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ABSTRACT

The present work aims to formulate and solve the inverse problem of structural damage identification
using Bayesian Inference. In the solution of the direct problem, the Finite Element Method (FEM) is
considered. The modeling of the damage field is performed through the cohesion parameter, which
continuously describes the integrity of the structure. The damage identification problem is formulated
as an inverse parameter estimation problem, where the posterior probability distribution of the
cohesion parameters is sampled using the Adaptive Markov Chain Monte Carlo method and a Spike-Slab
prior, adopting a novel hierarchical modeling approach for the inverse problem and an appropriate
prior distribution that naturally models the available information about the parameters of interest.
Keywords: Bayesian Inference, Adaptive Markov Chain Monte Carlo Method, Spike-and-Slab Prior

RESUMO

O presente trabalho tem como propósito formular e resolver o problema inverso de identificação de
danos estruturais empregando Inferência Bayesiana. Na solução do problema direto é considerado o
Método de Elementos Finitos (MEF). A modelagem do campo de dano é realizada por meio do
parâmetro de coesão, o qual descreve continuamente a integridade da estrutura. O problema de
identificação de danos é formulado como problema inverso de estimação de parâmetros, onde a
distribuição de probabilidade a posteriori dos parâmetros de coesão é amostrada empregando o
Método de Monte Carlo com Cadeias de Markov Adaptativo com priori do tipo Spike-Slab, onde foi
adotada uma nova modelagem hierárquica do problema inverso e uma distribuição a priori apropriada
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que modela naturalmente as informações dispońıveis sobre os parâmetros de interesse.
Palavras-chave: Inferência Bayesiana, Método de Monte Carlo com Cadeias de Markov Adaptativo,
Priori Spike-and-Slab

1 INTRODUCTION

The interest of the scientific community in developing advanced methodologies
for damage assessment and identification in structures of great importance to society
is both growing and crucial, as it aims to ensure the safety, durability, and efficiency of
a wide range of civil infrastructures, including buildings, bridges, dams, airplanes, and
others. These structures are daily subjected to a variety of factors that can impair their
performance, such as excessive loads, fatigue, corrosion, and impacts. These factors
can lead to progressive damage that is not visible to the naked eye and can even evolve
into tragic scenarios with loss of life and significant material losses. In this context, the
development and refinement of precise and non-invasive techniques for early-stage
structural damage assessment are of paramount importance (Link and Weiland, 2009;
Pandey and Biswas, 1994; Teixeira et al., 2020). They not only contribute to proactive
maintenance and extension of the service life of structures through the preventive
implementation of efficient maintenance and repair actions, but also play a crucial role
in preventing catastrophic failures, saving financial resources, and promoting resilient
and sustainable infrastructure for future generations.

Given the relevance of continuous structural monitoring, this work proposes the
use of Bayesian Inference as a technique for solving the inverse problem of structural
damage identification (Migon et al., 2014; Tanner, 1993). This approach has been widely
applied to solve problems in various research areas, including engineering, medicine,
biology, astrophysics, meteorology, and others (Albani et al., 2023; Taghizadeh et al.,
2020; Völkel et al., 2021). Its main advantage lies in its ability to treat with statistical
rigor the uncertainties inherent in problem modeling and the experimentation process,
as well as the ease of incorporating all prior information about the parameters to be
estimated into the damage identification process.

In this approach, the variables of interest of the damage identification problem
and all available prior information are modeled as random variables through
probability density functions (PDFs) (Malakoff, 1999; Teixeira et al., 2016). The
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appropriate choice of the prior plays a fundamental role in solving the inverse
problem, allowing for more accurate and reliable estimates. This prior information,
often derived from previous knowledge, experience, or well-founded theories, allows
for the incorporation of a solid probabilistic structure into the statistical model,
resulting in a more accurate posterior distribution that reflects uncertainty more
appropriately, making the estimate more robust and reliable. Additionally,
incorporating prior information can help reduce the dimension of the search space,
increasing computational efficiency and avoiding improper estimates. In the context of
damage identification, Spike-and-Slab priors are particularly useful, as they are able to
model prior knowledge about the cohesion parameters in a simple and natural way
(Andersen et al., 2017; Hernández-Lobato et al., 2013; Mitchell and Beauchamp, 1988).
At the end of the damage identification process, the estimates are obtained via
sampling of the posterior PDF of the parameters of interest. In this work, the Finite
Element Method (FEM) is used to solve the direct problem, which is in turn
parameterized by the cohesion parameter of the structure.

Bayesian Inference will be employed to solve the inverse problem of damage
identification, using both conventional Markov Chain Monte Carlo method (MCMC) and
adaptive MCMC method with Spike-and-Slab prior (adpMCMC-SSP). Although
conventional MCMC methods are very efficient in solving inverse problems, they may
experience some difficulties in adequately exploring the parameter search space. To
overcome such problems, the literature shows the use of adaptive techniques that
significantly improve the efficiency of MCMC methods. These adaptations are
performed via careful adjustment of the auxiliary probability distribution used in the
Metropolis-Hastings algorithm. Therefore, the adaptive MCMC method with
Spike-and-Slab prior (adpMCMC-SSP) will also be employed. The results obtained, as
well as the computational cost of the employed methodologies, will be compared to
each other to verify their effectiveness in solving the structural damage identification
problem. A set of numerical results is presented, considering two damage scenarios
and one noise level for the adopted solution methodologies.
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2 DIRECT PROBLEM MODELING

In modeling the direct problem, the structural integrity is considered to be
continuously described, in the body domain, by a structural parameter called the
cohesion parameter β(x) (Stutz et al., 2005,1; Teixeira et al., 2020). This parameter
describes the bonding between material points of the structure and can be interpreted
as a measure of the local cohesion state of the material, where β ∈ [0, 1]. When all
bonds between material points are preserved, β = 1 is obtained. When a local rupture
occurs, β = 0 is obtained, and when there is damage in the structure, 0 < β < 1 is
obtained. It is widely accepted in the literature that structural damage significantly
alters only the stiffness properties of the structure. Therefore, the bending stiffness of
a beam is defined as
E(x)I(x) = β(x)E0I0 (1)
where E0 and I0 are, respectively, the nominal Young modulus and the nominal area
moment of inertia of the cross section. Therefore, the stiffness matrix of the structure
may be written as
K(β) =

∫
Ω

β(x)E0I0H
T (x)H(x)dΩ (2)

where H is the discretized differential operator and β represents the cohesion field in
the elastic domain Ω of the structure. Therefore, the cohesion parameter represents
any change, caused by the presence of structural damage, in the bending stiffness of
the structure. The nodal cohesion parameter vector is defined as β = [β1, β2, . . . , βnp ]

T ,
where np is the total number of cohesion parameters in the model.

Considering a system with np degrees of freedom, the equation of motion
obtained by the Finite Element Method (Reddy, 1984) is given by
Mü(t) + Du̇(t) + K(β)u(t) = f(t) (3)
where u is the vector of generalized coordinates, M is the mass matrix, D is the damping
matrix, K(β) is the stiffness matrix, and f is the loading vector.
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3 INVERSE PROBLEM FORMULATION

Inverse problem modeling starts from experimental observation and aims to
estimate unknown quantities by adjusting computational models. This approach is a
very effective tool and has been increasingly used to solve inverse problems in the
most diverse areas (Ozisik and Orlande, 2021). From the Bayesian perspective, the
solution of an inverse problem, given the posterior experimental observations ZE , is a
probability density function of β, which may be written, according to Bayes’ theorem,
as (Tanner, 1993)

p(β|ZE) =
p(ZE|β)p(β)

p(ZE)
(4)

where p(β) is the prior probability density function of β, p(ZE) is the marginal density of
the experimental data and p(ZE|β) is the likelihood function. Samples from the
posterior distribution of interest, which is intractable to simulate directly, may be
obtained via Markov Chain Monte Carlo (MCMC) methods. The general idea of MCMC
methods is to simulate random samples in the parameter domain β, such that the
stationary distribution of the samples converges to the posterior distribution p(β|ZE).
Specific algorithms are used for this purpose. In this work, the Metropolis-Hastings
algorithm was used, which makes use of an auxiliary probability density function q,
from which it is easy to obtain sample values. Assuming that the chain of a given
cohesion parameter is in a state βt−1, a new candidate value β∗ will be generated from
the auxiliary distribution q(β∗|βt−1), given the current state of the chain βt−1. The new
value β∗ may be accepted with probability given by the Hastings Ratio (Hastings, 1970).
γ = min

[
1,

p(β∗|ZE)q(β
t−1|β∗)

p(βt−1|ZE)q(β
∗|βt−1)

]
(5)

3.1 Hierarchical Modeling with Spike-and-Slab Priors

Spike-and-Slab priors were initially proposed by Mitchell and Beauchamp (1988)
and are generally defined as mixtures of probability distributions. They consist of a
mixture of a point mass at xp called the ”Spike” and another distribution, known as the
”Slab.” In the inverse problem modeling adopted in this work, the cohesion parameters
β are considered as unobservable quantities in the interval [0, 1], but with a mass point
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at β = 1, characterizing the regions of the structure that are intact. In this sense, a spike-
and-slab prior is very appropriate and can be naturally used to identify which cohesion
parameters are associated with intact or damaged regions. That is, if zj = 1 then node
j has no structural damage, so p(βj = 1|zj = 1) = 1. On the other hand, if zj = 0 then
there is a probability of the parameter being associated with a damaged region given
by p(0 < βj < 1|zj = 0) = Be(βj; a, b). Therefore, the hierarchical model for the damage
identification problem considering a Spike-and-Slab prior is given by

ZE ∼ N [F(β), ϕ−1I]

βj|zj ∼ (1− zj)Be(βj; a, b) + zj δj

z|π ∼ Ber(π)

π ∼ Be(e, d)

where F(β) is the solution of Eq. 3 obtained via Finite Element Method (FEM); δj is a Dirac
delta function, which characterizes a point mass at βj = 1. In other words, δj = 1 if βj = 1

and δj = 0 if 0 < βj < 1; Be(βj ; a, b) represents a Beta distribution in the interval (0, 1) with
parameters a and b, with mean µβ = a

a+b
and variance σ2

β = µβ(1−µβ)/(a+ b+1); Ber(π) is
a Bernoulli distribution with success probability π. In this work, success means the nodal
point j of the structure is intact. Therefore, π represents the proportion of undamaged
parameters (βk = 1, k = 1, · · · , nun, where nun is the number of undamaged parameters)
relative to the total number of unknown parameters. Finally, Be(e, d) is another Beta
distribution in the interval (0, 1)with parameters e and dwith mean µπ = e

e+d
and variance

σ2
π = µπ(1− µπ)/(e+ d+ 1).

It is important to highlight that the inverse problem modeling approach for
structural damage identification used in this work is recent. Furthermore, a
hierarchical statistical model that considers the impulse response of the structure, in
the time domain, and a Spike-and-Slab distribution mixture to naturally characterize
the available prior information on the cohesion parameters has not yet been found in
the specialized literature.
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3.2 Adaptive Markov Chain Monte Carlo Method

Recent literature has shown that the effectiveness of the Markov Chain Monte
Carlo method can be significantly improved through careful adjustment of the support
of the auxiliary distribution q used in the Metropolis-Hastings algorithm (Teixeira et al.,
2020).

In this work, for each cohesion parameter, a normally distributed random walk
proposal was considered. To implement this, the cohesion parameter values in the
interval [0, 1] were transformed to the real line, that is, ξj = ln

(
βj

1−βj

) with j = 1, ..., np.
Therefore, ξk = ξk−1 + ϵ, where ξ is an np-dimensional vector, ϵ ∼ N [0,V], k is the
iteration index, and V is the variance-covariance matrix. Furthermore, V is assumed to
be diagonal, with each diagonal element νj , with j = 1, ..., np, representing the variance
of the j-th auxiliary distribution used to sample the respective cohesion parameter. In
this work, an adaptation of the V matrix was used, which starts from t0 states and is
given as follows

νt
j =

 ν0
j se t < t0

γt
sd(ξj

t−1 −Mj)
2 se t0 ≤ t ≤ Nburn−in

(6)

for j = 1, ..., np, where t − 1 is the current state of the chain, γt
sd is a real constant, Mj

is the average value of the j-th cohesion parameter, calculated considering the last m
iterations of Markov chain. In order to keep the acceptance rate (τ ) within the interval
τ̄ ∈ [10%, 50%], an adaptation was incorporated into the constant γsd, which starts at
γ0
sd = 1 and is adapted after t0 states as follows

γt
sd =


1 se t < t0

γt−1
sd (1− λt) se τ̄ < 0, 1 e t0 ≤ t ≤ Nburn−in

γt−1
sd (1 + λt) se τ̄ > 0, 5 e t0 ≤ t ≤ Nburn−in

(7)

Additionally, it was considered λt = Llow + (Lup − Llow)r
j , where Llow = 0.05, Lup = 0.15,

and rt is a random number between 0 and 1. After the burn-in period, both adaptations
are no longer performed, and the standard deviation remains constant and equal to the
deviation obtained up to the burn-in.
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4 NUMERICAL RESULTS

To assess the effectiveness of the proposed approach, a simply supported
Euler-Bernoulli beam was considered. The both conventional Markov Chain Monte
Carlo (MCMC) method and adaptive MCMC with Spike-and-Slab prior (adpMCMC-SSP)
method were employed to solve the inverse problem of damage identification. The
beam was spatially discretized into 24 finite elements. The physical and geometrical
properties of the beam are given in the table 1. The experimental data was simulated
Table 1 – Physical and geometrical properties of the beam

Length(L) Height(h0) Width (w) Mass density (ρ) Young Modulus(E)
1.46m 0.008m 0.0762m 7.85× 103 kg/m3 207GPa

Source: the authors (2024)
from the system impulse response, given by the FEM in terms of acceleration, for a
prescribed value of β. The added noise was calculated considering that the sensor
precision is given by
ϕ−1 = max

(
s ·

∣∣F(βp)
∣∣) (8)

where s is a percentage that varies in the interval [0.005, 0.02], F(βp) is the structural
response, Eq. 3, considering a prescribed value for the cohesion vector β.

In this work, only one noise level with s = 0.01 was used for the simulations. To
obtain the time-domain data used in the damage identification process, a Dirac impulse
was considered at x = 0.2433 m and the impulse response, given in terms of acceleration,
was measured at the same position. In the present work, the damage was modeled by
means of a V-shaped notch in the beam, where the damage position corresponds to the
notch tip position (Teixeira et al., 2020). Therefore, considering Eq. (1), and assuming
that structural damage affects only the geometrical properties of the beam, i.e., E(x) =

E0, the cohesion parameter at a point x is given by

β(x) =

(
h(x)

h0

)3 (9)
where h(x) is the thickness of the beam at point x and h0 is the corresponding nominal
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thickness. Two damage scenarios were considered. The first consists of the presence
of two damage at the positions x = 0.547 m and x = 1.277 m, which correspond to the
nodes 10 and 22 of the FE mesh, with relative height h(x)/h0 = 0.9. The second scenario
consists of the presence of two damages at positions x = 1.156 m and 1.277 m, which
correspond to nodes 20 and 22 of the FE mesh, respectively, and both with a relative
height h(x)/h0 = 0.9. Thus, 3 case studies were defined, as shown in the Table 2.
Table 2 – Analyzed cases

Case Method Scenario
1 MCMC 1
2 adpMCMC-SSP 1
3 adpMCMC-SSP 2

Source: the authors (2024)
For the conventional MCMC method, constant variances νj = 0.005, j = 2, ..., 23,

and for the AdpMCMC-SSP method, the adaptation process starts after t0 = 5, 000 states
using Eq. (6)

In the composition of the Spike-and-Slab mixture distribution, defined as the prior
distribution of the cohesion parameters, a Beta distribution with parameters a = 3, b =

1.61538 was considered and consequently mean µβ = 0.65. For the prior of π, another
Beta distribution with parameters e = 4.5, d = 0.5 was considered, where µπ = 0.91304

represents the proportion of intact cohesion parameters.
Figure 1 presents the exact and estimated damage fields, together with the

corresponding 95% credible intervals and Markov chains for the estimated parameters.
Table 3 presents the statistical properties of the posterior distribution of the estimated
cohesion parameters. The estimated mean (µest), standard deviation (σest), relative
error between the estimated mean value and the exact value, acceptance rate (τ ) and
also the Root Mean Squared Error (ERMS) are also presented. Table 4 presents the
estimated 95% credibility interval (CI). Markov chains with 40, 000 states were
considered for the MCMC and burn-in of 20, 000 states. For the adpMCMC-SSP method,
chains with 10, 000 states, a burn-in of 5, 000 states, and an adaptation starting at
t0 = 2, 000 states were considered. This significant difference in the chain lengths is
associated with the convergence speed obtained by each methodology adopted.

Ci. e Nat., Santa Maria, v. 46, n. spe. 1, e87212, 2024



10 | Structural Damage Identification via Bayesian Inference with a New Hierarchical ...

Figure 1 – Damage Identification results and Markov Chains for Cases 1 and 2
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Source: the authors (2024)

For Case 1, it may be observed from Figure 1 and Tables 3 and 4 that although
the conventional MCMC method successfully located the actual damage in the
structure, it also identified false damage in the structure. Additionally, it may be
observed that even with a Markov chain four times larger than those used by the
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Table 3 – Estimated statistical properties (βexact = 0.729)

Method Case β µest σest Er τ ERMS

MCMC 1 β10 0.7466 0.0286 0.0241 31% 0.0305
β22 0.7002 0.0351 0.0395

adpMCMC-SSP 2 β10 0.7283 0.0027 0.0009 20% 0.0009
β22 0.7268 0.0026 0.0030

adpMCMC-SSP 3 β20 0.7289 0.0026 0.0001 21% 0.0009
β22 0.7305 0.0021 0.0021

Source: the author (2024)
Table 4 – Credibility intervals

Method Case β CI 95%
MCMC 1 β10 [0.6945; 0.8015]

β22 [0.6621; 0.7536]
adpMCMC-SSP 2 β10 [0.7235; 0.7325]

β22 [0.7226; 0.7313]
adpMCMC-SSP 3 β20 [0.7247; 0.7332]

β22 [0.7272; 0.7341]
Source: the authors (2024

adpMCMC-SSP, the conventional method did not present chain convergence, this
demonstrates the difficulty that the conventional method has in adequately and
efficiently traversing the parameter search space. On the other hand, for Case 2, it is
evident that the adpMCMC-SSP method obtained significantly more accurate results,
where a much faster chain convergence may be observed, around 2, 000 states,
demonstrating the need for a smaller chain and consequently a much lower
computational cost, approximately 3 minutes and 21 seconds, four times less than the
adpMCMC-SSP time, which was around 12 minutes and 45 seconds. Furthermore, it
presented the lowest values of ERMS and relative errors Er, indicating that the
estimated values are closer to the exact values. Good acceptance rates are also
observed for both methodologies. From Table 4, it can be verified that, for all cases,
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the exact values are contained within the intervals obtained with 95% credibility.
However, the intervals obtained by adpMCMC-SSP are smaller, indicating with a high
degree of credibility that the probability of the exact values belonging to the support of
the estimated PDFs is higher.

For Case 3, where two damages located close to each other were considered,
only the adpMCMC-SSP method was employed, as the conventional MCMC method
faced difficulties in adequately estimating the damage field, even considering chains
with more states. Thus, it is noticeable that even for this more challenging estimation
case, adpMCMC-SSP continued to present excellent results, with rapid chain
convergence, approximately 2,000 states, accurate identification of both the location
and intensity of the damages, and low values of ERMS and relative errors Er, in
addition to the exact values contained within the credibility intervals, where their
lengths are of the order of 10−3 for parameters associated with damaged regions.

It is important to emphasize that, based on the results presented in this work, it
may be concluded that the proposed adaptive technique with Spike-and-Slab prior was
highly successful in overcoming the difficulties presented by the conventional MCMC
method. This demonstrates its effectiveness in identifying structural damage and
reducing computational cost.
5 CONCLUSIONS

In this study, the structural damage identification problem was solved using a
Bayesian approach. The formulation of the direct problem was presented, and its
solution was obtained through the Finite Element Method (FEM). The structural
damage field was modeled using the structural cohesion parameter β. The inverse
problem solution was obtained by the conventional Markov Chain Monte Carlo
method and adaptive Markov Chain Monte Carlo method with Spike-and-Slab prior.
The method proposed here combined hierarchical modeling, an adaptive technique,
and a Spike-and-Slab mixture distribution as prior information for the parameters of
interest. The results obtained by this method were more accurate compared to the
conventional MCMC method, successfully identifying the existing damage in the
structure. A high convergence speed of the Markov chains was also observed, implying
the need for fewer states, which reduced its execution time by approximately 75%
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compared to the conventional MCMC method. This demonstrates its attractiveness for
applications in problems with high associated costs.
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