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ABSTRACT

Flood prediction through hydrological modeling of watersheds remains an emerging need in society,
particularly in regions highly affected by these extreme events. Models based on artificial neural
networks have demonstrated significant potential for addressing this issue due to their simplicity and
agility. In this study, a model was developed using a multilayer perceptron network for predicting river
discharge and water level based on the previous day’s river state and precipitation forecast. The Pomba
river in the city of Santo Antônio de Pádua-RJ was investigated due to its regular occurrence of flood
events that impact the entire population. Metric and graphical results showed the model’s strong ability
to estimate discharge and water levels throughout the year at a station with limited data. On the other
hand, the model encountered difficulties in accurately estimating peak values.
Keywords: Artificial neural networks; Hydrological modeling; Flood event; Multilayer perceptron

RESUMO

A previsão de enchentes, através da modelagem hidrológica de bacias hidrográficas, continua sendo
uma necessidade emergente na sociedade, principalmente em regiões muito afetadas por esses
eventos extremos. Modelos baseados em redes neurais artificiais têm apresentado significativo
potencial para esta problemática devido a sua simplicidade e agilidade. Neste trabalho, produziu-se um
modelo utilizando uma rede perceptron multicamadas para a previsão de vazão e cota de um rio com
base no estado do deste no dia anterior e na previsão da precipitação. Estudou-se o rio Pomba na
cidade de Santo Antônio de Pádua-RJ por este apresentar, ordinariamente, eventos de cheias que
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afetam toda a população. Os resultados métricos e gráficos mostraram uma boa capacidade do modelo
em estimar as vazões e cotas ao longo de todo um ano em uma estação com poucos dados. Por outro
lado, o modelo apresentou dificuldades na estimação precisa dos picos.
Palavras-chave: Redes Neurais Artificiais; Modelagem Hidrológica; Eventos de Cheias; Perceptron
Multicamadas

1 INTRODUCTION

Since the 1990s, the successful application of Artificial Neural Network (ANN)
models to various areas of hydrology has been documented (ASCE Task Committee on
Application of Artificial Neural Networks in Hydrology, 2000). It is noteworthy that
ANNs have proven to be a powerful tool in modeling several nonlinear hydrological
problems, for instance rainfall-runoff modeling (Tokar and Markus, 2000), precipitation
forecasting (French et al., 1992), water quality (Kalin et al., 2010), and water
management (Kralisch et al., 2003).

Regarding rivers that flow through cities, the hazards caused by extreme events,
such as floods, include traffic disturbances, communication network problems, damage
to structures and infrastructure, agricultural losses, all posing risks to human health.
Therefore, the implementation of policies for prevention and protection of people and
properties is necessary, aiming to reduce vulnerability to events of this nature (Elsafi,
2014).

Although hydrodynamic models provide a solid physical foundation and are
capable of simulating flow for large areas, these models require rigorous data
collection regarding river characteristics, which are not always available in various
locations. Additionally, it has not been possible to directly implement observed data
from a desired small-scale location into these types of models in order to improve
results for that region (Elsafi, 2014).

Furthermore, for the successful implementation of a flood prevention policy and
risk reduction, information from different sources, such as river and rainfall gauge
stations, must be integrated and used to obtain a quick and accurate forecast of the
river water level elevation (Campolo et al., 2003). Thus, there has been a growing
interest in recent decades in ANN models capable of producing reasonably accurate
results in a short period of time, leveraging a reduced dataset subject to errors, such
as real-time datasets (Kim and Barros, 2001).
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Hence, in this study, a hydrological model with artificial neural networks was
developed for predicting the water level and discharge of a water body, one day ahead,
based on the forecasted rainfall and the current state of discharge, water level, and
daily accumulated precipitation. For this research, the Pomba river at a station in the
center of Santo Antônio de Pádua-RJ, a municipality that frequently experiences floods,
was selected as the study area.
2 CASE STUDY

The Pomba river, which originates in the municipality of Santa Bárbara do
Tugúrio-MG, at an altitude of 1,182 meters, flows into the South Paráıba river in the city
of Aperibé-RJ, at an altitude of 55 meters. This river basin encompasses a drainage
area of 8,616 km², covering approximately 35 municipalities in the state of Minas
Gerais upstream and 3 municipalities in the state of Rio de Janeiro downstream
(AGEVAP, 2017).

Among the municipalities within the basin, Santo Antônio de Pádua-RJ (the region
of interest) is one of the most populated, with over 40,000 inhabitant according to the
latest Brazilian census (IBGE – Instituto Brasileiro de Geografia e Estat́ıstica, 2023). This
municipality is bisected by the Pomba river from end to end and experiences annual
flood events, including notable floods in 2008, 2010, 2020 and 2022 (figure 1).
Figure 1 – Square of the Parish of Santo Antônio de Pádua

Source: Terceira Via Newspaper (Photo: Felipe Sião)
Caption: The Square of the Parish of Santo Antônio de Pádua completely flooded, center of the city, in
2022
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3 METHODOLOGY

In this section, we present the processes used in the development of the ANN
(Subsection 3.1), the collection of observed data (Subsection 3.2), and the evaluation of
the model through efficiency metrics (Subsection 3.3).
3.1 Artificial neural network

Artificial neural networks with different configurations have been used to create
mathematical models for a variety of problems. Among these network architectures,
remarkable examples include the use of convolutional neural networks (CNN), recurrent
neural networks (RNN), autoencoders, and feedforward networks, where the multilayer
perceptron (MLP) resides.

Furthermore, there is a growing utilization of MLP-type ANN models for flood
prediction (Mosavi et al., 2018). This class of network employs supervised learning
known as backpropagation (BP) during training to optimize the parameters of
interconnected neurons across multiple layers. Simplicity, non-linear activation
functions, and a high number of layers are characteristics of the multilayer perceptron
network (figure 2).
Figure 2 – Diagram of a multilayer perceptron neural network

Source: Java T Point website
Caption: Diagram of a general multilayer perceptron neural network. In the illustrated case, with at least
3 inputs, 2 hidden layers, and 2 outputs

In this paper, an MLP-type ANN was used where the model (F ) output was
expected to be the values of discharge (Qi) in m3/s and river level (hi) in cm, one day
ahead, based on the input values of discharge (Qi−1[m

3/s]), level (hi−1[cm]), and
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precipitation (pi−1[mm]) for the current day, as well as the rainfall forecast for the
following day (pi[mm]), that is, F (pi, pi−1, Qi−1, hi−1) = (Qi, hi).

The number of layers and the number of neurons per hidden layer were varied
to find the best configuration for the network in modeling the addressed problem. The
remaining hyper-parameters remained constant values after a brief effectiveness
analysis based on trial and error.

Regarding the hyper-parameters, the following values and definitions were used:
• The Rectified Linear Unit with Leaky Slope (LeakyReLU) as the activation function

for all hidden layers of the network;
• Mean Squared Error (MSE) as the loss function, where specifically, it was defined

as loss = loss1 + 3 ∗ loss2, where loss1 and loss2 represent the loss related to
discharge and level, respectively, thus emphasizing the river level values, which
are considered the main flood alert indicator;

• Adaptive Moment Estimation (Adam) as the optimizer;
• batchsize = 84, corresponding to a dataset of 12 weeks;
• Early stopping with a tolerance of 1000 epochs and no epoch limit.

To generate the results in this work, the Google Colab environment (with GPU usage)
was utilized, where the ANN models were implemented in Python, with the assistance
of the following libraries:“pandas” for reading the available data in Microsoft Excel
2010; “torch” for implementing the ANN; “numpy” for general mathematical
operations; “matplotlib.pyplot” for plotting the graphs; “time” for measuring the
computational time spent.
3.2 Database

The acquisition of observed data in the region of interest for setting the training
patterns of the artificial neural network was carried out through the website of the
National Water and Basic Sanitation Agency (ANA) via the HidroWeb Portal. In
summary, the HidroWeb Portal is described as “a tool integrated into the National
System of Information on Water Resources (SNIRH) that provides access to the
database containing all the information collected by the National Hydrometeorological
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Network (RHN), gathering data on river levels, discharge, rainfall, climatology, water
quality, and sediments.”

For this purpose, a pluviometric station (SANTO ANTÔNIO DE PÁDUA
II-02142067) and a fluviometric station (SANTO ANTÔNIO DE PÁDUA II-58790002)
located in the center of Santo Antônio de Pádua-RJ were selected (figure 3), from
where rainfall, river levels, and discharge data were collected.
Figure 3 – Pluviometric and fluviometric stations used

Source: HidroWeb-ANA Portal
Caption: Location of the pluviometric and fluviometric stations used in Santo Antônio de Pádua-RJ

Data was collected from January 1, 2013, to December 31, 2020, for training,
from January 1, 2021, to December 31, 2021, for validation, and from January 1, 2022,
to December 31, 2022, for testing. In other words, the model was trained using data
from 2013 to 2020 based on the loss of the validation data from 2021, and then tested
on the 2022 dataset. It is worth mentioning that a rescaling process was performed on
the data, scaling it to the interval [0, 1], for faster and more accurate training.
3.3 Evaluation metrics

It is worth noting the use of efficiency evaluation metrics when quantifying the
results obtained by different models. For this purpose, the Mean Squared Error (MSE)
function was used during the training of the ANN, while the Root Mean Squared Error
(RMSE), Nash-Sutcliffe Efficiency (NSE), and Mean Error or Bias (BIAS) were utilized for
assessing the validation group.

Ci. e Nat., Santa Maria, v. 46, n. spe. 1, e87129, 2024



Dias, R. M. M S., Telles, W. R., Silva Neto, A. J. | 7

The MSE function is sensitive to larger errors as it squares individual differences.
It always returns positive values, with a value of 0 indicating a perfect simulation (Hallak
and Pereira Filho, 2011). It can be expressed by as:
MSE =

1

N

N∑
i=1

(XSi
−XOi

)2 (1)

whereN is the number of training indexes, XSi
is the simulated variable, either river level

(cm) or discharge (m3/s), based on index i, and XOi
is the observed variable of index i.

The RMSE function, commonly used to assess the accuracy of numerical results,
displays values in the same dimensions as the analyzed variable (Hallak and
Pereira Filho, 2011). A value of 0 also indicates a perfect simulation. It can be defined
as follows:
RMSE =

(
1

N

N∑
i=1

(XSi
−XOi

)2

) 1
2 (2)

On the other hand, the Nash-Sutcliffe Efficiency (NSE) criterion (Celeste and Chaves,
2014) indicates how accurate the model predictions are relative to the mean of the
experimental data. A value of 1 corresponds to a perfect fit, while a value of 0 indicates
that the simulation is as accurate as the mean of the observed data. Negative values
occur when the observed mean exceeds the model. It can be calculated as:
NSE = 1−

∑N
i=1 (XOi

−XSi
)2∑N

i=1

(
XOi

−XO

)2 (3)

where XO is the mean value of the observed variable across all indexes i.
Nevertheless, the Bias (BIAS) indicates the tendency of a model to underestimate

(negative value) or overestimate (positive value) the simulated variable compared to the
observed one. A value of 0 represents no bias. In this work, BIAS was calculated as a
percentage as follows:
BIAS =

1
N

∑N
i=1 (XSi

−XOi
)

XO

∗ 100 (4)
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4 RESULTS AND DISCUSSION

In this section, the results obtained over the 5 executions for each of the 14
models studied and described in Section 3 were presented and discussed. The
implementation of the multiple ANN configurations were evaluated in comparison to
each other.

The average training time for each of the configurations was 15 minutes, where
the initial guess for the network parameters was varied 5 times, using the five same
different seeds for generating random values for all tested architectures, and the best
result among these 5 iterations was taken. These configurations were ranked and
selected based on the NSE values for peak level (floods) and for the entire testing
period. The best results are shown in blue, while the worst are shown in red.
Table 1 – Results obtained simulating the year 2022

Peak level RMSE NSE
Neurons per hidden layer Best epoch NSE BIAS (%) Discharge Level Discharge Level
10, 10, 10 260 -0.073 -8.749 48.337 17.203 0.911 0.92320, 20, 20 133 -0.118 -5.503 46.587 17.677 0.918 0.91940, 40, 40 46 0.052 -7.599 48.046 17.470 0.912 0.92180, 80, 80 8 -0.050 -7.952 53.119 17.379 0.893 0.92240, 40, 40, 40 28 0.088 -6.504 44.710 17.248 0.924 0.92340, 40, 40, 40, 40 257 -0.085 -5.762 53.476 17.635 0.891 0.91940, 40, 40, 40, 40, 40 59 0.142 -3.896 45.342 17.302 0.922 0.92340, 40, 40, 40, 40, 40, 40 70 0.076 -6.428 50.230 16.919 0.904 0.92640, 20, 10 176 -0.065 -5.358 48.356 17.661 0.911 0.91960, 40, 20 29 -0.080 -8.305 49.464 17.351 0.907 0.92240, 20, 10, 5 244 -0.110 -9.789 48.851 17.864 0.909 0.91760, 40, 20, 10 25 -0.156 -2.528 77.929 18.085 0.769 0.91560, 50, 40, 30, 20, 10 36 -0.024 -5.356 46.917 17.497 0.916 0.92140, 20, 40, 20, 40, 20 12 -0.196 -2.577 61.920 18.266 0.854 0.914

Caption: Results obtained for the different networks tested in simulating the discharge and water levelfor the year 2022.

Initially, observing the column of epochs that generated the best results (Best
epoch), based on the low values presented (less than 300), it can be inferred that these
models exhibited a significant dependence on the initial guess, often susceptible to
local minima. Additionally, the BIAS (%) column shows that, in general, all models
underestimated the water levels during flood events.

Looking over the best and worst NSE values for peak level and overall level, it
can be observed that ANNs with 40 neurons in all layers generally yield more
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satisfactory results than networks with a ”pyramid” structure, where the number of
neurons decreases across layers. It is also noticeable that all networks struggled to
accurately simulate flood values, although overall, they achieved very good values (NSE
above 0.9) for the water level. This is due to the lack of available information for model
training, i.e., a short time series with few flood events compared to the overall dataset,
and the use of only one pluviometric and one fluviometric station for forecast at a
point along the river that drains a large region.

As observed in the study published by Aghelpour and Varshavian (2020), MLP
models for predicting channel discharge based on the current state of the river (Q(t− 1)

as example) faced challenges during flood periods and yielded good results during drier
periods, consistent with the findings of this study. Additionally, there is evidence of
model convergence to the optimum with low numbers of epochs (less than 100), as
suggested in the best cases (blue names).

Based on the results early presented, was chosen to display the graphs of
simulated water level versus observed water level for the best (figure 4) and worst
(figure 5) configurations, where the good fit of the simulations is evident in both cases.
Figure 4 – Simulated level (best case)

Caption: Simulated level versus observed level graph for the configuration with the best result
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Figure 5 – Simulated level (worst case)

Caption: Simulated level versus observed level graph for the configuration with the worst result

The lack of precision in simulating the peaks, underestimating them, is evident
even in the best result. Thus, a revision of the training process is estimated to emphasize
flood values. Despite this quantity inaccuracy, the water level curves (figure 4 and figure
5), both simulated and observed, develop a similar profile, suggesting that this model
correctly indicates the dates when flood events will occur.

The accuracy of ANN models, with NSE values above 0.9 when considering
predictions over a one-year period encompassing both wet and dry periods, indicates
the effectiveness of the methodology, as well as observed in the studies by Dalkiliç and
Hashimi (2020) and Kumar et al. (2020), which demonstrated that techniques
employing various configurations of neural networks and data-driven models yielded
the same consistent results, even across different research areas and slightly different
approaches.

Therefore, this research concluded that the methodology using an MLP-type
neural network for flood event prediction based on real observed data available on
government platforms of the river’s current state yielded satisfactory results based on
the efficiency metrics commonly used in this type of problem.

Despite the difficulties encountered in simulating the peaks, it was inferred that all
Ci. e Nat., Santa Maria, v. 46, n. spe. 1, e87129, 2024
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configurations were able to adequately represent the profile of the discharge and level
curves for the year 2022. This leads to considering the complexity involved in estimating
two different variables in a single model.

Thus, given the challenges regarding the problem of flood prediction in regions
such as the one studied in this work, the following future work is estimated:
Aggregating information from other stations along the watershed in question; Creation
of separate neural network models, one for discharge prediction and another for level
prediction, connected as necessary; Implementation of a neural network with
Physics-informed neural networks (PINN) by the Saint-Venant equations, adding a
physical bias to the network training; Developing techniques, such as cross-validation
and oversampling, to emphasize flood events during model training; Increasing input
information, providing a better information base about the current state of the region
for the neural network; Implementing a model to make hourly predictions;
Implementing a model to predict larger intervals; Coupling the neural network model
with a traditional numerical model.
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Aghelpour, P. and Varshavian, V. (2020). Evaluation of stochastic and artificialintelligence models in modeling and predicting of river daily flow time series.

Stochastic Environmental Research and Risk Assessment, 34(1):33–50.
ASCE Task Committee on Application of Artificial Neural Networks in Hydrology (2000).Artificial neural networks in hydrology. ii: Hydrologic applications. Journal of

Hydrologic Engineering, 5(2):124–137.
Campolo, M., Soldati, A., and Andreussi, P. (2003). Artificial neural network approach toflood forecasting in the river arno. Hydrological sciences journal, 48(3):381–398.

Ci. e Nat., Santa Maria, v. 46, n. spe. 1, e87129, 2024



12 | Hydrological modeling using artificial neural networks for flood event forecasting.

Celeste, A. and Chaves, V. S. (2014). Avaliação de algoritmos de otimização e funçõesobjetivo para calibração automática do modelo chuva-vazão tank model. Ciência e
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3 – Antônio José da Silva NetoPhD Mechanical Engineeringhttps://orcid.org/0000-0002-9616-6093 • ajsneto@iprj.uerj.brContribution: Conceptualization; Funding acquisition; Project administration; Writing –Review & Editing
How to cite this article
Dias, R. M. M S., Telles, W. R., Silva Neto, A. J. (2024). Hydrological modeling usingartificial neural networks for flood event forecasting. Case study: Pomba river inSanto Antônio de Pádua-RJ. Ciência e Natura, Santa Maria, v. 46, spe. 1,e87129. https://doi.org/10.5902/2179460X87129
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