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ABSTRACT

The asymptotic homogenization method is a mathematical technique that allows studying the physical
properties of a micro-heterogeneous, periodic medium characterized by rapidly oscillating coefficients
through a homogeneous medium that is asymptotically equivalent to the micro-heterogeneous medium.
The method involves constructing a two-scale formal asymptotic solution of the original problem, and by
applying mathematical formalism, a problem is formulated over a homogenized medium known as the
homogenized problem. This work aims to apply this method to a problem for a hyperbolic equation and
demonstrate the proximity between the solutions.
Keywords: Wave equation; Formal asymptotic solution; Asymptotic homogenization method

RESUMO

O metódo de homogeneização assintótica trata-se de uma técnica matemática que permite estudar as
propriedades f́ısicas de um meio micro-heterogêneo, periódico e caracterizado por coeficientes
rapidamentes oscilantes, através de um meio homogêneo que é assintoticamente equivalente ao meio
micro-heterogêneo. O método consiste em construir uma solução assintótica formal em duas escalas
do problema original e, ao aplicar o formalismo matemático, constrõe-se um problema sobre um meio
homogêneo chamado de problema homogeneizado. O presente trabalho tem como objetivo aplicar
este método a um problema para uma equação hiperbólica e demonstrar a proximidade entre as
soluções.
Palavras-chave: Equação da onda; Solução assintótica formal; Método de homogeneização assintótica
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1 INTRODUCTION

A heterogeneous medium is characterized by the variation of its physical
properties throughout its structure. In particular, a periodic medium is characterized
by the composition of its structure through the periodic reproduction of a recurring
element called the basic (or periodicity) cell. In nature, there are several examples of
heterogeneous materials, such as bone and soil. We also find examples for
manufactured materials, such as ceramics and gels (Torquato, 2002). Therefore, the
importance of studying such materials is evident, especially how the interaction
between their physical and geometric properties occurs. One way to approach this is
through the use of the so-called asymptotic homogenization method (AHM)(Bakhvalov
and Panasenko, 1989; Bensoussan et al., 1978; Ciouranescu and Donato, 2000; Tartar,
2009), which is a mathematical tool that allows us to evaluate the physical behavior of
a periodic micro-heterogeneous medium, whose separation of structural scales is
characterized by the small parameter ε > 0. The AHM obtains a two-scale formal
asymptotic solution (FAS) of the exact solution uε of the original problem via the
solution u0 of the problem over the equivalent homogeneous medium and the local
problems over the periodic cell. The justification of AHM, i.e., that u0 is a good
approximation of uε, consists of showing, using the estimate resulting from some
maximum principle suitable for each case, that u0 is an asymptotic expansion (AE) of uε
with respect to the norm of the space in which they are sought, i.e., that
uε − u0 = O(εM), for some M ∈ R∗

+, as ε→ 0+.
And given the versatility and effectiveness of this method, examples of the use

of homogenization theory can be found in various areas, for example: topological
optimization (Bendsøe and Sigmund, 2003; Da, 2019), optimal material design (Ciblac
and Morel, 2014), bone biomechanics (Parnel and Grimal, 2009), structural failure
prediction (Pérez-Fernández and Beck, 2014), seismic wave propagation (Capdville
et al., 010a,0), nuclear reactor physics (Allaire and Bal, 1999; Weston, 2007), transport
of a chemical species (Ng, 2006), fluid mechanics (Dimitrienko, 1997), fracture
mechanics (Dormieux and Kondo, 2016), coupled phenomena analysis (Auriault et al.,
2009), mathematical medicine (Desbrun et al., 2013), and pollutant dispersion (Costa
et al., 2018).

In this current work, we will address the application of the AHM to a problem for
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the wave equation, considering elastic effects. Finally, we will present the
demonstration of the proximity between the solutions of the original and
homogenized problems. This work constitutes an introductory study of wave
phenomena in microstructured media, but differs from other works in the field both in
its different approaches and in its richness in details, as it encompasses all the
fundamental steps of AHM, along with an example, which is also presented in full
detail.
2 METHODOLOGY

2.1 Preliminaries

Lemma: Let F (y) e a(y) be 1-periodic differentiable functions, with a(y) strictly
positive and bounded. A necessary and sufficient condition for a 1-periodic solutionN(y)

of the equation LN = F , with L ≡ d

dy

(
a(y)

d

dy

)
, to exist is that 〈F〉 ≡

∫ 1

0

F (y)dy = 0.
In addition, the solution N(y) is unique up to an additive constant, that is, N(y, C) =

Ñ(y) + C, where Ñ(0) = 0 and C is a constant (Bakhvalov and Panasenko, 1989).
Generalized Maximum Principle for Hyperbolic Equations: Let the generalized

solution u ∈ H1
0 ((0, 1)× (0, T )), (0, 1) ⊂ Rd, of the problem



R(x, t)
∂2u

∂t2
+ S(x, t)

∂u

∂t
− ∂

∂xi

(
Aij(x)

∂u

∂xj

)
+Bi(x, t)

∂u

∂xi
+ A(x, t)u = f(x, t) +

∂fi(x, t)

∂xi
, x ∈ (0, 1) \ Γ , t ∈ (0, T )

u
∣∣
∂(0,1)

= 0 , t ∈ (0, T )

u(x, 0) = ψ1(x) , ψ1(x) ∈ H1
0 ((0, 1))

∂u

∂t
(x, 0) = ψ2(x) , ψ2 ∈ L2((0, 1))

,

where R(x, t) > R0 > 0, S(x, t) > S0 > 0, R0 and S0 are constants. The coefficients Aij

satisfy the symmetry conditions Aij(x) = Aji(x) and positive definiteness Aijηiηj ≥ kηiηj ,
∀η ∈ Rd, with k > 0 constant. For the solution u, the following estimate is valid

Ci. e Nat., Santa Maria, v. 46, n. spe. 1, e87229, 2024



4 | Asymptotic homogenization of a problem for a wave equation on a microperiodic medium

∥u∥H1
0 ((0,1)×(0,T )) ≤ c

(
∥ψ1(x)∥H1

0 ((0,1))
+ ∥ψ2(x)∥L2((0,1)) + ∥f∥L2((0,1)×(0,T ))

+
s∑

i=1

(
∥fi∥L2((0,1)×(0,T )) + max

t∈(0,T )
∥fi∥L2((0,1))

))
, (1)

where c is dependent of T (Bakhvalov and Panasenko, 1989).
2.2 Problem formulation

Consider the problem of mechanical vibrations of a microperiodic string with
Young’s modulus a (x/ε), clamped of both ends with initial displacement p(x), initial
velocity q(x) and body force f(x, t), where uε is the vertical displacement. Furthermore,
it follows that a, p, q and f are differentiable functions and a is ε-periodic, strictly
positive and bounded.

This problem is modeled as for each ε, 0 < ε ≪ 1, find uε ∈ C2((0, 1) × (0, T )) ∩

C1([0, 1]× [0, T ]), solution of the wave equation
Lεuε ≡ ∂2uε

∂t2
− ∂

∂x

(
aε(x)

∂uε

∂x

)
= f(x, t), x ∈ (0, 1) (2)

subject to the boundary conditions
uε(0, t) = uε(1, t) = 0 , t ∈ (0, T ) , (3)
and the initial conditions
uε(x, 0) = p(x) ,

∂uε

∂t
(x, 0) = q(x) , x ∈ (0, 1) , (4)

where the compatibility conditions p(0) = p(1) = 0 must be satisfied.
2.3 AHM aplication

A FAS of the problem defined by Eqs. (2)-(4) is sought as the following asymptotic
expansion of the exact solution uε(x):
u(2)(x, t, ε) = u0(x, y, t) + εu1(x, y, t) + ε2u2(x, y, t) , y =

x

ε
, ε =

1

n
, n ∈ N , (5)
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Machado da Silva, D., Pérez-Fernández, L. D., Molter, A; & Castillero-Bravo. J. | 5

where unknown functions uk, k ∈ {0, 1, 2}, are twice continually differentiable in x, y and
t, and 1-periodic functions in y.

we have, by the chain rule
∂

∂x
≡ ∂

∂x
+ yx

∂

∂y
=

∂

∂x
+ ε−1 ∂

∂y
. (6)

By substituting Eq. (6) into (2), we get
(
∂2

∂t2
− Lxx − ε−1

(
Lxy + Lyx

)
− ε−2Lyy

)
uε = f(x, t) , (7)

where the linear operators Lαβ , α, β ∈ {x, y}, are defined as
Lαβ =

∂

∂α

(
a(y)

∂

∂β

)
, α, β ∈ {x, y} .

By substituting Eq. (5) into Eq. (7),we obtain
(
∂2

∂t2
− Lxx − ε−1

(
Lxy + Lyx

)
− ε−2Lyy

)
(u0 + εu1 + ε2u2) = f(x, t) . (8)

Rearranging the terms by powers of ε into Eq. (8) , it is obtained that
(−Lyyu0)ε

−2 + (−Lxyu0 − Lyxu0 − Lyyu1)ε
−1

+

(
∂2u0
∂t2

− Lxxu0 − Lxyu1 − Lyxu1 − Lyyu2 − f(x, t)

)
ε0 = O(ε) .

So, in order to ensure the existence of the FAS in Eq. (5) of the problem in Eqs.
(2)-(4), it is necessary to ensury the existence of solutions uk, k ∈ {0, 1, 2}, 1-periodic in y

for the following recurrence of differential equations for (x, y, t) ∈ (0, 1)× (0, n)× (0, T ):

ε−2 : Lyyu0 = 0 ,

ε−1 : Lyyu1 = −Lxyu0 − Lyxu0 ,

ε0 : Lyyu2 =
∂2u0
∂t2

− Lxxu0 − Lxyu1 − Lyxu1 − f(x, t) .

(9)

Note that the differential equations in Eq. (9) are of the form Lyyuk = F . Thus,
considering x and y mutually independent variables, we can use the lemma in
Subsection 2.1, for each x fixed, taking L ≡ Lyy and N ≡ uk.
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Applying the Lemma for the first equation in Eq. (9) with N ≡ u0 and F ≡ 0, it can
be concluded that the existence of solution u0 1-periodic in y is guaranteed and also u0

does not depend on y, i.e., u0 = u0(x).
So, the second differential equation in Eq. (9) is rewritten as

Lyyu1 = −da
dy

∂u0
∂x

. (10)
By applying the Lemma, it can be concluded that the existence of solution u1 1-

periodic in y is guaranteed, observing that
〈
−da
dy

∂u0
∂x

〉
= −∂u0

∂x

∫ 1

0

da

dy
dy = 0 ,

due to the 1-periodicity of a(y) inherited from ε-periodicity of a(x
ε

). Then, the structure
of the right-hand side of Eq. (10), we suppose
u1(x, y, t) = N1(y)

∂u0
∂x

, (11)
where N1 is 1-periodic.

Note that by substituting Eq. (11) into Eq. (10) and assuming that ∂u0
∂x

̸= 0, it is
obtained that N1 is the 1-periodic solution of the so-called first local problem defined by
the equation
d

dy

(
a(y) + a(y)

dN1

dy

)
= 0 , (12)

subject to the condition N1(0) = 0.
So it can be concluded that

N1(y) =

∫ y

0

(
â

a(s)
− 1

)
ds , (13)

where â = ⟨(a(y))−1⟩−1 is the so-called effective coefficient.
Finally, by applying the Lemma to the third equation in Eq. (9), using the

independence of u0 with respect to y and taking into account Eq. (11), we obtain that
the condition for the existence of a 1-periodic solution u2 in y is that u0 should be the
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solution of the so-called homogenized problem defined by the equation
L0u0 ≡

∂2u0
∂t2

− â
∂2u0
∂x2

= f(x, t) , (14)
subject to the initial and boundary conditions obtained by substituting the FAS in Eq.(5),
the conditions of the original problem.

Therefore, considering u0 as the solution of the homogenized problem, we have
that the equation for u2 in (9) can be rewritten as
Lyyu2 = − d

dy
(a(y)N1(y))

∂2u0
∂x2

, (15)
for which, considering the structure of the right-hand side, we assume that

u2(x, y, t) = N2(y)
∂2u0
∂x2

, (16)
where N2 is 1-periodic.

Substituting Eq. (16) into Eq. (15) and assuming that ∂2u0
∂x2

̸= 0, it is obtained that
N2 is the 1-periodic solution of the so-called second local problem defined by the equation

d

dy

(
a(y)N1(y) + a(y)

dN2

dy

)
= 0 , (17)

subject to the condition N2(0) = 0, so it can be concluded that
N2(y) =

∫ y

0

(
â⟨N1(y)⟩
a(s)

−N1(s)

)
ds . (18)

Therefore, from Eqs. (5), (11) and (16), we have the follow expression for the FAS
u(2)(x, t, ε) = u0(x, t) + εN1

(x
ε

) ∂u0
∂x

+ ε2N2

(x
ε

) ∂2u0
∂x2

. (19)
So, the FAS for the problem in Eqs. (2)-(4) is given by Eq. (19), in which N1 and N2

are given by Eqs.(13) and (18), respectively, and u0 is the solution of the homogenized
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problem, defined by


∂2u0
∂t2

− â
∂2u0
∂x2

= f(x, t), x ∈ (0, 1) , t > 0

u0(0, t) = u0(1, t) = 0

u0(x, 0) = p(x) ,
∂u0
∂t

(x, 0) = q(x)

. (20)

2.4 Proximity relation

To demonstrate the proximity between the solutions uε of the original problem
and u0 of the homogenized problem, we use the maximum principle for hyperbolic
equations in Subsection 2.1 (Bakhvalov and Panasenko, 1989). However, we cannot
consider the estimate in Eq. (1) immediately, as the problems were defined in terms of
different operators, Lε and L0, respectively, according to Eqs. (2) and (14). To overcome
this, we consider an auxiliary problem based on the FAS
u(1)(x, t, ε) = u0(x, t) + εN1

(x
ε

) ∂u0
∂x

, (21)
obtained from Eq. (19), considering N2 ≡ 0.

By using Eqs. (2), (12), (14) and (17) and considering y =
x

ε
, we obtain that the

expression for the error Lεu(1)− f committed when approximating the exact solution uε
of the original problem in Eqs. (2)-(4) with the FAS u(1) in Eq. (21) is given by
Lεu(1) − f(x, t) = ε

(
N1(y)

∂3u0
∂t2∂x

−N1(y)a(y)
∂3u0
∂x3

)
≡F ε, (x, t)∈(0, 1)×(0, T ). (22)

Evaluating Eq. (21) at x ∈ {0, 1} and considering Eq. (20), we obtain the boundary
and initial conditions for the FAS u(1):
u(1)(0, t, ε) = u(1)(1, t, ε) = 0, u(1)(x, 0, ε) = p(x),

∂u(1)

∂t
(x, 0, ε) = q(x). (23)

Therefore, it is obtained the following problem for the FAS u(1) defined in terms
of the operator Lε of the original problem in Eqs. (2)-(4):
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Machado da Silva, D., Pérez-Fernández, L. D., Molter, A; & Castillero-Bravo. J. | 9


Lεu(1) = F ε + f(x, t), x ∈ (0, 1) , t > 0

u(1)(0, t, ε) = u(1)(1, t, ε) = 0

u(1)(x, 0, ε) = p(x),
∂u(1)

∂t
(x, 0, ε) = q(x)

. (24)

Thus, note that by subtracting the problem in Eq. (24) from the original problem
in Eqs.(2)-(4), we obtain the following problem:
Lε(uε − u(1)) = −F ε, x ∈ (0, 1) , t > 0

uε(0, t)− u(1)(0, t, ε) = uε(1, t)− u(1)(1, t, ε) = 0

uε(x, 0)− u(1)(x, 0, ε) = 0,
∂uε

∂t
(x, 0)− ∂u(1)

∂t
(x, 0, ε) = 0

. (25)

Applying the estimative in Eq.(1) in the problem into Eq. (25), we have the following
estimate for uε − u(1):
∥uε − u(1)∥H1

0 ((0,1)×(0,T )) ≤ c(T )∥F ε∥L2((0,1)×(0,T )) . (26)
As we use the norm of the space L2((0, 1)× (0, T )), we have from Eq. (22) that

∥F ε∥2L2((0,1)×(0,T )) = ε2
∫ T

0

∫ 1

0

(
N1(y)

∂3u0
∂t2∂x

−N1(y)a(y)
∂3u0
∂x3

)2

dx dt . (27)
Moreover, we have that

(
N1(y)

∂3u0
∂t2∂x

−N1(y)a(y)
∂3u0
∂x3

)2

=

∣∣∣∣N1(y)
∂3u0
∂t2∂x

−N1(y)a(y)
∂3u0
∂x3

∣∣∣∣2
≤
(∣∣∣∣N1(y)

∂3u0
∂t2∂x

∣∣∣∣+ ∣∣∣∣N1(y)a(y)
∂3u0
∂x3

∣∣∣∣)2

.

Assuming that u0(x, t) ∈ C3([0, 1]) for all t ∈ [0, T ] and that u0(x, t) ∈ C2([0, T ]) for all
x ∈ [0, 1], it follows from the Weierstrass Theorem (Lima, 2018) that there exist constants
A1, A2 > 0, such that∣∣∣∣ ∂3u0∂t2∂x

∣∣∣∣ ≤ A1 ,

∣∣∣∣∂3u0∂x3

∣∣∣∣ ≤ A2 .
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Then, it follows that
(
N1(y)

∂3u0
∂t2∂x

−N1(y)a(y)
∂3u0
∂x3

)2

≤ A2N2
1 (y) (a(y) + 1)2 , (28)

where A = max{A1, A2}.
From Eqs. (27) e (28), we obtain

∥F ε∥2L2((0,1)×(0,T )) ≤ ε2A2

∫ T

0

∫ 1

0

N2
1 (y)

(
a(y) + 1

)2
dx

= ε2A2T

∫ 1

0

N2
1 (y)

(
a(y) + 1

)2
dx

= ε2A2T

∫ 1

0

N2
1

(x
ε

)(
a
(x
ε

)
+ 1
)2
dx . (29)

Being N1

(x
ε

)
, a
(x
ε

)
∈ C([0, ε−1]), again by the Weierstrass Theorem, it follows

that there exist constants B1, B2 > 0 such that
∣∣∣N1

(x
ε

)∣∣∣ ≤ B1 ,
∣∣∣a(x

ε

)∣∣∣ ≤ B2 .

Thus, by Eq. (29) we have

∥F ε∥2L2((0,1)×(0,T )) ≤ ε2A2TB4

∫ 1/ε

0

dx = B4A2Tε,

where B = max{B1, B2}, and so, it follows that
∥F ε∥L2((0,1)×(0,T )) ≤

√
T
√
εAB2 . (30)

Defining c(T ) = √
T for some T > 0, we have from Eqs. (26) and (30) that

∥uε − u(1)∥H1
0 ((0,1)×(0,T )) ≤

√
εAB2 =⇒ ∥uε − u(1)∥H1

0 ((0,1)×(0,T )) = O(
√
ε) . (31)

Similarly, it is shown that
∥u(1) − u0∥H1

0 ((0,1)×(0,T )) = O(
√
ε) . (32)
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Then, from Eqs. (31)and (32), it can be concluded
∥uε − u0∥H1

0 ((0,1)×(0,T )) = ∥uε − u(1) + u(1) − u0∥H1
0 ((0,1)×(0,T ))

≤ ∥uε − u(1)∥H1
0 ((0,1)×(0,T )) + ∥u(1) − u0∥H1

0 ((0,1)×(0,T ))

= O(
√
ε) +O(

√
ε) = O(

√
ε) . (33)

Therefore, by Eq. (33), it follows that u0 is an AE of uε.
3 NUMERICAL EXAMPLE

To illustrate the effectiveness of the method, along with the formal proof, consider
a problem for the wave equation in (2) with coefficient a(x

ε

)
= 1+ 0.25 cos

(
2πx

ε

)
, body

fource f(x, t) = e−t and subject to homogeneous boundary and initial conditions
uε(0, t) = 0, uε(1, t) = 0

uε(x, 0) = 0,
∂uε

∂t
(x, 0) = 0

.

The figures below illustrate the surfaces for the solution of the original problem,
the homogenized problem solution, the first and second order FAS, as well as presenting
the absolute errors between the exact solution and the obtained approximations, given
decreasing values of the small parameter. Additionally, graphs for the solutions of the
local problems N1(y) and N2(y) are presented, respectively. It’s possible to visualize the
proximity between the solutions of the problems, meaning that as ε → 0+, the solution
of the original problem converges to the solution of the homogenized problem.
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12 | Asymptotic homogenization of a problem for a wave equation on a microperiodic medium

Figure 1 – Behavior of the solutions of the original and homogenized problems, theFAS, the absolute error of each approximation, and the solutions of the local problemsfor ε = 1/2

Source: the authors (2024)

Figure 2 – Behavior of the solutions of the original and homogenized problems, theFAS, the absolute error of each approximation, and the solutions of the local problemsfor ε = 1/4

Source: the authors (2024)
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Figure 3 – Behavior of the solutions of the original and homogenized problems, theFAS, the absolute error of each approximation, and the solutions of the local problemsfor ε = 1/8

Source: the authors (2024)

Figure 4 – Behavior of the solutions of the original and homogenized problems, theFAS, the absolute error of each approximation, and the solutions of the local problemsfor ε = 1/16

Source: the authors (2024)
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4 CONCLUSIONS

The example presented illustrates that the AHM is a good alternative for dealing
with problems whose structure is micro-heterogeneous, with coefficients oscillating
rapidly. In fact, traditional approaches like the finite difference method would imply
very fine meshes, given the purpose of capturing this rapidly oscillating behavior of the
coefficients. This represents a high computational cost, which can interfere with the
convergence of the solution. One advantage of using AHM is that, at least in structure,
obtaining the solution of the homogenized problem is simpler to achieve, given that it
presents constant coefficients. This arises from the respective problems presented in
Eqs. (2) and (20).

Analyzing the presented graphs, it becomes evident that as the small parameter
decreases, the second-order FAS becomes a better approximation of the original
problem solution, as it provides more information about the problem’s microstructure.
In general, it shows that the three obtained approximations provide satisfactory
results as ε→ 0+.
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