CIENCIA'NATURA

"
' | — ulh‘
1£,

4
SEDES SAPIENT]
T T &

o7

CIENCIAtNATURA

UFSM 55N 2175.460¢

OPEN (5) ACCESS

Ci. e Nat., Santa Maria, v. 46, n. spe. 1, 87225, 2024 « https://doi.org/10.5902/2179460X87225
Submitted: 03/22/2024 « Approved: 06/25/2024 « Published: 11/07/24

ERMAC e ENMC

The Salzer Summation and the numerical inversion of the
Laplace Transform: performance analysis for oscillatory,

exponential and logarithmic functions

A Soma de Salzer e a inversao numérica da Transformada de Laplace: analise de
desempenho para fung¢des oscilatorias, exponenciais e logaritmicas

Renan de Almeida Schmidt '¢2, Murilo da Cunha Paz '(?,
Barbara Denicol do Amaral Rodriguez'(?, Jodo Francisco Prolo Filho" (),

'Programa de Pés-Graduacdo em Modelagem Computacional, Universidade Federal do Rio Grande, Rio
Grande, Rio Grande do Sul, RS, Brasil
"Programa de P6s-Graduacdo em Engenharia Oceanica, Universidade Federal do Rio Grande, Rio
Grande, Rio Grande do Sul, RS, Brasil

ABSTRACT

This article presents a study of the Salzer Summation, a technique for the numerical inversion of the
Laplace Transform, applied to the inversion of five elementary functions with different behaviors: two
oscillatory, two exponential and one logarithmic. Three of the functions studied have a variable
parameter « (factor incorporated to investigate the efficiency of the method in dealing with functions of
the same class). The algorithm'’s performance was analyzed for each value of M (number of terms in the
sum) and parameter a chosen, through the Mean Absolute Error, graphical representation and
execution times approximate. For the set of five functions presented (and for each a), the optimal value
of M was determined. It was found that a does not significantly influence the execution time, unlike the
parameter M, which directly interferes. Also, it was concluded that for oscillatory functions, the method
presents convergence difficulties as the frequency increases.

Keywords: Laplace Transform; Laplace Inverse Transform; Gaver Functionals; Salzer Summation;
Numerical methods

RESUMO

Neste artigo apresenta-se um estudo da Soma de Salzer, uma técnica para a inversdo numeérica da
Transformada de Laplace, aplicada na inversdo de cinco fun¢bes elementares com comportamentos
diferentes: duas oscilatérias, duas exponenciais e uma logaritmica. Trés das func¢bes estudadas
possuem um coeficiente variavel a (fator incorporado a fim de investigar a eficiéncia do método em lidar
com funcdes da mesma classe). O desempenho do algoritmo foi analisado, para cada valor de M
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(nimero de termos no somatério) e parametro a escolhidos, através do Erro Absoluto Médio, da
representacdo grafica e dos tempos de execuc¢do aproximados. Para o conjunto de cinco fun¢bes
apresentado (e para cada a), foi determinado o valor 6timo de M. Constatou-se que a nao influencia de
maneira relevante o tempo de execuc¢do, ao contrario do parametro M, que interfere diretamente.
Também concluiu-se, que para fun¢8es oscilatérias, o método apresenta dificuldades de convergéncia
na medida que a frequéncia aumenta.

Palavras-chave: Transformada de Laplace; Transformada Inversa de Laplace; Funcionais de Gaver;
Soma de Salzer; Métodos numeéricos

1 INTRODUCTION

In Science and Engineering, several mathematical models, such as the Heat
Equation, Maxwell's Equations and the Equation of the Wave, are represented by
Partial Differential Equations (PDEs). This type of equation can be solved analytically,
using techniques such as the Variable Separation Method (Boyce and DiPrima, 2001),
or numerically, through methods such as Finite Differences (Chapra and Canale, 2011).
Another way to solve a PDE analytically is through the use of Integral Transforms,
including the Laplace Transform.

Laplace Transform is a mathematical technique used to transform functions in
time domains into functions in frequency (also called spectral) domains (Irwin, 2000). It
has been widely applied in solving physical problems whose mathematical models are
constituted by PDEs, among them, analysis of dynamic systems, such as electrical,
mechanical and control (De Silva, 2023), as well as the study of filters and noise
elimination (Buttkus, 2000).

Numerous problems require determining the solution in the time domain (Schiff,
2013). In these cases it is necessary to do the “way back”, that is, transforming a function
into the frequency domain into a function in the time domain. For this, it is needed to

calculate the integral:

f(t) L/()F(s)e“ds, (1)

= om

where F(s) is a function that depends on s, a complex variable, and C is a carefully
chosen contour (Bellman et al., 1996). Solving the integral in (1) can become very
laborious for highly complex functions, making it impossible to obtain an analytical

solution, or even, depending on the type of problem addressed, even impossible
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(Wang et al., 2017). For this reason, numerical methods for calculating the Inverse
Laplace Transform become necessary. Several techniques have been developed to
perform numerical shape inversion (Cohen, 2007), some of them are based on the
deformation of the Bromwich contour and others apply the Fourier Series (Davies and
Martin, 1979). Also noteworthy are the algorithms based on the Post-Widder Formula
(Abate and Valko, 2004); (Zakian, 1969), including the Gaver Functionals (Gaver, 1966).

Gaver Functionals are used to calculate the Inverse Laplace Transform
numerically, however, their convergence is slow, requiring an acceleration scheme
(Abate and Valko, 2004). Among such schemes, Salzer Summation stands out, a linear
acceleration method used in the Gaver-Stehfest algorithm (Stehfest, 1970).

Researchers, such as Abate and Valké (2004), present five accelerators for Gaver
Functionals and analyze their performance when applied to a set of elementary
functions. In their studies, they evaluate that only the Wynn Rho Algorithm, among the
schemes presented, is superior to the Salzer Summation. Dempsey and Duffy (2007)
apply the Salzer Summation to solve a model on the acceleration and simultaneous
radiative losses of electrons in the vicinity of relativistic shocks. Defreitas and Kane
(2022) analyze the performance of five algorithms for the numerical inversion of the
Laplace Transform: the expansion in Fourier Series, the Talbot Method with the
contour deformation proposed by Valk6 and Abate (2004), the Salzer acceleration
scheme and the Stehfest accelerator for Gaver Functionals.

Within this context, and with the expectation of diversifying the applicability of
the Salzer Summation in the numerical inversion of the Laplace Transform, this article
presents a study on this technique when applied to a set of five elementary functions
with different behaviors: two oscillatory, two exponential and a logarithmic one.
Among the functions studied, three have a variable parameter «, a factor incorporated
in order to investigate the efficiency of the method in dealing with functions of the
same class. The study of the influence of this factor on the inversion process is
important, as it determines the performance of the algorithm for "extreme” behaviors,
such as high frequencies or fast decays, cases presented in this work. Although the
Salzer Summation is a simple and easy to implement technique, no references were
found in the literature on the performance analysis of this technique for the Inverse

Laplace Transform considering the incorporation of variable parameters.
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To achieve the proposed objectives, this article is organized as follows: in section
2, the Gaver Functionals and the Salzer Summation are defined; in section 3, the set of
elementary functions, the definition of the Mean Absolute Error, the results obtained
and an analysis of the data are presented. Finally, in section 4, paper’s conclusion and

the proposal for continuity are discussed.

2 SALZER SUMMATION

There are many methods to solve the problem of numerical inversion of the
Laplace Transform (Cohen, 2007). According to Abate and Valké (2004), one of the
most powerful and proven methods, the Gaver-Stehfest, involves using the so-called

Gaver Functionals, which are given by

k

ey = (e () arrten) =k 30 () Ptk ), @

Jj=0

In(2)

where 7 = — and A is the forward difference operator, that is,

AF(nt) = F((n+ 1)) — F(nT). (3)

The Gaver Functionals are derived from the Post-Widder Formula, where the
derivatives are replaced by the difference operator (Adamek et al., 2017). The main
advantages of using these functionals to numerically calculate the Inverse Laplace
Transform are that the functionals depend only on F' and do not have complex factors.
However, it has the disadvantage of the logarithmic behavior of its convergence (Abate
and Valko, 2004). According to Valké and Abate (2004), the Salzer Summation is a linear
method to solve the problem of numerical inversion of the Laplace Transform, through
the acceleration of the Gaver Functionals. Salzer Summation consists of fitting a
Lagrange polynomial in 1/s to the transform of the function and inverting the
polynomial term by term. The polynomial is fitted to the values of the transform at
equal intervals along the positive real axis of the complex plane (Shirtliffe and

Stephenson, 1961). Salzer's Summation expression for f is given by
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M
F(8, M) = Wy filt), (4)
k=1

where f; is the Gaver Functional and the weights 1, are given by

EM M
W= (e <k> (5)

3 RESULTS

In this section, the performance of the Salzer Summation method in the numerical
inversion of five elementary functions, presented in Table 1, where ~ is Euler's constant,
is analyzed. The results were obtained on a Dell Inspiron 15 700 Gaming notebook,
with an Intel Core i5-7300HQ processor with 2.50GHz CPU, and 8 GB RAM, using the
Octave software version 7.3.0. The parameter values chosen for the simulations were
a={1, 3, 10, 20}, M € Nfrom1to14,¢ € [107°, 1] with 101 points. Itis worth highlighting

that although results are shown up to M = 14, tests were carried out for M up to 20.

Table 1 - Laplace Transform for elementary functions

F(s) f(t)
1 —t
Fl(S) = ($—|—1)2 fl(t) =te
Fy(s) = i ~ £2(t) = sin (at)
Fs(s) = (382 ;;)2 f3(t) = tcos (at)
Ao =2 @ =y
Fifs) = - i - Folt) = eat

Source: the authors (2024)

The functions F; and F; were chosen because of its exponential behavior, F;, and F3
for its oscillatory behavior and F; for its logarithmic one. Three of the five functions
also have a variable parameter a, which was incorporated to analyze the performance
of the method for high frequencies, for oscillatory functions, and for high decays, for

exponential functions.
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The metric used to evaluate the method's performance was the Mean Absolute

Error, which is defined here, as previously used in Calixto et al. (2022), as follows

_ 1 & .
Eaps = N, ; | f(t;) — f*(t:) | ,onde t; € R, (6)

where f is the inverse of the Laplace Transform of the function F, f* the numerical
approximation of the inversion of F and N, € N the number of points ¢; used in

generating the profiles.
3.1 Function Inversion I}

The Figure 1 and the Table 2 present the tests for the numerical inversion of the

Laplace Transform for the function Fi(s) = as well as their approximate

1
(s + 1)

execution time.

Figure 1 - Results for the Salzer Summation in the inversion of F}

F1

Source: the authors (2024)

The optimal value for M in the inversion process of this function is 9. From values

between M = 7 and M = 10, the Mean Absolute Errors vary between 10~% to 10~".
3.2 Function Inversion F,

Figures 2 - 5 and Tables 3 and 4 show the tests for the numerical inversion of the

Laplace Transform of the function Fy(s) = % as well as their approximate execution
S a

time.
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Table 2 - Mean Absolute Errors and Approximate Execution Time in seconds, from F}
to the Salzer Summation

M Eops Approximate Execution Time (s)
1 6.1818429x1072 0.1
2 1.3917656x 102 0.1
3 2.6828041x1073 0,2
4 4.3557818x10~* 0.4
5 6.1282257x107° 0.5
6 7.2115268x107° 0.6
7 7.2732971x1077 0.7
8 6.3724613x1078 0.9
9 4.8901254x1078 1.1
10 9.2047346x1077 1.3
11 1.4753147x107° 1.5
12 2.8369893x10~* 1.7
13 6.7047862x1073 2.0
14 1.2350562x 10! 2.2

Source: the authors (2024)

Figure 2 - Results of the Salzer Summation in the inversion of Fy, witha =1

F2 (a=1)

=
- © N =

-
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-
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Source: the authors (2024)
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Figure 3 - Results of the Salzer Summation in the inversion of £y, witha =3

F2 (a=3)

% Mg — (1)

1F T T

02F o

0.2 0.4 0.6 0.8 1

Source: the authors (2024)

Figure 4 - Results of the Salzer Summation in the inversion of Fy, with a = 10

F2 (a=10)

Ci. e Nat., Santa Maria, v. 46, n. spe. 1, 87225, 2024



Schmidt, R. A., Paz, M. C,, Rodriguez, B. D. A., & Filho. ). F. P.| 9

Figure 5 - Results of the Salzer Summation in the inversion of Fy, with a = 20

F2 (a=20)
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Table 3 - Mean Absolute Errors of F, for the Salzer Summation with a = {1, 3, 10, 20}

M a=1 a=3 a=10 a =20

1 1.6172534x107!  4.3551024x10~!  5.5096434x10~! 5.9744862x10~*
2 9.1215365x1072  2.8533410x10"*  4.9425004x10"' 5.6812802x10~!
3 3.2546830x10"2  1.8189732x10~! 4.3336906x10~! 5.3812970x10°!
4 4.2150094x107*  1.0410129x10~!  3.6971055x10"* 5.0786677x10~!
5 1.5046914x1072 4.8076472x102  3.0722851x10"!  4.7851421x107!
6 2.2872069x10"*  1.7103246x10"% 2.4877616x10"! 4.4864223x10~!
7 3.6048750x107°  6.8412845x10~% 1.9703902x10~! 4.1923322x107!
8 6.9730622x107% 3.8356610x107%  1.5200560x10~!  3.8912729x107!
9 6.3555541x10"7  1.1286617x1073  1.1483981x10"! 3.5961890x10~!
10 1.0828891x10°%® 2.6792442x10~* 8.5117084x10"2  3.2875391x107!
11 1.5575768x107° 1.6196967x10~* 6.2515480x1072  2.9703053x10~*
12 2.9543060x10~%  8.2125302x10~*  4.7574220x10"2 2.6597426x107!
13 6.5414149x1072  1.9634249x1072 6.0908904x10"2 2.5404514x107!
14 1.3530852x10"!  3.7512292x10~! 9.3379220x10~'  1.2517640x10°

The optimal values obtained for M varied between 9 and 13 and the Mean
Absolute Errors were between 10~ and 107! (except when a = 1). It was found that as
the value of parameter « increases (consequent increase in the oscillation frequency)

the value of the optimal M and the Mean Absolute Errors also increase.
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Table 4 - Approximate execution times (in seconds) of the inversion of F, by the Salzer
Summation with « = {1, 3, 10, 20}

M a=1 a=3 a=10 a=20
1 0.1 0.1 0.1 0.1
2 0.1 0.1 0.1 0.1
3 0.2 0.2 0.2 0.2
4 0.3 0.3 0.3 0.3
5 0.5 0.5 0.5 0.5
6 0.6 0.6 0.6 0.6
7 0.7 0.7 0.7 0.7
8 0.9 0.9 0.9 0.9
9 1.1 1.1 1.1 1.1
10 1.3 1.3 1.3 1.3
11 1.5 1.5 1.5 1.5
12 1.7 1.7 1.7 1.7
13 2.0 2.0 2.0 2.1
14 2.4 2.4 2.2 2.2

3.3 Function Inversion F;

Figures 6 - 9 and Tables 5 and 6 present the tests for the numerical inversion
s2 — g2

a . .
5, as well as its approximate

of the Laplace Transform of the function F3(s) =
execution time.

The optimal values for M varied between 10 and 14 for the different values of q,
with Mean Absolute Errors between 10~* and 10! (with the exception of a = 1). It was
also observed that with the increase in the value of a there was also an increase in the

value of the optimal M and the Mean Absolute Error.
3.4 Function Inversion F,

In Table 7 and Figure 10, there are tests for the numerical inversion of the Laplace
, 1 : : L
Transform of the function Fj(s) = —&, as well as their approximate execution time.
S
The optimal value for M obtained for this function is 8. Between M =5 and M = 10, the

Mean Absolute Errors are between 10~° and 10~7.
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Figure 6 - Results of the Salzer Summation in the inversion of F3, with a =3

F3 (a=1)

I - sl | — 1(t)

05

0.8 1

Source: the authors (2024)

Figure 7 - Results of the Salzer Summation in the inversion of F3, witha =3

F3 (a=3)

Source: the authors (2024)

3.5 Function Inversion Fj

Figures 11 - 14 and Tables 8 and 9 show the tests for the numerical inversion
of the Laplace Transform of the function F5(s) = SJ%G as well as their approximate
execution time.

The optimal values for M varied between 8 and 9 for different values of «, resulting
in profiles with Mean Absolute Errors between 107% and 107%. It was also verified that

increasing the value of the parameter « implies in an increase in the Mean Absolute
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Figure 8 - Results of the Salzer Summation in the inversion of Fj, with a = 10

F3 (a=10)

Source: the authors (2024)

Figure 9 - Results of the Salzer Summation in the inversion of Fj;, with a = 20

F3 (a=20)

0.5

X ook
s

_05 -

0.2 0.4 0.6 0.8 1

Source: the authors (2024)

Error.
3.6 General Analysis of Results

The results obtained validate the implemented algorithm, showing that the
Salzer Summation can be used as an approximation for the Inverse Laplace Transform,
generating results for 101 points in less than 3 seconds. The Table 10 shows the order

of the Mean Absolute Errors for each optimal M in each parameter.
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Table 5 - Mean Absolute Errors of the inversion of F3 by the Salzer Summation with
a={1, 3, 10, 20}

a=1

a=3

a=10

a =20

CoONOUAWN=|Z

4.6120171x107*
1.7496329x 107!
8.6856647 %1072
3.0799947 x 1072
4.1845241x1073
1.8660826x1073
1.6287479x10~*
6.1561883x107°
4.5299109% 1076
1.8971494x 1075
1.5198850x107°
2.7326679x107*
6.4198169x1073
1.3974708x 107!

3.0990295x107!
2.6035701x10~!
1.8294133x 107!
1.1743898x 101
9.0083395x1072
5.4728659x1072
2.0979460x102
7.3488411x1073
4.4839409x 1073
1.2985203x 1073
3.4723285x10~*
3.6306540x 1074
6.1975035x1073
1.3123718x 107!

3.3607875x107!
3.2950155x10~!
3.1652144x10~!
2.9732729x107!
2.7238610x107!
2.4341184x107!
2.1182811x107!
1.7958042x 107!
1.4764983x 107!
1.1697789x 107!
8.8611543x1072
6.3819837x1072
4.4926194x1072
9.0757997x10~

3.2557774x107!
3.2388590x 107!
3.2053194x107!
3.1602780x107!
3.1000520x107!
3.0251396x107!
2.9343018x107!
2.8332236x107!
2.7159759x10~!
2.5807977x107!
2.4232606x107!
2.2480385x107!
2.0653632x107!
2.0564736x107!

Table 6 - Approximate execution time (in seconds) of the inversion of F3 by the Salzer
Summation with « = {1, 3, 10, 20}

M a=1 a=3 a=10 a=20
1 0.1 0.1 0.1 0.1
2 0.1 0.1 0.1 0.1
3 0.2 0.2 0.2 0.2
4 0.3 0.3 0.3 0.3
5 0.5 0.5 0.5 0.5
6 0.6 0.6 0.6 0.6
7 0.8 0.8 0.8 0.8
8 0.9 0.9 0.9 0.9
9 1.1 1.1 1.1 1.1
10 1.3 1.3 1.3 1.3
11 1.5 1.5 1.5 1.5
12 1.8 1.7 1.7 1.7
13 2.0 1.9 2.0 2.0
14 2.2 2.2 2.2 2.2

The Salzer Summation has a behavior of convergence to the optimal M, that is,
starting with M = 1, the Mean Absolute Error decreases to a minimum value, after this
value of M (which was called M optimal) the Mean Absolute Error grows indefinitely.
For all functions tested using the established parameters, it was found that, for M > 15,
the Mean Absolute Errors grow indefinitely, that is, the approximation becomes

increasingly distant from the analytical result. This distancing occurs more intensely
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14 | The Salzer Summation and the numerical inversion of the Laplace Transform: performance analysis.

Table 7 - Mean Absolute Errors and Approximate Execution Time (in seconds) of the
inversion of F, by the Salzer Summation

M FEope Approximate Execution Time (s)
1  4.8244444x10! 0.1
2 3.8414360x1072 0.1
3 1.0787230x1073 0.2
4 1.8150750x10~* 0.4
5 2.1756048x107° 0.5
6 3.9447587x1077 0.6
7 2.8912523x1077 0.8
8 1.1887447x107" 0.9
9 2.1241095x10°° 1.1
10 4.5736268x107° 1.3
11 9.6545227x10~* 1.5
12 1.9470304 %1072 1.7
13 4.2628462x107! 2.0
14 9.7173020x10° 2.2

Figure 10 - Results for the Salzer Summation in the inversion of F;

F4
0r PN A AR T e e s

—
=

o o =

e
o

o
1
=T 222

I I [ [ ]

-
S

-20 F -

0.2 0.4 0.6 0.8 1

Source: the authors (2024)

for functions with a trigonometric character (such as, for example, functions that have
sines or cosines) when frequencies increase.

As for the influence of « and M on execution time, it was observed that « does not
significantly interfere on execution time. However, the increase in the M parameter is
directly proportional to the increase in execution time. It is also worth highlighting that

there was no significant difference in time between the functions studied.
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Table 8 - Mean Absolute Errors of the inversion of F5 by the Salzer Summation with
a={1, 3, 10, 20}

a=1

a=3

a=10

a =20

rRh 2oV NOURWN |

1.4610357x107*
2.2824012x1072
2.8233266x1073
3.0342846x10~*
3.0326244x107°
2.8688662x10~°
2.2959137x1077
3.4824247x107®
6.3434324x1077
1.2244549x 1075
2.3891850x10~*
4.6274079x1073
9.9498671x1072
1.3974708x10°

7.6432746x1072
1.5333670x 102
3.5571406x1073
8.5811114x10~*
1.8963669x 1074
3.7053095x107°
6.4182457x10~°
1.0058196x107°
6.3531044x1077
1.1277238x107°
2.1111313x107*
4.9586840x 1073
1.0605572x 107!
2.1878647 x10°

3.2932203x10°2
1.0198904x 102
2.7411819x1073
9.4706238x10~*
3.0083795x10~*
7.5749026x107°
2.2613279x107°
7.3873202x107°
2.3917821x107
1.0997507x 1075
2.0172039x10~*
4.1946608x 103
8.0893070x1072
1.5313168x10°

1.8360592x 102
5.3628679x1073
1.9094506x 103
6.0816566x 10~
2.0954542 %10~
7.4645392x107°
2.2344041x107°
7.9838949x107°
2.7447051x107
8.1281876x107°
1.5872294x10~4
3.3405586x107°
6.4701295x1072
1.3035556x 10°

Table 9 - Approximate execution time (in seconds) of the inversion of F; by the Salzer

Summation with a = {1, 3, 10, 20}

4 CONCLUSIONS

M a=1 a=3 a=10 a=20

1 0.1 0.1 0.1 0.1
2 0.2 0.2 0.2 0.2
3 03 0.3 0.3 0.3
4 05 0.5 0.5 0.5
5 0.6 0.6 0.6 0.6
6 0.8 0.8 0.8 0.8
7 1.0 1.0 1.0 1.0
8 1.2 1.2 1.2 1.2
9 14 1.5 1.5 1.4
10 1.7 1.7 1.7 1.7
1 1.9 1.9 1.9 1.9
12 2.2 2.2 2.2 2.2
13 25 2.5 2.5 2.5
14 2.7 2.8 2.8 2.7

In this work, an analysis of the performance of the Salzer Summation in the
inversion of oscillatory, exponential and logarithmic functions was presented. The
influence of the parameters M and a on the performance of the method was verified,

both through the Mean Absolute Error and graphical representation, as well as the
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Figure 11 - Results of the Salzer Summation in the inversion of F;, witha =1
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Source: the authors (2024)

Figure 12 - Results of the Salzer Summation in the inversion of Fj, with a =3

F5 (a=3)

0.4 R 1

02

0.2 0.4

Source: the authors (2024)

approximate execution time. The strategy chosen as the selection criterion for the
optimal M allowed us not only to identify how many terms must be added in order to
obtain good results, but also what the method'’s convergence limitations are. The value
of a does not affect the execution time of the simulations, however it may imply the
use of higher values of the optimal M to generate more accurate profiles. This occurs
significantly in the inversion of high frequency oscillatory functions. However, Fj,

which is an exponential function, is less sensitive to the variation of « compared to
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Figure 13 - Results of the Salzer Summation in the inversion of F;, with a = 10
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Figure 14 - Results of the Salzer Summation in the inversion of F;, with a = 20

F5 (a=20)
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Table 10 - Comparisons between the optimal M and Order of Mean Absolute Error

F, 1077"[M=9] 107*[M=11] 1072[M =12] 107} [M = 13]
F3 107[M =10] 107*[M =11] 1072[M =13] 107!} [M = 14]
Fs 10%[M=8] 10"[M=9] 10°[M=9] 107%[M =9]

No Parameter

F 108 [M = 9]
Fy 1077 [M = 8]
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oscillatory functions F, and F3 .

Gaver Functionals are slowly converging numerical methods. Using the Salzer
Summation as an accelerator allowed obtaining results comparable to the analytical
solution at an extremely low computational cost (a few seconds). It should also be noted
that as it does not depend on recursive schemes or usage of complex variables in the
formulation, the implementation of the algorithms is simple and easy.

For future research, we intend to compare the performance of the Salzer
Summation with other accelerators, such as Wynn Rho and Levin’s u-transformation. It
is also intended to apply such methods to the inversion of a set of functions with

special characteristics, whose analytical inverse it is not easy to obtain (Freitas, 2022).
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