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ABSTRACT

This work explores the temporal evolution of non-conserved field variables through the application of the
Allen-Cahn equation. The equation forms the basis for various phase-field models used in cell migration
studies, particularly in the context of tumor cells and cancer metastasis. The model portrays cells as 2D
soft bodies, integrating mechanical and biological aspects to simulate cell movement. The investigation
delves into the mathematical representation of cell migration, vital in understanding cancer development
and metastasis. The model employs an order parameter to characterize each cell, representing their
presence within a cell cluster. By minimizing a specific free energy functional, the equilibrium shape of
the soft cell bodies is determined, incorporating parameters that influence elasticity and energetic costs.
Additionally, the interaction between cells is incorporated, contributing to a comprehensive portrayal
of cell migration. The study yields insights into the complex dynamics of cell migration, enhancing our
comprehension of biological processes and potentially informing cancer research strategies.
Keywords: Cell migration; Phase-field models; Allen-Cahn equation; Cancer metastasis; Mathematical
modeling

RESUMO

Este trabalho explora a evolução temporal de variáveis de campo não conservativas através da
aplicação da equação de Allen-Cahn. A equação forma a base para diversos modelos de campo de fase
usados em estudos de migração celular, especialmente no contexto de células tumorais e metástase do
câncer. O modelo retrata as células como corpos macios 2D, integrando aspectos mecânicos e
biológicos para simular o movimento celular. A investigação aprofunda-se na representação
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matemática da migração celular, fundamental para entender o desenvolvimento do câncer e a
metástase. O modelo emprega um parâmetro de ordem para caracterizar cada célula, representando
sua presença dentro de um aglomerado celular. Ao minimizar uma função espećıfica de energia livre,
determina-se a forma de equiĺıbrio dos corpos celulares macios, incorporando parâmetros que
influenciam a elasticidade e os custos energéticos. Além disso, a interação entre as células é
incorporada, contribuindo para uma representação abrangente da migração celular. O estudo oferece
insights sobre a dinâmica complexa da migração celular, aprimorando a compreensão dos processos
biológicos e potencialmente informando estratégias de pesquisa do câncer.
Palavras-chave: Migração celular; Modelos de campo de fase; Equação de Allen-Cahn; Metástase do
câncer; Modelagem matemática

1 INTRODUCTION

Cancer, a disease with profound global implications, ranks among the leading
causes of death in many countries. The scarcity of adequate medical resources
contributes significantly to the loss of lives. The risk of developing cancer increases
with age, particularly affecting individuals aged 55 or older. Throughout life, the
likelihood of developing or succumbing to cancer is approximately 1 in 2 for men and 1
in 3 for women. As a result, research into cancer treatment has garnered extensive
attention from various disciplines (Farayola et al., 2020). The higher mortality rate
associated with this disease can be understood by examining the characteristics of
cancer cells. To enhance treatment outcomes, mathematical models have been
employed to analyze the impact of radiotherapy on cancer cells and study their
movement within the body (Biner, 2017; Farayola et al., 2020; Kolev et al., 2013).

Cell migration is an indispensable and crucial process for development,
differentiation, and the body’s ability to respond to diseases. Over the years, it has
undergone meticulous experimental investigation and has been the subject of
modeling by researchers from various fields, including mathematicians, engineers, and
physicists (Flaherty et al., 2007; Mousavi et al., 2014; Nieto and Urrutia, 2016; Taylor
et al., 2011). Initial models were rudimentary due to limited knowledge. However, as
cellular biology advanced and quantitative data became available, more sophisticated
models were developed, incorporating principles from areas such as materials science,
mechanical engineering, and condensed matter physics. These mathematical models
not only deepen our understanding of cellular processes but also enable researchers
to compare competing hypotheses and make accurate predictions that can be

Ci. e Nat., Santa Maria, v. 46, n. esp. 1, e87268, 2024



Bandeira, J. G. P., Buske, D., Quadros, R. S., & Kurz, G. B. | 3

empirically tested through experiments (Carlsson and Sept, 2008).
Cell motility, a crucial biological process in the functioning of our bodies, poses a

complex challenge for researchers. Mathematical models have become essential tools
for gaining profound insights into this intricate biological phenomenon. By employing
computational models, scientists can effectively explore various scenarios, surpassing
the limitations of traditional in vitro investigations (Flaherty et al., 2007). However, to
advance in this research area, a solid understanding of the fundamentals of cell motility
is essential for developing accurate and meaningful mathematical models.

Cell migration holds immense importance in various physiological, biological,
and pathological processes, such as tissue morphogenesis, cell differentiation, cancer
development, and wound healing. The behavior of cell migration is influenced by
complex biochemical, biophysical, and mechanical factors. To enhance our
understanding of this phenomenon, researchers have proposed a three-dimensional
model that takes into account how cells perceive their environment and exert forces to
move. This model shows promising agreement with experimental and numerical data,
providing valuable insights into cell locomotion across diverse scenarios (Flaherty et al.,
2007; Mousavi et al., 2014).

Cell migration, especially in the context of tumor cells, has been extensively
studied using mathematical models, given its crucial role in cancer development and
metastasis. These models incorporate various biological mechanisms and mechanical
factors to simulate cell movement. While some models adopt a purely mechanical
approach, similar to molecular dynamics, others utilize lattice-based methods for
dense tissues. Understanding the behavior of individual cells at low density is essential
for comprehending how tissues collectively behave at higher densities. Through the
implementation of efficient algorithms, researchers have made significant
advancements in exploring cell movement and interactions, thereby gaining a deeper
understanding of cellular behavior in diverse environments (Nieto and Urrutia, 2016;
Taylor et al., 2011).
2 METHODOLOGY

In this model, each cell is represented by an order parameter φ within the phase
field, taking the value of 1 inside the cell and 0 outside of it. Treating the cells as soft 2D
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bodies, their equilibrium shape is determined by minimizing the following free energy
(Biner, 2017):

F0 =
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where R is the radius, λ represents the width of the cell boundary, µn is considered a
parameter that determines the energy cost associated with changes in cell area while
maintaining its volume approximately constant, and γn is a parameter that controls cell
elasticity.

The first term corresponds to the conventional Allen-Cahn equation, which is
non-conservative and includes gradient energy and a double well potential for the
order parameter. This partial differential equation describes how the order parameter
evolves over time and models phase separation in physical systems. In this case, the
non-conservative nature of the Allen-Cahn equation means that the total quantity of
the order parameter is not conserved over time.

Furthermore, the Allen-Cahn equation is modified to incorporate gradient
energy terms that account for spatial variations of the order parameter and its
gradient. These gradient energy terms capture the influence of interfaces and
boundaries between phases in the system.

The double well potential is a mathematical function that describes the shape of
the potential associated with the order parameter. It has two symmetric wells,
indicating the existence of two distinct phases in the system. The design of the double
well potential aims to favor phase separation and facilitate the formation of domain
structures.

The free energy F0 represents individual cells, while the total energy, taking
interactions between them into account, is given by
F = Fo + Fint, (2)
where the internal force Fint is defined, by Biner (2017), as
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and the constant κ is the coefficient of gradient energy. Furthermore, the temporal
evolution of each cell is described as follows (Biner, 2017):
∂φn

∂t
+ vn · ∇φn = −1

2

δF

δφn

, (4)
where vn is the time-dependent velocity of the cell, divided into two components: vn =

vn,I + vn,A. The component vn,A represents the active part of the velocity, i.e., the self-
propulsion of the cell. In the model, it is considered to have a constant magnitude. On
the other hand, the velocity vn,I is determined by the forces arising from the interaction
with other cells and is defined in Biner (2017) as

vn,I =
60κ

ξλ2

∫
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m

)
, (5)

where ξ represents the friction between the cells and the surrounding liquid
environment. Finally, by solving the functional derivative δF/δφn, we obtain the
equation describing the temporal evolution of the cells:
∂φn
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The Laplace operator and the directional derivatives described in equations 5 and
6 are approximated utilizing a finite difference algorithm, employing a five-point stencil
within a two-dimensional spatial domain. The temporal integration is executed through
a straightforward explicit Euler time-stepping scheme.

For the simulation, three distinct grids were selected. Grid 1 is NxNy = 100 ×

100, comprising 40 cells with a radius of 8. Grid 2 was configured as NxNy = 150 × 150,
featuring 50 cells with a radius of 11, while grid 3 consists ofNxNy = 200×200 dimensions,
each containing 60 cells with a radius of 13. All of them include 5 cancerous cells. The
parameters are defined according to Biner (2017) as λ = 7, κ = 60, µ = 40, and ξ = 1500.
The only difference between normal and cancerous cells is the parameter γn. For normal
cells, γn = 5, whereas for cancerous cells, γn = 2.5, rendering them softer. The temporal
step is ∆t = 0.005, consistent across all grids.
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In this study, the focus will be exclusively on the simulation carried out using
grid 1, due to the similarity of results among the three grids. The effectiveness of the
simulation remains unchanged in the face of variations in the three mesh sizes,
allowing for a comprehensive observation of the system’s behavior. However,
significant differences in computational time arose among the grids. Specifically, the
time required to execute 15000 time steps in grid 1, grid 2, and grid 3 was, respectively,
four days, two weeks, and one month and four days.

Having defined the equations and conditions, algorithms were developed in the
Python programming language for simulating the problem and graphically visualizing
the multicellular system, as depicted in the upcoming section.
3 RESULTS AND DISCUSSION

The results obtained from the simulation are illustrated in the figures 1 to 4,
where we can observe in greater detail the effects of the adopted configurations.
Among the present cells, five of them stand out due to their dark red shade; these are
cells identified as the cancerous or alternatively, soft cells. The elasticity parameter γn

sets their respective elasticities apart, with cancerous cells being inherently softer
compared to normal cells.

Figure 1 – Dynamic evolution of cells over time

(a) (b)
Caption: The (a) figure shows the simulation at time t = 0 and (b) shows the simulation at time
t = 1000
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The distinction in elastic behavior between these two cell types is particularly
evident in Fig. 3, corresponding to a stage of the simulation at time t = 13000∆t. At this
specific point, the notable deformation suffered by the cancerous cell located in the
upper-left corner draws attention. This cell is visibly stretched and twisted between
two common cells, indicating the significant impact of the elasticity difference.
Furthermore, this can also be observed in Fig. 4c, in the cancerous cell near the
lower-left corner. This observation suggests the critical influence that mechanical
properties exert on the overall system behavior, emphasizing the importance of
considering such parameters in future studies and approaches.
Figure 2 – Dynamic evolution of cells over time

(a) (b)
Caption: The (a) figure shows the simulation at time t = 5000 and (b) shows the simulation at
time t = 10000

Figure 3 – Dynamic evolution of cells over time

(a) (b)
Caption: The (a) figure shows the simulation at time t = 13000 and (b) shows the simulation at
time t = 15000
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Figure 4 – Comparison among the different simulated grids at time t = 15000∆t

(a) (b) (c)
Caption: The (a) figure represents grid 1, (b) represents grid 2 and (c) represents grid 3

4 CONCLUSIONS

In conclusion, this research delved into the temporal evolution of non-conserved
field variables using the Allen-Cahn equation, with a focus on cell migration modeling.
The study employed a mathematical representation to simulate cell movement,
emphasizing its relevance in understanding cancer development and metastasis. The
model considered both mechanical and biological aspects, offering insights into the
complex dynamics of cell migration. Notably, the simulation results highlighted the
significant impact of mechanical properties, such as cell elasticity, on cell behavior
within a multicellular system.

This work serves as an initial step in cell migration research, and future studies
can build upon these principles and equations. Further investigations may involve
refining the model by incorporating additional parameters and refining its accuracy.
The continual advancement of mathematical modeling in cell migration holds the
potential to enhance our comprehension of biological processes, offering insights that
may shape strategies in cancer research and drive progress within the field.
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