior performance, 

being adopted in our research to 23 of the 27 cities, while the PM method was chosen 

for the rest of the study.

Regarding the RRMSE, the capital of Mato Grosso do Sul, Campo Grande, 

presented the highest estimate among the capitals, being 14.20%, obtained when 

the wreg method was adjusted. On the other hand, this same method produced an 

estimate of 3.35% of the RRMSE when adjusted to the São Luiz data (Figure 2).
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Figure 2 – Results of the Relative Root Mean Squared Error (RRMSE) when adjusted the 

ten methods in each of the 27 capitals of Brazil

In Figure 3 it is possible to observe the adjustment of the theoretical and 

empirical cumulative distributions when the Weibull distribution is adjusted by means 

of the methods selected by Table 2.
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Figure 3- Empirical (red line) and theoretical (black line) cumulative function adjusted 

to wind speed data in the 27 capitals of Brazil

Countless investigations have been conducted to assess the precision of diverse 

parameter estimation methods when dealing with the Weibull distribution. For instance, 

Guarenti et al. (2020) delved into the parameters of the Weibull distribution across 

different months in the municipalities of Mato Grosso do Sul, Brazil. Interestingly, they 
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observed that certain stations exhibited pronounced parameter peaks in August, while 

others-maintained consistency throughout the year.

In the realm of Weibull parameter estimation, the Maximum Likelihood Method 

(MLM) and the Modified Maximum Likelihood Method (MMLM) have consistently 

proven to be highly accurate across various stations. Notably, the Energy Pattern 

Factor (EPFM) method emerged as the most robust monthly estimator among the 

methods examined, suitable for estimating Weibull distribution parameters within 

all wind speed ranges. However, scrutiny of the RMSE, R2, and RE results has raised 

concerns regarding the efficacy of the WVM and MoroM methods in estimating the k 

and c parameters, whereas other methods have been deemed acceptable.

Kang et al. (2021), meanwhile, undertook a study on wind resources at nine sites 

on Jeju Island, South Korea (Chujado, Gapado, Udo, Gujwa, Hallim, Moseulpo, Aewol, 

Ohdeumg, and Sunheul), employing six distinct Weibull methods: Justus empirical 

method (EMJ), Moment Method (MOM), Graph Method (GM), power density method 

(PDM), MLM, and MMLM. Their findings revealed that MOM displayed the highest 

accuracy among these methods, while GM exhibited the lowest accuracy.

Saxena and Rao [2015], on the other hand, explored data from Rajasthan, India, 

utilizing four methods: GM, EMJ, MMLM, and Percentile Method (PDM). MMLM and GM 

demonstrated superior and inferior performances, respectively. The accuracy of these 

methods varied depending on the region and measurement period, with GM generally 

underperforming compared to MOM, MLM, and MMLM.

	Similarly, Kumar and Gaddada (2015) analyzed data from northern Ethiopia, 

Costa Rocha et al. (2012) investigated wind patterns in Brazil, and Hove et al. (2014) 

scrutinized Zimbabwean data, each assessing various methods and favoring GM as 

the best-performing one.

In recent years, Kanga et al. (2021) provided fresh insights by comparing Weibull 

parameters across different methods and locations, using a variance-based approach. 

They identified accurate methods for predicting wind speed distribution, emphasizing 
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the importance of methods like EMJ, EML, MOM, and STDM. Conversely, GM, AMLM, 

EEM, and PFM demonstrated lower accuracy in their predictions.

In a recent study by Aziz et al. (2023), 14 different methods were analyzed to 

determine Weibull distribution parameters for adjusting wind data from three locations 

with varying intensities. The EPFM method emerged as the most accurate, while the 

WVM and Morom methods proved less suitable for certain estimates. Additionally, the 

study confirmed Weibull distribution asymmetry, with parameters K and C varying with 

above-ground height. Future research is suggested to explore the impact of roughness 

and topography on wind potential results.

Vega-Zuñiga et al. (2022) calculated the shape and scale parameters of the 

Weibull function using eleven different methods with hourly wind speed data from 

the ERA5 database. They concluded that the MLM, MMLM and MoM methods were 

the most effective in representing the data distributions. wind speed using the 

Weibull PDF model.

Sadani et al.’s study highlights the importance of selecting appropriate parameter 

estimators for the Weibull Distribution, considering factors such as sample size and 

specific needs. The newly introduced U-type statistics offer a promising approach with 

favorable performance characteristics, especially when sample sizes are substantial. 

This study provides valuable insights for professionals working with the Weibull 

Distribution in various fields.

These results underscore the critical nature of selecting the right method 

for estimating Weibull distribution parameters, especially when assessing wind 

potential in diverse locations and wind conditions. Comparing methods using 

metrics like RMSE, R2, and RE enables comprehensive analysis, revealing their 

strengths and limitations in this context. Moreover, examining trends in Weibull 

parameters concerning height yields valua.
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Socioeconomic Analysis:

Power Generation and Economic Impacts: Accuracy in wind speed modeling 

is crucial to assess the potential of wind energy generation. A reliable model allows 

for predicting generated energy, promoting the utilization of renewable sources and 

reducing reliance on fossil fuels. This leads to economic benefits such as lower energy 

costs, enhanced energy supply security, and job creation within the wind energy sector.

Investment and Infrastructure: Wind energy projects often require significant 

upfront investments in infrastructure, such as wind turbines and transmission lines. 

Accurate wind speed modeling helps investors and policymakers make informed 

decisions about the viability and profitability of such projects, minimizing the risk 

of financial losses.

Regional Development: Wind energy initiatives have the potential to stimulate 

regional development, contributing to the generation of jobs in the construction, 

maintenance and operation phases of wind farms. This impact can be particularly 

significant in rural regions, where job opportunities can be limited. As a result, 

local economies can be strengthened and diversified, bringing tangible benefits to 

communities.

Electricity Prices and Energy Market: As wind energy contributes to the overall 

electricity generation mix, it can influence electricity prices. Adequate modeling of wind 

speed and energy production aids in understanding how wind energy supply affects 

electricity prices and market dynamics.

Environmental Analysis:

Reduced Greenhouse Gas Emissions: Accurate wind speed modeling supports 

the efficient utilization of wind energy, contributing to the reduction of carbon emissions 

and mitigating climate change.

Biodiversity and Habitat Preservation: The installation of wind turbines and 

associated infrastructure can have localized environmental impacts, including habitat 
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disruption and bird collisions. Careful site selection based on accurate wind speed 

modeling can help minimize these impacts by avoiding sensitive ecological areas.

Land Use and Aesthetics: Wind farms require land for installation, which can 

compete with agricultural or natural landscapes. Proper modeling can guide the 

placement of wind turbines to strike a balance between energy production and land use 

considerations. Additionally, considering the visual impact of wind farms is important 

for preserving the aesthetic quality of the surroundings.

Noise and Human Health: Wind turbines generate noise during operation, 

which can potentially impact nearby communities. Accurate wind speed modeling can 

aid in determining suitable setback distances to minimize noise-related concerns and 

potential effects on human health.

Resource Scarcity and Sustainability: Wind energy contributes to diversifying the 

energy mix and reducing reliance on finite fossil fuel resources. Modeling wind speeds 

helps in assessing the sustainability of this resource in the long term, considering 

factors like wind patterns and climate change effects.

In conclusion, the socio-economic and environmental analysis of wind speed 

modeling is crucial for evaluating the feasibility, benefits, and potential drawbacks of 

wind energy projects. It informs decision-makers, investors, and communities about 

the broader impacts of harnessing wind energy and aids in the development of policies 

that promote sustainable and responsible wind power generation.

4 CONCLUSION

This article conducted a comparative analysis of ten different methods for 

determining the parameters of the Weibull distribution, using wind data from 27 

different locations. This assessment was based on several statistical metrics, including 

MAPE, RRMSE, RMSE and R2.

The conclusions drawn from this study indicate that the Wreg method stood 

out as the most appropriate choice for determining the parameters of the Weibull 
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distribution in 23 of the analyzed locations. On the other hand, the pm method proved 

to be suitable for only four of these locations, while the other methods did not provide 

satisfactory results in estimating the parameters of this distribution.

These conclusions highlight the importance of using the Wreg method in the 

context of estimating the parameters of the Weibull distribution, especially when 

taking into account the influence of the variation of these parameters with height. 

Accurate understanding and appropriate application of these parameters are crucial 

to ensure an accurate assessment of wind potential, as well as to support the effective 

and sustainable development of wind energy projects.

Ultimately, this research not only contributes to the selection of the most suitable 

method in estimating Weibull distribution parameters, but also provides valuable 

information to improve the accuracy of wind potential assessments and the feasibility 

of wind energy projects.
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