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ABSTRACT

Cancer represents a significant concern in terms of global public health, standing out as one of the main
causes of death and a barrier to the advancement of life expectancy. The costs associated with cancer
treatment have grown above the rate of inflation, driven by the increase in the number of new patients
diagnosed, costs of materials and drugs involved, and inefficiency of care, which is becoming
increasingly complex and uncoordinated. The mixed administration of immunotherapy and
chemotherapy drugs plays a key role in cancer treatment. However, such treatments combination can
present challenges arising from the complex interactions between these two therapeutic modalities.
This work aims to identify the optimal combination of treatments that allows for minimizing both the
tumor volume and the adverse effects resulting from the joint administration of drugs through a
multi-objective optimization approach, establishing guidelines for optimal drug administration in the
context of combined immunotherapy and chemotherapy.
Keywords: Cancer Treatment; Chemotherapy; Immunotherapy; Optimal Control; Multi-objective
Optimization

RESUMO

O câncer representa uma preocupação significativa em termos de saúde pública mundial,
destacando-se como uma das principais causas de morte e uma barreira ao avanço da expectativa de
vida. Os custos associados ao tratamento do câncer têm crescido acima da taxa de inflação,
impulsionados pelo aumento do número de novos pacientes diagnosticados, pelos custos dos materiais
e medicamentos envolvidos e pela ineficiência dos cuidados, que estão se tornando cada vez mais
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complexos e descoordenados. A administração conjunta de imunoterapia e quimioterapia desempenha
um papel fundamental no tratamento do câncer. No entanto, tais tratamentos combinados podem
apresentar desafios decorrentes das complexas interações entre estas duas modalidades terapêuticas.
Este trabalho visa identificar a combinação ideal de tratamentos que permita minimizar tanto o volume
tumoral como os efeitos adversos resultantes da administração conjunta de medicamentos através de
uma abordagem de otimização multiobjetivo estabelecendo diretrizes para a administração ideal de
medicamentos no contexto da imunoterapia combinada e quimioterapia.
Palavras-chave: Tratamento do Câncer; Quimioterapia; Imunoterapia; Controle Ótimo; Otimização
Multi-objetivo

1 INTRODUCTION

According to Tan et al. (2020), the mixed administration of immunotherapy and
chemotherapy drugs plays a key role in cancer treatment. Immunotherapy operates
by stimulating the immune system, inciting it to recognize and eliminate cancer cells,
while chemotherapy employs cytotoxic agents to directly attack tumor cells. However,
as mentioned by Lake and Robinson (2005), the combination of immunotherapy and
chemotherapy can present challenges arising from the complex interactions between
these two therapeutic modalities.

When used concomitantly, the immunostimulatory properties of
immunotherapy may interfere with the efficacy of chemotherapy, whereas the
immunosuppressive effects induced by chemotherapy may compromise the efficacy of
immunotherapy. For instance, Pillis et al. (2008) highlight that immunotherapy can
trigger a wide range of adverse effects, including cytokine storms, the severity of which
can be accentuated when combined with chemotherapy. Therefore, careful
assessment and ongoing monitoring of patient’s status and response to treatment are
imperative to ensure a successful combination of immunotherapy and chemotherapy
(Borcoman et al., 2019).

Computational models with the purpose of simulating the response to
treatments involving the combination of immunotherapy and chemotherapy enable
the systematic planning of individualized therapeutic strategies, in addition to
providing comprehensive information on the complex multifactorial interactions
between tumor cells, the immune system, and the chemotherapeutic agents (Laleh
et al., 2022).

In this work the concepts of conflict between objectives in multi-objective
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optimization applied to the administration of therapeutic drugs in combined
immunotherapy and chemotherapy for cancer treatment are presented. In this case,
the main aim is to balance the interactions between tumor cells, the immune system
and chemotherapeutic agents. This approach involves the introduction of a trade-off
between objectives, such as the minimization of tumor cells and the toxicity of drug
administration, together with the maximization of immunocompetent cells, thus
allowing the optimization of the respective levels involved.
2 BIOLOGICAL MODELING OF CANCER DYNAMICS

Biological systems exhibit inherent dynamism, non-linearity, and intricate
complexity, comprising numerous action variables. As a result, the utilization of
mathematical modeling assumes a significant role in elucidating various aspects of
their dynamic behavior. Moreover, such models facilitate the control and prediction of
the evolution of these systems. Consequently, the process of constructing models is
increasingly recognized and valued not only by experimentalists but also by clinicians
(Chaplain and Matzavinos, 2006).
2.1 Stepanova’s classic model

Steponova’s classic mathematical model offers a comprehensive depiction of
the dynamic interplay between the growth of cancer cell volume and the activity of the
immune system response. Comprising a set of two interconnected ordinary
differential equations, this model enables the derivation of clinically observed
characteristics by means of its parameterization (Ledzewicz et al., 2011b). Over the
course of time, this model has served as a foundational framework for various
extensions and generalizations, thereby giving rise to multiple alternative models
(Ledzewicz and Schättler, 2020).

In light of determining the general formulation of the Stepanova model, one
need to consider a tumor growth model F (x), where x represents the tumor volume.
The function F is a positive, double differentiable function defined within the finite
range (0, x∞), with x∞ indicating the fixed carrying capacity for cancer. Additionally, the
model incorporates the density of immunocompetent cells, represented by the
dimensionless quantity y, which relates to various types of activated T cells during the
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immune response, to obtain (Stepanova, 1979):ẋ = µCxF (x)− γxy

ẏ = µI(x− βx2)y − δy + α .

(1)

In the above equation, the parameter µC serves as a coefficient associated with tumor
growth, derived from the function F (x). The symbol γ indicates the rate at which
cancer cells are eliminated through the activity of T cells. Consequently, the term γxy

captures the favorable impact of the immune response on the volume of cancer. Thus,
the first equation within the aforementioned model represents the dynamics of tumor
growth. In the second equation, the first term represents lymphocyte proliferation,
which exhibits proportionality to the tumor volume x and is stimulated by tumor
antigen.

Stepanova (1979) posits that extensive tumors hinder the activity of the immune
system, primarily due to insufficient stimulation of immune forces and the overall
suppression of immune lymphocytes caused by the tumor. This suppression is
captured in the model through the inclusion of the term βx2. The coefficients µI and β

play a crucial role in calibrating these interactions. When combined with the variable y,
they collectively depict the state-dependent impact of cancer cells on the stimulation
of the immune system. Additionally, the coefficient α quantifies the constant influx of T
cells originating from primary organs, while δ represents the natural death rate of T
cells (Ledzewicz et al., 2012).
2.2 Optimal control based on modified Stepanova model

Extensive research has been conducted in the field of optimal control to identify
the optimal combination of chemotherapy and immunotherapy, as well as the most
efficacious administration methods. A commonly employed model for this purpose,
introduced by Onofrio et al. (2012), represents a modified version of Stepanova’s
model given by:
ẋ = −µCx ln

(
x

x∞

)
− γxy − kxxu

ẏ = µI(x− βx2)y − δy + α + kyyv .

(2)
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Here, the parameter kx represents the rate of tumor cell death induced by
chemotherapy, while ky indicates the rate of immune cell proliferation facilitated by
immunotherapy. In this specific case, the function F (x) is expressed as
F (x) = − ln(x/x∞) to capture the characteristics of Gompertzian growth. Based on
medical evidence, numerous tumors exhibit a Gompertzian growth pattern (Norton,
1988; Norton and Simon, 1977). The variables u and v represent the blood profiles of a
cytotoxic agent and a generic immunostimulating agent, respectively.

In an uncontrolled system, where both u = 0 and v = 0 simultaneously, there
exist two locally asymptotically stable equilibrium points: one at the microscopic level
and another at the macroscopic level. These equilibrium points are characterized by
distinct regions of attraction, separated by the stable manifold of an intermediate
saddle point. Hence, the initial condition (x0, y0) within the domain of malignant cancer
growth needs to be efficiently transitioned towards the region of attraction associated
with the stable and benign equilibrium point. To achieve this, the primary objective is
typically to minimize the population of cancer cells (x) while preserving the density of T
cells (y) from depletion. Introducing the cytotoxic agent (u = 1) theoretically enables
the reduction of cancer volume to a sufficiently small chronic state, disregarding the
side effects. However, the presence of drug-related side effects renders this approach
impractical (Ledzewicz et al., 2011a).
3 MULTI-OBJECTIVE OPTIMIZATION

Multi-objective optimization entails the pursuit of two fundamental objectives.
One crucial objective involves making progress towards the Pareto optimal front.
Simultaneously, it is imperative to uphold a diverse array of solutions on the
non-dominated front. Given the equal importance assigned to all objectives within the
realm of multi-objective optimization, the attainment of a diverse set of solutions in
close proximity to the Pareto optimal front offers a plethora of optimal solutions (Deb,
2001).
3.1 Defining the objective function

In order to identify the optimal solution for a given problem, the selection of an
objective function becomes crucial. This function serves as a metric to determine the
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superiority of one candidate solution over another. Let F and G be non-empty sets
contained within Rn, where F ⊆ G, and let f : G → R represent a specified function.
Additionally, G can take the form of either Rn or F. Building upon these definitions, an
optimization problem can be defined as a generic problem aimed at finding a solution
x̄ ∈ F such that f(x̄) = min

x∈F
f(x).

The objective function f(·) and the feasible set F hold significant roles in the
formulation of the problem. Within this context, any x ∈ F is referred to as a feasible
point or feasible solution within the setG. Moreover, the optimal solution of the setG
is denoted as x̄ ∈ F, satisfying the aforementioned equation. The formulation of the
general multi-criteria decision-making problem can be expressed as follows:min F(x)

subjected to G(x) = 0, H(x) ≤ 0.

(3)

where x represents the decision variables vector, while F(x) denotes the vector of
objectives to be minimized. The constraints G(x) = 0 and H(x) ≤ 0 establish the
boundaries of the feasible solution space.

The mathematical objective consists of a weighted average of the penalty term
Ax(tf) − By(tf), which drives the system to traverse from the malignancy region to the
benign region of the state space through the separatrix. Additionally, this
mathematical objective takes into account the cumulative side effects of chemotherapy∫ tf
0

u(t)dt ≤ umax and immune system enhancement ∫ tf
0

v(t)dt ≤ vmax, considered as an
indirect measure of treatment side effects. Lastly, a small penalty term at the terminal
time tf is considered to make the mathematical problem well-posed. Thus, the general
expression for the mathematical objective takes the form:
J(u, v) = Ax(tf ) +By(tf ) + C

∫ tf

0

u(t)dt+D

∫ tf

0

v(t)dt+ Stf . (4)
The rate dose integrals model the side effects of therapies on healthy tissue, and if there
is data regarding drug severity, this will be reflected in the choices forC andD. Naturally,
the specific type of tumor and even the cancer stage the patient is in will also factor into
the calibration of these coefficients. For cases with a more advanced stage, higher side
effects may need to be tolerated, thus leading to smaller values for C andD. In general,
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the coefficients C, D, and S are variable choices that can be adjusted to calibrate the
optimal response of the system (Onofrio et al., 2012).
3.2 Genetic Algorithm NSGA-II

The Non-dominated Sorting Genetic Algorithm (NSGA), proposed by Srinivas and
Deb (1994), stands as one of the first evolutionary algorithms in the field. However, the
NSGA algorithm has faced criticism regarding its (i) high computational complexity for
non-dominated ordering, (ii) absence of elitism, and (iii) need for specifying a sharing
parameter σshare. In response, Deb et al. (2002) introduced an enhanced version, NSGA-
II, which aimed to address these concerns and improve the algorithm performance.

NSGA-II algorithm can be outlined in a step-by-step manner as follows. Initially, a
random population denoted as P0 is generated. Subsequently, the population is
partitioned into distinct levels of non-domination, with each solution assigned a fitness
value corresponding to its non-domination level (where level 1 represents the
best). Then, the algorithm assumes a minimization objective for fitness. The creation of
a descendant population, denoted as Q0 and of size N, is achieved through the
utilization of binary selection tournament operators, population tournament operators
(which can be seen in details in the work of Deb et al. (2002)), recombination, and
mutation operators.
4 RESULTS

All variables considered in simulations are given in Table 1. The numerical values
used for the parameters α, β, γ, and δ are directly sourced from the work of Kuznetsov
et al. (1994), where these parameters were estimated based on in vivo experimental
data for BCL1 B-cell lymphoma in the spleens of mice. In the same article, a classical
logistic term is employed to model cancer growth. Consequently, adjustments to the
remaining parameters were necessary to account for Gompertzian growth through
linear data fitting (Ledzewicz et al., 2012). Furthermore, the functional form (x − βx2)y

used in the Stepanova model represents a quadratic expansion of the term employed
in Kuznetsov et al. (1994).
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Table 1 – Numerical values for the variables and parameters used in computations(d’Onofrio, 2012)
Parameter Interpretation Numerical value Dimension
x Tumor volume - 106 cells
x0 Initial volume for x 600 106 cells
y Immune-competent cell density - Non-dimensional
y0 Initial volume for y 0.10 Non-dimensional
α Rate of influx 0.1181 1/day
β Inverse threshold for tumor suppression 0.00264 Non-dimensional
γ Interaction rate 1 107 cells/day
δ Death rate 0.37451 1/day
µC Tumor growth parameter 0.5599 107 cells/day
µI Tumor stimulated proliferation rate 0.00484 107 cells/day
x∞ Fixed carrying capacity 780 106 cells
kx Killing parameter of chemotherapy 1 107 cells/day
ky Rate of immune cells proliferation 0.10 107 cells/day
Source: the authors, 2024

Figure 1 depicts the dynamic profile of the tumor and immunocompetent cells,
considering the model by Stepanova (1979) and the parameter sets from
Table 1. Through upper left and right figures, it is evident that the tumor grows
significantly, reaching a malignant equilibrium state in the absence of any treatment,
accompanied by a substantial reduction in the density of immune-competent cells. The
bottom figure reveals a temporal correlation between the tumor volume x and the
density of effector cells y. Analysis of these figures leads to the conclusion that the
model under consideration entails conflicting objectives in the joint administration
problem of immunotherapy and chemotherapy treatments. This is due to the need to
simultaneously reduce tumor volume and avoid depletion of immune-competent cell
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density, while also considering the minimization of medication dosage to mitigate side
effects.

Figure 1 – Dynamic profile of the tumor and immunocompetent cells for theuncontrolled system
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The phase portrait of the mathematical model is presented in Figure 2. To
generate these results, we consider the set of parameters outlined in Table 1 and
different values for initial conditions (x0; y0) in the following ranges: [10 790]×[0.1
3]. The uncontrolled model exhibits two locally asymptotically stable equilibrium
points. The macroscopic malignant equilibrium occurs at (xm; ym) = (737.4; 0.031), while
the benign equilibrium takes place at (xb; yb) = (73.07; 1.320). Additionally, these regions
of attraction are separated by the stable manifold of an intermediate saddle point at
(xs; ys) = (356.2; 0.439).

It is relevant to emphasize the fact that the treatment’s performance is highly
dependent on the initial conditions, as there is a coexistence of macroscopic and
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microscopic equilibria point. The initial states of the system can be estimated with
some uncertainties before designing drug injection schemes. The objective of cancer
treatment can then be formulated to steer the initial conditions from the attraction
region of the malignant equilibrium to the attraction region of the benign equilibrium.
Figure 2 – Phase portrait for the uncontrolled system
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In the context of the problem under investigation, it is imperative to discretize
the control variables u and v. In light of this, the proposed approach involves the
transformation of the original optimal control problem into a nonlinear optimization
problem. To achieve this, the time interval [0, tf ] is subjected to discretization,
employing Nelem time nodes, with each node designated as ti, where i = 0, . . . , Nelem − 1,
and it follows that t0 ≤ ti ≤ tf . Within each of the Nelem − 1 time subintervals, denoted
as [ti, ti+1], the control variables are treated as piecewise constants, specifically,
u(t) = ui and v(t) = vi for ti ≤ t < ti+1, subject to the constraints umin ≤ ui ≤ umax and
vmin ≤ vi ≤ vmax.

We are engaged in the resolution of a multi-objective optimization problem
wherein our objective is the simultaneous minimization of x(t) and maximization of y(t)
at t = tf , with tf = 60 days. This optimization task is characterized by four decision
variables: 0 ≤ u ≤ 1, 0 ≤ v ≤ 1, 1 ≤ tu ≤ 10, and 1 ≤ tv ≤ 10. Here, tu and tv correspond
to the discrete subintervals deemed most appropriate for the administration of
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medication in each respective treatment regimen. Consequently, tu and tv are confined
to natural numbers spanning the interval from one to the upper limit of subintervals
considered, which, in our specific case, is ten. Notably, u and v are likewise constrained
to natural numbers.

To solve the proposed problem, the NSGA-II method was executed for 100
generations with 30 individuals in the population, simulated binary crossover with a
probability of 0.9, polynomial mutation with a distribution index of 20, and tournament
selection. Figure 3 displays the results of the Pareto Optimal Front along with the
discretized drug administration profiles u (on the left) and v (on the right) generated
during the simulations. Among all the non-dominated solutions, five points are
specifically highlighted for further discussion, each representing the administration of
cytotoxic agents (u) and immune-boosting interventions (v) for different scenarios.
Observing the profiles, it is evident that the first two drug administration profiles were
successful in altering the initial condition (x0, y0) within the domain characterized by
malignant cancer growth, steering it towards the attraction region associated with the
stable and benign equilibrium point at the final time tf . However, this achievement
came at the cost of high levels of cytotoxic (u = 1) and immunotherapeutic (v = 1)

agents administration during the second treatment time interval, rendering this
approach impractical due to drug-related side effects. The third point under analysis
exhibits considerably lower drug administration levels compared to the previous cases.
Here, the cytotoxic agent was applied during the second treatment interval, while
immune reinforcement was administered during the initial time interval. Although the
benign equilibrium was not reached by the final time tf , there is a notable reduction in
tumor cell volume (x) at the final time, with the system approaching the stable
manifold of the intermediate saddle point. Regrettably, points related to cases four
and five failed to lead the system out of the malignant equilibrium region due to
extremely low medication dosages and incorrect intervals for drug
administration. These figures underscore the impact of countless combinations of
drug administration dosages and application time intervals for mixed chemotherapy
and immunotherapy.
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Figure 3 – Pareto Optimal Front (on the top) and chemotherapy (on the left) andimmunotherapy (on the right) drugs administration profiles
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In Figure 4 are presented the system outcomes related to the numeric values for
the parameters defined in Table 1 and the control choices given in the previous figure.
As the values for x and y are computed for the objective functions just in the final time tf ,
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their time profiles must be taken into account in a qualitative point of view. However, it
is clear the relation between their final values and the Pareto Front. The first two cases
show a significant reduction in the cancer cells volume while keeping the effector cells
in an elevated value next to the final time of the treatment. In the third case one can see
an improvement for the patient conditions, but without a satisfactory conclusion for its
risk situation. In the last two cases the treatment failed.
Figure 4 – Cancer cells (on the left) and effector cells (on the right) evolution over timefor the treatment scenarios highlighted in the Pareto Optimal Front
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5 CONCLUSIONS

The main aim of this work was to develop a methodology based on
multi-objective optimization for cancer therapy drug administration by decreasing the
number of tumor cells while checking the number of immune-competent cell density.
Another interest was to reduce the side effects of both cytotoxic chemotherapy and
immunotherapy. Through the Pareto Optimal Front analysis, it was possible to take
into account a set of considerable drug administration profiles for the mixed
immunotherapy and chemotherapy treatment. On the extreme left part of the Pareto
Front (x < 100 × 106) were situated the best outcome for the in silico experiments,
where the combination of the citotoxic and immunostimulating agents were capable to
bring the system from the initial malignant equilibrium into the benign
equilibrium. These results were achieved with just a six days interval treatment, what is
a desirable treatment for the patient to suffer less with the treatment inherent side
effects, besides leading it to a faster recovering.
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