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ABSTRACT

The aim of this work is to evaluate the pollutants concentration considering a transient
three-dimensional model, non-local turbulence closure and the computational time to simulate the
pollutants dispersion considering different methodologies to solve the linear system that is obtained by
applying the 3D-GILTT method in the three-dimensional advection-diffusion equation. To validate the
model, unstable tank experiment data were considered. The results show that the Gauss-Seidel method
has the shortest computational time to simulate the pollutant dispersion and the model satisfactorily
simulates the observed concentrations, considering and not considering the non-local turbulence
closure term.
Keywords: Advection-diffusion equation; Non-local turbulence closure; Pollutants dispersion; Analytical
solution; 3D-GILTT method

RESUMO

O objetivo deste trabalho é avaliar a concentração de poluentes considerando um modelo transiente
tridimensional, fechamento não local da turbulência e tempo computacional para simular a dispersão
de poluentes considerando diferentes metodologias para resolver o sistema linear que é obtido pela
aplicação do método 3D-GILTT na equação tridimensional de advecção-difusão. Para validar o modelo,
foram considerados dados do experimento instável clássico de tanque. Os resultados mostram que o
método de Gauss-Seidel possui o menor tempo computacional para simular a dispersão de poluentes e
o modelo simula satisfatoriamente as concentrações observadas, considerando e não considerando o
termo de fechamento não local da turbulência.
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1 INTRODUCTION

The aim of this work is to evaluate the pollutants dispersion in the atmosphere,
considering a three-dimensional transient model, the turbulence non-local closure and
the 3D-GILTT method. Several studies have already been carried out using the GILTT
method to solve the advection-diffusion equation, and this work is the most complete,
bacause it considers dispersion in the x, y and z directions, along the time and
considering turbulence non-local closure.

The application of the 3D-GILTT method to the advection-diffusion equation
leads to the turbulence closure problem. The first-order closure known as gradient
transport hypothesis (K-theory) is one of the most used ways to solve the
advection-diffusion equation closure problem, which assumes that the turbulent flow
concentration is proportional to the magnitude of the average concentration gradient.
The gradient transport theory is not valid in the upper part of the convective boundary
layer (CLC), because in this region there is the presence of a countergradient flow
(Deardorff and Willis, 1975).

A few decades ago, it was already noticed that in the upper part of the
convective boundary layer (CBL) the potential temperature flow is contrary to the
potential temperature profile gradient of the medium (Deardorff, 1966). The potential
temperature gradient of the medium and the flow change signs at different levels
introducing a certain region into the CBL. This is in contrast to the traditional first-order
turbulence closure, because it does not take into account the inhomogeneous
character of the CBL turbulence. Therefore, the first-order closure equation is modified
to take into account the presence of countergradient flow in the upper part of the CBL.

In order to verify the best methodology to be used in the present work, were
tested different techniques to solving linear system that is generated by the 3D-GILTT
technique application (LU decomposition method, iterative Jacobi method, Gauss-Seidel
method and successive over-relaxation) (Burden and Faires, 2010) to reduce errors and
computational time.

In this work, the advection-diffusion equation is considered in its most complete
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form, considering a three-dimensional model and the non-local closure term of the
turbulence. To carry out the simulations, the ubuntu linux operating system was used
on a notebook with core i5. The model was written in python language.
2 METHODOLOGY

Advection and diffusion atmospheric can be modeled by applying the mass
conservation equation (Seinfeld and Pandis, 1997), also known as the continuity
equation:
∂c

∂t
+ u

∂c

∂x
+ v

∂c

∂y
+ w

∂c

∂z
= −∂u

′c′

∂x
− ∂v′c′

∂y
− ∂w′c′

∂z
(1)

where c (c = c (x, y, z, t)) denotes the average concentration of a passive contaminant, u,
v andw are the mean wind cartesian components (m/s) and u′c′, v′c′ andw′c′ respectively
represent the contaminant turbulent flow (g/sm2) in the longitudinal, lateral and vertical
directions.

The equation (1) presents four unknowns (turbulent flows and concentration) and
therefore cannot be solved directly, leading us to the turbulence closure problem. The
turbulence Fickian closure hypothesis in directions x and y is given by u′c′ = −Kx

∂c

∂x
and

v′c′ = −Ky
∂c

∂y
, where Kx and Ky are the eddy diffusivities (m2/s) in the x and y directions.

In first-order closure, all the information about the turbulence complexity is
contained in these eddy diffusivities. Thus, the following advection-diffusion equation
(Blackadar, 1997) is obtained:
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∂
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(
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∂
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(2)

The time-dependent turbulent flow equation, as suggested by (Dop and Verver,
2001), is written as:
(
1 + β

∂

∂z
+ τ

∂

∂t

)
w′c′ = −Kz

∂c

∂z
(3)

where β =
SkσwTlw

2
, Sk is the skewness term, σw the standard deviation of the vertical

turbulent velocity (m/s), Tlw the Lagrangian time scale (s) and τ the relaxation time (s).
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Substituting the equation (3) into the equation (2) and using the Cauchy-Euler
theorem, we obtain the three-dimensional time-dependent advection-diffusion
equation, which considers the non-local closure of the turbulence:
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(4)

where Kx, Ky and Kz represent the eddy diffusivities in the longitudinal, lateral and
vertical directions, respectively.

As the domain is finite, the equation (4) is subject to the following boundary and
source conditions:
Kx

∂c(Lx, y, z, t)

∂x
= Ky

∂c(x, 0, z, t)

∂y
= Ky

∂c(x, Ly, z, t)

∂y
= Kz

∂c(x, y, 0, t)

∂z
= Kz

∂c(x, y, h, t)

∂z
= 0

u c(0, y, z, t) = Qδ(y − yo)δ(z −Hs)

where Q is the source intensity (g/s), h is the planetary boundary layer height (m), Hs

is the source height (m), Lx and Ly the limits away from the source on the x and y axis,
respectively in (m) and δ is the Dirac delta function.

Applying the Laplace Transform Technique in the equation (4), to the t variable
and for simplicity, we assume that the eddy diffusivity Ky has dependence only in the z
direction

(
∂Ky

∂y
= 0

)
(Alves et al., 2012), we get the following stationary problem[

C = C (x, y, z, r)
], where c (x, y, z, 0) = 0:
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where C denotes the Laplace Transform in the t variable
C (x, y, z, r) = L{c (x, y, z, t) ; t→ r} and r is complex.

Applying the integral transform technique to the y variable, we can expand the
pollutants concentration as (Buske et al., 2012):

C(x, y, z, r) =
N∑

n=0

cn(x, z, r)ζn(y)

N
1
2
n

Using the Sturm-Liouville auxiliary problem and applying the GILTT method, the
following equation can be written in matrix notation:
Y ′′(x) + F.Y ′(x) +G.Y (x) = 0

where, Y (x) is the column vector whose components are {cn,i(x, r)}. The F matrix is
given by F = B−1.R and the G matrix is given by G = B−1.S. The B, R and S matrices
are respectively given by:

bi,j = αn,m

∫ h

0

Kx ςi(z)ςj(z)dz + αn,m

∫ h

0

βKx
∂ςi(z)

∂z
ςj(z)dz+

+αn,m

∫ h

0

(βKx)
′ ςi(z)ςj(z)dz + αn,m

∫ h

0

τ r Kx ςi(z)ςj(z)dz
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The GILTT technique combines series expansion with integration. In the
expansion, is used a trigonometric base determined with the help of an auxiliary
Sturm-Liouville problem. The ordinary differential equations resulting system is
analytically solved using the Laplace transform and diagonalization.
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Applying an order reduction in the equation Z ′ (x) +H.Z (x) = 0, we can write

Z(x) = X .


e−d1 x 0 . . . 0

0 e−d2 x . . . 0... ... . . . ...
0 0 . . . e−dn x

 . X−1 . Z(0)

whereH is the block matrixH =

 0 −I

G F

, withX being the eigenvector matrix and dn
the eigenvalues and Z (0) is the initial condition. Defining, ξ = X−1 . Z(0), the following
linear system must be solved X ξ = Z (0), were tested different techniques to solving
this linear system.
2.1 Turbulence parameterizations and experimental data

For unstable atmospheric conditions (Degrazia et al., 2001) proposed the
following formulations to the eddy diffusivities, taking into account the pollutant
plume memory effect:

Kα =
0.583w∗ziciψ

2/3(z/zi)
4/3X∗[0.55(z/zi)

2/3 + 1.03c
1/2
i ψ1/3(f ∗

m)
2/3
i X∗]

[0.55(z/zi)2/3(f ∗
m)

1/3
i + 2.06c

1/2
i ψ1/3(f ∗

m)iX
∗]2

where α refers to the x, y and z directions, w∗ is the convective velocity scale, zi is the
convective boundary layer height, ci (cu = 0.3; cv,w = 0.36) is a constant, ψ is the
dissipation function given by

ψ1/3 =

[(
1− z

zi

)2(
z

−L

)−2/3

+ 0.75

]1/2

where z is the height above the ground surface, L is the Monin–Obukhov length, X∗ is
the dimensionless distance. The wind speed profile was described by a wind power law
(Panofsky and Dutton, 1984).

To validate the model under unstable atmospheric conditions, data from the
classic Tank experiment (Misra, 1982) were used. The parameters used are:
Monin–Obukhov length (L = −10 m); convective velocity scale (w∗ = 2m/s); source
intensity (Q = 10 g/s); font height (Hs = 300m); boundary layer height (z = 1150m) and
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wind speed (V = 2.6m/s).
The parameters used to evaluate the performance of the linear system are:

dimensionless distance X∗ = 0.5 and the observed dimensionless pollutant
concentration is 4.90.
2.2 Statistical indexes

Statistical indexes are used to evaluate the model performance in the
representation of the observed data.

The statistical indexes, Normalized Mean Square Error (NMSE), Correlation
Coefficient (COR), Factor of 2 (FA2), Fractional Bias (FB) and Standard Fractional Bias
(FS) are evaluated (Hanna, 1989).
3 RESULTS

As we can see from the table 1, the shortest computational time to simulate the
pollutants dispersion is obtained with the iterative Gauss-Seidel method. Successive
over-relaxation is the method that presents the highest computational time. As
expected, the Jacobi method has a higher computational time when compared with
the Gauss-Seidel method. The LU decomposition and Gauss-Seidel method presents
similar simulation time.
Table 1 – Computational time to simulate the pollutants dispersion

Method Time Concentration at ground level

LU decomposition 15m44.006s 6.210295391310229
Jacobi 16m1.388s 6.210295391310232
Gauss-Seidel 15m41.430s 6.210295391310232
Successive over-relaxation 16m20.570s 6.210299612494771

Sourche: the authors (2024)

The pollutant dispersion problem was investigated considering the
countergradient term. Micrometeorological data from the Tank experiment and eddy
diffusivities proposed by Degrazia (Degrazia et al., 2001) were used. To analyze the
influence of the countergradient term in the turbulent transport simulation, Sk = 0.6

was used (Dop and Verver, 2001).
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Table 2 shows the observed (co) and predicted (cp) pollutants concentration at
ground level.
Table 2 – Observed and predicted pollutant concentration values at ground level
X∗ co cp (Sk = 0) cp (Sk = 0.6)

0.1 0 0.18 0.18
0.2 0.9 2.57 2.61
0.3 4.9 2.60 2.58
0.4 5.9 5.77 5.76
0.5 4.9 6.21 6.21
0.6 4.0 5.56 5.56
0.7 3.2 4.65 4.65
0.8 2.2 3.78 3.79
1.0 1.6 2.45 2.46
1.5 0.9 0.85 0.85

Source: the authors (2024)

The Figure 1 shows the solution convergence considering differents values to the
dimensionless distance. For n = 10 the solution is stable for both cases and we used
this value to evaluate the model statistical performance.

Figure 1 – Solution convergence considering X∗ = 0.4 and co = 5.9 (figure on the leftside) and X∗ = 0.5 and co = 4.9 (figure on the right side)

Source: the authors (2024)
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The statistical evaluation of the present model, considering Sk = 0.0 and Sk = 0.6

(Dop and Verver, 2001) and eddy diffusivities proposed by Degrazia (Degrazia et al., 2001)
is presented in table 3.
Table 3 – Model statistical performance to the Tank experiment, not considering
(Sk = 0) and considering (Sk = 0.6) the skewness term

Simulation NMSE COR FAT2 FB FS

3D-GILTT (Sk = 0) 0.18 0.82 0.80 -0.19 -0.03
3D-GILTT (Sk = 0.6) 0.18 0.81 0.80 -0.19 -0.03
GILTTG 0.30 0.86 0.78 0.31 0.72

Source: the authors (2024)

The figure 2 shows the scattering diagram of the observed and predicted
concentrations by the present model considering the skewness term, for the eddy
diffusivities proposed by Degrazia (Degrazia et al., 2001).
Figure 2 – Scatter diagram of observed (co) and predicted (cp) concentrations by the3D-GILTT method to the Tank experiment and eddy diffusivities proposed by Degrazia(Degrazia et al., 2001)

For Sk = 0.0 (figure on the left side) and Sk = 0.6 (figure on the right side)Source: the authors (2024)

Similar results are obtained considering (Sk = 0.6) and not considering (Sk = 0.0)

the skewness term. In general, the model satisfactorily simulates the observed
concentrations.
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4 CONCLUSIONS

Regardless of the methodology used to solve the linear system, the pollutants
concentration presents similar results and the user can decide which method to use.

The pollutants concentration is satisfactorily simulated considering the
turbulence non-local closure (Sk = 0.6), in comparison with results from the literature.

This solution is the most complete that was obtained using the GILTT method. In
the solution, the countergradient term and longitudinal diffusion are incorporated and
this model is time dependent.

The results were obtained considering Sk = 0.6. As future work, other values
will be tested for the skewness term and other methodologies will be used to the eddy
diffusivities.
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