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ABSTRACT

Applying the signals and systems theory and control theory studied in electrical engineering and
mechanical engineering courses requires sophisticated, expensive and delicate handling devices. The
mathematical tools that are taught in the disciplines of signals and systems and control theory in the
undergraduate course are often abstract, especially in terms of practical application in an industrial
setting, which makes it necessary to use didactic control plants to complement teaching and hands-on
experimentation. This paper presents a low-cost two-wheeled self-balancing car system as a teaching
tool for engineering. The two-wheeled self-balancing car is a dynamic benchmark system designed to
control the car in a vertical position. The car is able to remain balanced through calculations that analyze
the angle of the gyroscope and the position of the wheels. DC motor drivers are used to compensate for
tilt and balance the car. As the purpose of the article is to serve as support material for undergraduate
students who are taking their first steps in the study of signals and systems and control theory, detailed
modeling by the laws of physics are presented, together with the simulation of the nonlinear model of
the system and a complete linearization of the model.
Keywords: Signals and systems, Control theory, Nonlinear system, Linearization, Simulation

RESUMO

A aplicação da teoria de sinais e sistemas e da teoria de controle estudadas nos cursos de engenharia
elétrica e engenharia mecânica requer dispositivos de manuseio sofisticados, caros e delicados. As
ferramentas matemáticas que são ensinadas nas disciplinas de sinais e sistemas e teoria de controle no
curso de graduação são muitas vezes abstratas, principalmente em termos de aplicação prática em
ambiente industrial, o que torna necessária a utilização de plantas de controle didáticas para
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complementar o ensino e a experimentação prática. Este artigo apresenta um sistema de carro com
autoequiĺıbrio de duas rodas de baixo custo como ferramenta de ensino para engenharia. O carro com
equiĺıbrio automático de duas rodas é um sistema de referência dinâmico projetado para controlar o
carro na posição vertical. O carro consegue se manter equilibrado por meio de cálculos que analisam o
ângulo do giroscópio e a posição das rodas. Drivers de motor CC são usados para compensar a
inclinação e equilibrar o carro. Como o objetivo do artigo é servir de material de apoio para alunos de
graduação que estão dando os primeiros passos no estudo de sinais e sistemas e teoria de controle, são
apresentadas modelagens detalhadas pelas leis da f́ısica, juntamente com a simulação do modelo não
linear do sistema e uma linearização completa do modelo.
Palavras-chave: Sinais e sistemas, Teoria de controle, Sistemas não lineares, Linearização, Simulação

1 INTRODUCTION

The mathematical modeling and control of the two-wheeled self-balancing car
(TWSBC) has received great attention from researchers in recent decades, due to the
fact that it is a non-linear electromechanical system, composed of two side wheels that
come into contact with the floor surface, and by be an unstable system by nature. The
wheels are independently driven to balance at the center of gravity above the axis of
rotation of the wheels Grasser et al. (2002); Kocaturk (2015).

The wheels are driven by two motors coupled to each of the they. The motors can
be of DC nature and are controlled by an H-bridge and PWM (Pulse-Width Modulation)
electrical signals through a control system based on reading the voltage and speed of
its center of gravity. Its operation is similar to the classic inverted pendulum system.

The movement of the TWSBC is governed by an under-actuated configuration,
i.e., the number of control inputs is less than the number of degrees of freedom to
be stabilized, which makes it difficult to control the system. Therefore, the TWSBC is
an excellent benchmark for study and investigating of various control techniques and
controller efficiency for application in the design and development of control systems
for cars, spacecraft, domestic transportation, military transport, among others.Jeong
and Takahashi (2008); Jiménez et al. (2020); Johnson and Nasar (2017); Shino et al. (2015)

The open source community is full of low-cost prototypes, instructions and code
snippets for studying the modeling and control of the TWSBC, the vast majority use some
open source micro controller from the Arduino ecosystem. An example is the open
source Kit Keyestudio Self-balancing Car as seen in Figure 1.
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Figure 1 – The open Source self-balancing Car Kit supplie by Keyestudio

Source: Keyestudio

The motivation for working with the TWSBC are: small size, simple and compact
structure, action flexibility, good maneuverability and low cost Galicki (2016); Takei
et al. (2009). The fact that the prototype presents unstable and non-linear dynamics
makes the two-wheeled balanced self-balancing car an excellent challenge for
engineering students to revisit the literature related to concepts of modeling systems
with nonlinear dynamics, stability analysis, linearization, feedback control systems,
robotics application and design of control systems. Jiménez et al. (2020)

In recent years, various design of controllers and analysis technique had been
proposed by numerous researchers to control the TWSBC such that the car able to
balance itself. In Arvidsson and Karlsson (2012), a comparison between PID and LQR
has been presented while the heading angle of the robot was also studied in the
dynamic equation that was derived using Lagrangian method. In Majczak and
Wawrzyński (2015) a linear stabilizing Proportional Integral Derivative (PID) and Linear
Quadratic Regulator (LQR) controller was derived by a planar model without
considering robot’s heading angle. In Fang (2014) dynamics was derived using a
Newtonian approach and the control was design by the equations linearized around
an operating point.

In this paper the information was organized in the following way: In section II, a
complete modeling of the TWSBC system is described using the Lagrange mechanical
dynamics equations using the simile with the dynamic behavior of the inverted
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pendulum. Section III describes the nonlinear simulation of the open-loop TWSBC
system based on the analysis of Nonlinear Ordinary Differential Equations using
Matlab®/Simulink™ software . Section IV presents the digital PID controller that will
be used later in future work. And to conclude, in section V the system linearization
around the equilibrium point is presented, and a transfer function is obtained.
2 MATHEMATIC MODEL OF THE TWSBC SYSTEM

The TWSBC system is dynamically unstable and has a behavior equivalent to an
inverted pendulum on car with wheels, therefore, its modeled using as a reference to
the inverted pendulum system. Kung (2019); Mateşică et al. (2016). The TWSBC system
can be considered as a mechanical platform composed of two coupling subsystems: the
main body (pendulum) and the assembled rotation system (pendulum cart). The main
body resembles the inverted pendulum and integrates the chassis of the TWSBC along
with the control cards, drivers, battery and DC motors. The main body is coupled to the
rotation system and its mass m2 is concentrated in its center of gravity. The rotation
system is equivalent to the inverted pendulum cart The rotation system is equivalent to
the inverted pendulum cart and is made up of the wheels and rotors of the DC motors,
as shown in the diagram in in Figure 2(a).
Figure 2 – Free-body diagram of the TWSBC system

a) Balanced b) Inclined
Source: Keyestudio

The coordinate system and the notation of the physical properties of the TWSBC
system are illustrated in the free-body diagram in Figure 2(b) where the platform moves
along a horizontal axis x. The tilt angle of the TWSBC is θB is the angle formed by the
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line that intersects the mass center of the main body and the axis of the wheel, with
the y axis. The masses are measured using an electronic bascule and the individual and
total moments of inertia are found using the Steiner theorem or parallels axis’s theorem
Jiménez et al. (2020).

In the free-body diagram in Figure 2(a) it is observed that a torque is applied to
each TW wheel due to the movement of the DC motors, making that the main body mass
mB of the TWSBC to shift, presenting the tilt angle θB.
2.1 Dynamic model of the TWSBC system

The motion equations that define the behavior of the TWSBC system can be
obtained using the Lagrangian dynamics.

The kinetic energy of the rotation system due to angular displacement can be
represented as:
K · Er =

1

2
mr · ẋ2 (1)

Where xi and yi coordinates indicate the position of the center of gravity of gravity
of the main body:
xi = x+ l · sin(θB) (2)
yi = l · cos(θB).

Calculating the derivatives of the previous position (xi, yi) with respect to time, the
respective velocities were found as:
vxi

= ẋ+ l · cos(θB) (3)
vyi = −l · sin(θB).

Taking the squares of the main body velocities (pendulum):
|vi2| = vxi

2 + vyi
2 = ẋ2 + 2lẋθ̇B cos(θB) + l2

(
θ̇B
)2

cos2(θB) + l2
(
θ̇B
)2

sin2(θB). (4)
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Simplifying (4) using trigonometric identity:
|vi2| = ẋ2 + 2lẋθ̇B cos(θB) + l2

(
θ̇B
)2
. (5)

Then the kinetic energy of the main body due to the linear displacement of the
TWSBC is obtained as:
K · EB =

1

2
mB · ẋ2 + mBlẋθ̇B cos(θB) +

1

2
mBl

2
(
θ̇B
)2
. (6)

Adding (1) and (6) the total kinetic energy of TWSBC is obtained in (7).
ET =

1

2
(mB +mr) · ẋ2 + mBlẋθ̇B cos(θB) +

1

2
(JB +mBl

2)
(
θ̇B
)2
. (7)

The general Lagrange equations for the velocity of the rotation system and the
main body of the TWSBC are calculated as follows:
d

dt

(
∂ET

∂ẋ

)
− ∂ET

∂x
= QR. (8)

d

dt

(
∂ET

∂θ̇

)
− ∂ET

∂θ
= QB. (9)

Deriving (7) to find QR

∂ET

∂ẋ
= (mB +mr) · ẋ + mBlθ̇B cos(θB) (10)

d

dt

(
∂ET

∂ẋ

)
= (mB +mr) · ẍ + mBlθ̈B cos(θB) (11)

∂ET

∂x
= 0 =⇒ QR = TW − fR · ẋ. (12)
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Similarly, deriving (7) to find QB:
∂ET

∂θ̇
= mBlẋ cos(θB) + (JB +mBl

2)θ̇B. (13)

d

dt

(
∂ET

∂θ̇

)
= mBlẍ cos(θB) + (JB +mBl

2)θ̈B −mBlẋ
(
θ̇B
)2

sin(θB). (14)

∂ET

∂θ
= −mBlẋθ̇B sin(θB). (15)

QB = −mBgl sin(θB)− fB · θ̇B. (16)
Substituting the previous values in the Lagrange equations (8) and (9) is obtained

the motion equations:

ẍ = − mBl

(mB +mr)

(
θ̈B cos(θB) +

(
θ̇B
)2

sin(θB)

)
+

1

(mB +mr)

(
TW − fR · ẋ

)
(17)

θ̈B = − mBl

(JB +mBl2)

(
ẍ cos(θB) + g sin(θB)

)
− fB

(JB +mBl2)
(18)

Where (17) and (18) defines the non-linear dynamic behavior of the TWSBC
system. Equation (17) was obtained from the assembled rotation system, while (18)
was obtained from the main body. The inputs of the TWSBC system are the torque TLW

and TRW applied to the left and right wheel assemblies by the DC motors, which are
assumed to be similar, that is: TW = TLW = TRW Jiménez et al. (2020).
3 SIMULATION OF THE NONLINEAR MODEL OF THE TWSBC SYSTEM

Figure 4 shows the Matlab®/Simulink™ simulation diagram of the nonlinear
ordinary differential equations described in (17) and (18). Some modifications were
made to the simulation diagram, such as: mr = m1; mB = m2; JB = I and θB = θ. The
friction in the main body of the TWSBC was considered negligible, i.e., fB ∼= 0.
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Figure 3 – Non-linear open-lop of the TWSBC system simulation Matlab®/Simulink™

Source: Matlab®/Simulink™

Figure 4 – Non-linear open-loop model of the TWSBC system (Matlab®/Simulink™) with(a) Position θ(t) e (b) Velocity θ̇(t)
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Source: Elaborated by the authors (2022)
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Figure 5 – Non-linear open-loop model of the TWSBC system (Matlab®/Simulink™) with(a) Position x(t) e (b) Velocity ẋ(t)
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Random positive values of the parameters were used and several simulations
were performed. An example of the simulations performed is shown in Figure 4 and
Figure 5.
3.1 Linearization of the TWSBC sytem model

The motion equations (17) and (18) are linearized around the unstable
equilibrium point of the system at θB = θ̇B = 0, since the desired operating point is
considered when the TWSBC system is in a stable vertical position, with angle zero tilt.
In this sense, for an inclination angle θB zero, it implies making the following
approximations for linearization: sin(θB) ∼= θB; cos(θB) ∼= −1; (θ̇B)2 ∼= 0.

Using the previous approaches to linearize (17) and (18) are making negligible the
friction in the main body of TWSBC fB ∼= 0, we have:
ẍ =

mBl

(mB +mr)
θ̈B +

1

(mB +mr)

(
TW − fR · ẋ

) (19)

θ̈B =
mBl

(JB +mBl2)
ẍ +

mBlg

(JB +mBl2)
θB . (20)
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Reorganizing the equations (19) and (20), we have:
(mB +mr)ẍ = mBlθ̈B + (TW − fR · ẋ) (21)

(JB +mBl
2)θ̈B = mBlẍ + mBlgθB . (22)

Now, apply the Laplace Transform to the equations (21) and (22):
(mB +mr)s

2 X(s) + fRsX(s) − mBls
2 ΘB(s) = TW (s) (23)

(JB +mBl
2)s2 ΘB(s) − mBlgΘB(s) = mBls

2 X(s). (24)
Isolating X(s) from (24), we have:

X(s) =

(
(JB +mBl

2)

mBl
− g

s2

)
ΘB(s). (25)

Replacing (25) in (23) we obtain the transfer function of the system that relates
the output of angular position ΘB(s) with respect to the input torque TW (s):

ΘB(s)

TW (s)
=

mBls
2

p

s4 +
fR(JB +mBl)s

3 − mBlg(mB + mr)s
2 − fRmBlg s

p

, (26)

with p = jB(mB + mr) + mBmrl
2.

After the cancellation of the pole and the zero at the origin and the term p of the
denominator we obtain (27):
ΘB(s)

TW (s)
=

mBls

ps3 + fR(JB +mBl)s2 − mBlg(mB + mr)s − fRmBlg
. (27)

Now, assuming that the used DC motor has a constant output torque, it can be
considered that what is going to be controlled is the angular velocity of the DC motor
output shaft that corresponds to the rotation velocity of each wheel Θ̇W , which is related
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to the input motor torque according to the relationship:
r Θ̇W = u(t) = TW (t). (28)

Replacing the term TW s = s rΘ̇W of the relation (28) and if the friction of the
assembled rotation system fR ∼= 0 is neglected, we obtain the simplified linear transfer
function around the point of operation of the TWSBC system:
ΘB(s)

ΘW (s)
=

rmBls

ps2 −mBlg(mB +mr)
. (29)

ΘB(s)

ΘW (s)
=

KT s

s2

AT

− 1

. (30)

Equation (30) indicates that with proper adjustment of the angular velocity of the
DC motor output shaft Θ̇W , its is possible to keep Θ̇B close to zero degrees, that is, it
places the system in vertical position. Replacing the p term gives the location of the
actual pair of AT poles of TWSBC system. One pole is located in the left half plane (stable)
and the other in the right half plane (unstable) of the complex S-plane.
KT =

r

g(mB +mr)
. (31)

AT = ±

√
(mB +mr)mrgl

(mB +mr)(JB +mBl2) − (mBl)2
. (32)

4 DESIGN OF DIGITAL CONTROLLER - FUTURE WORK

The TWSBC system is not stable in open loop since, when a bounded input
stimulus, the output of the inclination angle ΘB is not bounded, that is, it does not
meet the superposition principle and has an unstable response.

As future work, a controller design will be proposed to be implemented digitally
whose main objective will be to stabilize the system and keep it in the main body of the
TWSBC in vertical position at (desired operating point) where the tilt angle is ΘB = 0,
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regardless of the disturbances.
A classic PID controller will be proposed, simulations using

Matlab®/Simulink™ and implementation of digital algorithms on microcontrollers in
the Arduino ecosystem. The PID control architecture is feedback where the input to
the controller is the system error signal e(t). The error is the deviation between the
desired state of the tilt angle ΘB = 0 and the state of the actual tilt angle measured by
the IMU of the TWSBC sensing module.

The PID controller calculates the control signal value u(t) that provides energy to
the DC motors of the TWSBC system through PWM signals. The objective of the project
is to calculate the gains from control actions through the control law delivered by the
PID Controller:
u(t) = kpe(t) +

kp
ti

∫
e(t)dt + kp td

d

dt
e(t) (33)

where the error e(t) = set-point − input.
To implement in a microcontroller (For example, microcontrollers from the

Arduino ecosystem), it is necessary to discretize the continuous equation above.
A trapezoidal sum was used to approximate the integral and for the derivative

term we will use finite differences (regressive).
∫

e(t)dt =
∑(

e(k)− e(k − 1)

2

)
Ts, (34)

d

dt
e(t) =

e(k)− e(k − 1)

Ts

. (35)
Where Ts is the sampling time. Choosing the correct sampling time is very

important for digital systems. A good choice can be made using the method proposed
by Zigle-Nichols.
Ts <

θ

4
, (36)

.
τ

10
≤ Ts ≤

τ

20
. (37)

Ci. e Nat., Santa Maria, v. 46, n. spe. 3, e87047, 2024



Rosa, P. H. R., Stefanello, V. R., Caldeira, A. F., Rech, C., Maidana, C. F., & Venturini, S. F. | 13

Thus, the PID digital transfer function can be written as:
C(z−1) =

u(k)

e(k)
=

q0 + q1z
−1 + q2z

−2

1− z−1
, (38)

where,

q0 = kp

(
1 +

Ts

2ti
+

td
Ts

)
,

q1 = −kp

(
1− Ts

2ti
+

2td
Ts

)
,

q2 =
kptd
Ts

.

With this, we can manipulate the 18 equation to obtain the control law that will
be implemented.
u(k)(1− z−1) = q0e(k) + q1z

−1e(k) + q2z
−2e(k),

u(k)− u(k)z−1 = q0e(k) + q1z
−1e(k) + q2z

−2e(k),

u(k) = u(k)z−1 + q0e(k) + q1z
−1e(k) + q2z

−2e(k).

Now we apply the inverse z-transform to obtain the difference equation (which
will be implemented in the microcontroller).
u(k) = u(k − 1) + q0e(k) + q1e(k − 1) + q2e(k − 2). (39)
5 CONCLUSIONS

In this work a complete modeling of the two-wheeled self-balancing car was
presented using the Lagrange mechanical dynamics equations using the simile with
the dynamic behavior of the inverted pendulum. A simulation of the nonlinear
ordinary differential equations of the two-wheeled self-balancing car is presented
using Matlab®/Simulink™. A linearization around an equilibrium point is presented in
the form of a transfer function. As future work, classical control tools will be used to
design a classic PID controller. Control identification techniques will be addressed, and
a comparison between the identified models with the real system will be evaluated.
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This work was a first contact of undergraduate students with the application of
feedback control, as well as the first article written in English.
REFERENCES
Arvidsson, M. and Karlsson, J. (2012). Design, construction and verification of a self-balancing vehicle.
Fang, J. (2014). The lqr controller design of two-wheeled self-balancing robot based onthe particle swarm optimization algorithm. Mathematical Problems in Engineering,2014:1–6.
Galicki, M. (2016). Robust task space trajectory tracking control of robotic manipulators.

International Journal of Applied Mechanics and Engineering, 21(3):547–568.
Grasser, F., D’Arrigo, A., Colombi, S., and Rufer, A. (2002). Joe: A mobile, invertedpendulum. Industrial Electronics, IEEE Transactions on, 49:107 – 114.
Jeong, S. and Takahashi, T. (2008). Wheeled inverted pendulum type assistant robot:design concept and mobile control. Intelligent Service Robotics, 1(4):313–320.
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