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ABSTRACT

The use of precision agriculture techniques can contribute to increased productivity efficiency, as 
management decisions are based on the spatial variability of soil attributes that influence the productive 
performance of crops. This study aimed to evaluate the use of a multisensor platform in mapping the 
apparent soil electrical conductivity (EC), soil temperature, and soil moisture. Measurements were 
taken at 75 georeferenced sample points spaced 35 meters apart in an 8.6-hectare area. Statistical and 
geostatistical techniques were employed in the analysis and mapping of the measured variables. The 
EC readings from the multisensor platform were compared with those obtained using a commercial 
sensor, based on the analysis and calculation of the Pearson correlation coefficient (r). All measured 
variables showed spatial variability in the study area. The use of the multisensor platform allowed for 
mapping the spatial variability of EC, temperature, and soil moisture, and thematic maps indicating 
these variations throughout the studied area were generated. The EC measured by the multisensor 
platform was similar to the EC measured by the commercial sensor, with r = 0.8, indicating reliability in 
the field readings.

Keywords: Apparent soil electrical conductivity; Soil temperature; Soil moisture

RESUMO

O emprego de técnicas de agricultura de precisão pode contribuir com o aumento da eficiência 
produtiva, pois as decisões de manejo são pautadas com base na variabilidade espacial dos atributos 
do solo que influenciam o desempenho produtivo das culturas. Este estudo teve como objetivo avaliar 
o uso de uma plataforma multissensor no mapeamento da condutividade elétrica aparente do solo 
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(CE), temperatura do solo e umidade do solo. Foram realizadas mensurações em 75 pontos amostrais 
georreferenciados, espaçados em 35 metros, em uma área de 8,6 hectares. Técnicas estatísticas e 
geoestatística foram empregadas na análise e mapeamento das variáveis medidas. As leituras de CE 
da plataforma multissensor foram comparadas com aquelas obtidas utilizando um sensor comercial, 
a partir da análise e cálculo do coeficiente de correlação de Pearson (r). Todas as vaiáveis mensuradas 
apresentaram variabilidade espacial na área de estudo. Com o uso da plataforma multissensor foi 
possível mapear a variabilidade espacial da CE, temperatura e umidade do solo, sendo confeccionados 
mapas temáticos indicativos d tais variações ao longo da área estudada. A CE mensurada pela 
plataforma multissensor foi similar à CE mensurada pelo sensor comercial, apresentando r = 0,8, 
indicando confiabilidade nas leituras realizadas no campo.

Palavras-chave: Condutividade elétrica aparente do solo; Temperatura do solo; Umidade do solo

1 INTRODUCTION

To increasing the economic income by reaching higher yields in the same area 

without harming the environment is the main goal of the farmers nowadays. Precision 

agriculture can help them to achieve this goal by providing tools for choosing the right 

decisions in different regions of the same field, that are necessary due to the soil spatial 

variability (Inamasu & Bernardi, 2014).

One way to characterize the soil variations is by measuring the apparent 

electrical conductivity (EC), which can be related to clay, water, organic matter, and 

nutrient contents. The EC can be used to create management zones by reducing the 

number of samples to be collected, resulting in cost reduction and making the activity 

more profitable (Kitchen et al., 2003; Serrano et al., 2010).

Considering the cheapness and fastness of collecting EC data, the generated 

maps can result in better spatial resolution in comparison with maps generated by 

grid soil sampling followed by laboratory analysis. The use of soil EC data can delimit 

management zones to guide the location where soil samples should be collected to 

have a better characterization of each zone (Queiroz et al., 2020).

Many sensors have been used to characterize the soil spatial variability by the 

EC. Those with the electrical resistivity method, in which a current is applied in a pair of 

electrodes and the electrical potential difference is measured in other pair electrodes, 
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are the most used (Queiroz et al., 2020). This method is simple, and it can be easily 

applied. As the soil apparent electrical conductivity depends on the temperature and 

moisture of the soil and considering that these two variables also present spatial 

variability, it is expected that a sensor that measures EC, temperature, and moisture 

of the soil has a better chance of success in soil variability characterization.

The objective of this work was to evaluate a multisensor platform designed to 

analyze spatial variations in soil within an agricultural production field. This platform 

measures the soil temperature and moisture, and the apparent soil electrical 

conductivity for the 0-30 cm layer.

2 MATERIAL AND METHODS

The present study was conducted in the agricultural area of the Federal University 

of Santa Maria (UFSM) campus in Cachoeira do Sul (UFSM-CS). The field had an area of 

8.6 hectares, with central coordinates at 30°01’23” South latitude and 52°56’59” West 

longitude. The soil has been classified as Red Argisol, according to the soil classification 

system developed by EMBRAPA (2013).

In the experimental field, a sample grid was established. It  consisted of 75 points, 

regularly spaced at 35 meters. Of these, 36 points were included in the database used for 

Pearson correlation analysis (p<0.05). At each of the 75 sample points, measurements 

were taken for soil apparent soil electrical conductivity (EC, mS m-1), soil moisture (UMD, 

%), and soil temperature (T, °C). The EC was measured using two different sensors, a 

commercial (standard) and a new soil sensor platform (under testing).

The commercial sensor used in this experiment was the LandMapper® ERM-02, 

produced by the Landviser® company. The new soil sensor platform was the Smart 

Soil Sensor, developed by researchers from the Department of Agricultural Engineering 

(DEA) at the Federal University of Viçosa (UFV). This sensor is characterized as a 

multisensor platform, as it not only measures EC but also measures soil moisture and 

temperature. Figure 1 shows the area delimitation polygon and the sampling points 
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grid and Figure 2 presents the sensors used in the measurements.

Figure 1 – Grid of sample points used as a basis for field data collection and for 

calculating the Pearson correlation coefficient

Source: Authors (2024)

Figure 2 – Smart Soil Sensor multisensor platform and commercial LandMapper® 

ERM-02 sensor

Smart Soil Sensor
Source: Authors (2024)

LandMapper ERM-02
Source: Adapted from Bottega et al. (2022)
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Both sensors are based on the electrical resistivity method to obtain EC 

measurements. In this method, electrical conductivity is obtained by introducing four 

equally spaced electrodes into the soil surface. An electric current is applied to the outer 

electrodes, and the electrical potential difference is measured at the inner electrodes. 

The electrode arrangement is denominated the Wenner array. In the used sensor, 

electrodes were spaced 30 centimeters apart, to obtain EC readings representative of 

the 0-0.3 meters soil layer (Corwin & Hedrickx, 2002; Corwin & Lesh, 2003).

The resistivity obtained using the Werner array was calculated using Equation 1.

(1)

where:

ρ = Resistivity, Ohm m-1;

a = Electrode spacing, m;

∆V = Measured electrical potential difference, V; and

i = Applied electric currrent, A.

The apparent soil electrical conductivity is the inverse of resistivity. EC was 

calculated using Equation 2.

EC = (2)

where:

EC = Apparent soil electrical conductivity, S m-1.

The soil moisture and temperature measurements, along with the EC obtained 

by both sensors at the 75 sample points, formed the database used for subsequent 

analyses. Firstly, a descriptive statistical analysis was conducted, identifying the 

minimum and maximum values, and calculating the mean, variance, standard 

deviation, and coefficient of variation.

Subsequently, spatial dependence modeling was performed to characterize 

the spatial variability of the measured variables in the study area. Spatial dependence 
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was assessed through semivariogram fitting, assuming the stationarity of the intrinsic 

hypothesis, as defined by Equation 3.

(3)

where:

)(ˆ hγ  = Semivariance as a function of the separation distance (h) between pairs 

of points;

h = Separation distance between pairs of points, m;

N(h) = Number of experimental pairs of observations Z(xi) and Z(xi + h) separated 

by a distance h.

The tested semivariogram models included Gaussian, Linear with a sill, Spherical, 

and Exponential. The model that exhibited the lowest Root Mean Square Error (RMSE) 

and the highest coefficient of determination (R2) was selected. Once the model was 

adjusted and validated, the experimental values of the EC were interpolated for 

prediction at unsampled locations. The adopted validation method of the interpolation 

process was cross-validation, and the interpolation of values was carried out using 

ordinary kriging, which, according to Oliver and Webster (2014), provides the best 

unbiased linear predictions.

The analysis of spatial variability was conducted in the Quantum GIS (QGIS) 

Geographic Information System, version 3.28 Firenze, using the Smart-Map plugin 

developed by Pereira et al. (2022). Smart-Map enables the prediction of values at 

unsampled locations and the mapping of soil attributes through data interpolation 

using ordinary kriging.

For descriptive statistical analysis and the calculation of the Pearson correlation 

coefficient, the statistical software Statistica, version 7, was used. In this same software, 

Pearson correlation graphs (p<0.05) were also generated for the values of apparent 

soil electrical conductivity, measured by the multisensor platform and the commercial 

ERM-02 sensor.
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3 RESULTS AND DISCUSSION

The mapped area showed variation in the values of the measured variables 

based on the location of the sample points where readings were taken with the two 

sensors. The sensors used here indicated that soil attributes had spatial variability. 

The results of the descriptive statistical analysis are presented in Table 1.

Table 1 – Descriptive statistics of soil variables measured by the sensors

Measured
variables

Minimum Mean Maximum Variance
Standard
deviation

VC (%)

T (°C)1 19.30 21.29 25.10 1.86 1.36 6.4

SM (%)2 20.60 31.47 40.80 14.57 3.82 12.1

EC3 Smart Soil 2.10 5.51 11.00 2.52 1.59 28.9

EC ERM-02 2.93 5.76 12.73 2.19 1.48 25.7

Source: Authors (2024)

1Soil temperature. 2Soil moisture. 3Apparent soil electrical conductivity

Variations in soil moisture can be explained by differences in clay content and 

vegetative cover (mulch) in the soil. Locations with higher levels of these attributes 

tend to have a higher holding water capacity and, consequently, higher moisture 

levels. This is because clay has a smaller particle size than sand and silt, resulting in 

fewer macropores in the soil and, consequently, more efficient water retention (Molin 

et al., 2011). On the other hand, mulch acts as a physical barrier, reducing soil water 

evaporation and increasing water retention capacity, thus keeping the soil with higher 

moisture content for a longer period (Salomão et al., 2020).

According to Table 1, the coefficient of variation of the soil temperature 

was only 6.4%, which is the lowest value among the variables measured. This 

behavior is probably associated with the quantity and type of vegetative cover in 

the field. According to Gasparim et al. (2005), the reduction in soil temperature 

is caused by the existing mulch cover, which, because of its thermal properties, 
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acts as a physical barrier, therefore preventing direct exposure to solar radiation 

and reducing soil temperature fluctuations. A study conducted by Vieira et al. 

(2020) demonstrated that soil temperature was reduced with the use of soil 

cover. According to the authors, soil cover led to a reduction in soil temperature 

amplitude of up to 5.8°C.

Variations observed in the apparent electrical conductivity of the soil are directly 

related to variations in soil moisture, organic matter content, clay content, and chemical 

attributes of the soil (Kitchen et al., 2003 and Serrano et al., 2010). This variation is 

indicative of differences in soil attributes in the studied area, demonstrating that, even 

in a small field (8.6 hectares), the uniform application of fertilizers and amendments 

may not be the most suitable.

Comparing the EC values measured by the two devices highlights the 

precision of the data, with low standard deviation and coefficient of variation 

values indicating the ability of the sensors in replicate the collection at the same 

point. The minimum, mean, and maximum values of electrical conductivity show 

similarity with other studies that used resistivity as the data collection method, 

such as those conducted by Bernardi et al. (2017), Sousa et al. (2021), Bottega et al. 

(2022a), and Bottega et al. (2022b).

In Figure 3, presents the results of the geostatistical analysis and the spatial 

variability maps. Isotropic variograms, cross-validation graphs, and thematic maps 

representing the spatial variability of soil temperature, soil moisture, apparent soil 

electrical conductivity measured by the multisensor platform, and the commercial 

ERM-02 sensor are presented.
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Figure 3 – Results of the geostatistical analysis and the spatial variability maps

Soil temperature (°C)

Soil moisture (%)

EC Smart Soil Sensor (mS m-1)

EC LandMapper® ERM-02 (mS m-1) 

Source: Authors (202
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All the mapped variables exhibited spatial dependence, allowing for the fitting 

of theoretical models of semivariance to the empirical semivariance of the measured 

variables. Thus, the prediction of values at unsampled locations and the creation of 

maps representing variations in the area were possible.

The geostatistical modeling that showed the best spatial behavior for all measured 

variables was the linear model with a sill. In general, the range values obtained in fitting 

the semivariograms were five times greater than the distance between sampled points, 

ensuring reliability in estimating values at unsampled locations. According to Mello et 

al. (2006), the range parameter is indicative of the magnitude of spatial continuity. 

Therefore, the larger this value, the greater the spatial continuity, and consequently, 

the more accurate the estimation of values at unsampled locations.

After the maps were created, it was possible to observe that the variables EC 

(measured by both sensors) and soil moisture showed high similarity. Locations with 

higher EC values also had higher moisture levels. Conversely, the opposite behavior 

was observed between these maps (EC and soil moisture) and the soil temperature 

map, with the causes of these variations previously discussed.

In Figure 4, graphs and Pearson correlation coefficients (r, p<0.05) between 

the values of temperature, soil moisture, and apparent soil electrical conductivity are 

shown. Galarça et al. (2010) emphasize that the Pearson correlation coefficient (r) takes 

values from -1 to 1. A perfect positive correlation between two variables is observed 

for r = 1. A perfect negative correlation between two variables, meaning that as one 

increases, the other decreases, is obtained when r = -1. The authors also highlight that 

the correlation between two characteristics measures the association between them; 

however, it does not determine the cause-and-effect relationship between them.
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Figure 4 – Graphs of Pearson correlation (p<0.05) between the values of temperature, 

soil moisture, and apparent soil electrical conductivity

Source: Authors (2024)

All correlations were significant at the 5% probability level. A negative correlation 

was observed between soil temperature and EC measured by both devices, with r = 

-0.45 for both. Soil moisture showed a positive correlation with EC, regardless of the 

sensor used for EC measurement. The highest correlation coefficient (r) was observed 

for the correlation between EC values measured by the two sensors (r = 0.8).
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Locations with higher soil temperatures typically have less vegetative cover, 

favoring solar radiation incidence on the soil, causing an increase in temperature, and 

consequently, water loss through evaporation, reducing soil moisture. This behavior 

justifies the observed negative correlation coefficient, as water in the soil has a direct 

influence on electrical conductivity, as evidenced by the significant positive correlation 

between EC and soil moisture, as discussed earlier.

4 FINAL CONSIDERATIONS

All measured variables showed spatial dependence in the experimental area. 

The use of a multisensor platform enabled the mapping of the spatial variability of 

apparent soil electrical conductivity (EC), temperature, and soil moisture, resulting 

in thematic maps indicating these variations across the experimental area. The EC 

measured by using the multisensor platform was similar to the EC measured by the 

commercial sensor, with r = 0.8, indicating reliability in the field readings.
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