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ABSTRACT

The design of systems constitutes one of the most important pillars in engineering, in which it 
is desired to reduce costs, minimize time and resources, and guarantee the quality, efficiency, 
and safety of products. In recent decades, numerous population-based algorithms have been 
employed for this purpose. Among these, we can cite a new heuristic approach, the Vibrating 
Particles System (VPS) algorithm. This is based on simulating the free vibration of systems with 
one degree of freedom and viscous damping. The present work aims to extend the VPS to a multi-
objective context. The results obtained considering two engineering design problems demonstrate 
that the proposed methodology was able to obtain good performance in terms of convergence 
and computational cost.

Keywords: Engineering system design; Vibrating particles system algorithm; Heuristic optimization; 
Multi-objective optimization

RESUMO

O projeto de sistemas configura um dos pilares mais importantes em engenharia, em que se deseja 
reduzir custos, economizar tempo e recursos, e garantir a qualidade, eficiência e segurança dos 
produtos. Nas últimas décadas, inúmeros algoritmos baseados em população têm sido empregados 
para essa finalidade. Dentre estes, destaca-se uma nova abordagem heurística, a saber, o Algoritmo 
de Partículas Vibrantes (APV). Este é fundamentado na simulação da vibração livre de sistemas com 
um grau de liberdade e que apresentam amortecimento viscoso. O presente trabalho tem por 
objetivo estender o APV para o contexto multi-objetivo. Os resultados obtidos considerando dois 
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problemas de projeto em engenharia demonstram que a metodologia proposta foi capaz de obter 
bom desempenho em termos de convergência e custo computacional.

Palavras-chave: Projeto de sistemas de engenharia; Algoritmo de partículas vibrantes; Otimização 
heurística; Otimização multi-objetivo

1 INTRODUCTION

Optimization is an indispensable mathematical tool during engineering 

systems design. In this case, it is desirable to obtain products with greater efficiency 

and lower cost, without testing all the possibilities involved. For this purpose, the 

optimization problem must be well formulated, i.e.; all constraints that define this 

problem must be well specified (Ravindran et al., 2009).

From a mathematical point of view, the methods for solving the optimization 

problem can be classified as (Deb, 2001): classical (or deterministic) and heuristics 

(or non-deterministic). The first class consists of the use of information about the 

gradient of objective function and constraints to update a candidate solution to 

the optimization problem. On the other hand, the second, in general, consists 

of using a population of candidates, whose information about the individuals 

(objective function and constraints) is used to update the population along 

the generations. It is worth noting that in this case no information about the 

gradient of objective function and constraints is used to direct the search process 

(Vanderplaats, 1999).

As mentioned by Deb (2001), the main advantage of population-based 

algorithms is their ability to escape from local optima. In addition, it is important to 

mention that these algorithms are capable of achieving good approximations for 

optimal solutions in both mono and multi-objective optimization problems. On the 

other hand, there is no guarantee that a given optimization strategy can solve any 

type of problem (Wolpert & Macready, 1997). This means that new strategies must 

be proposed or improved to solve a wider range of optimization problems.
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Due to the success of traditional population-based optimization techniques 

(Genetic Algorithms, Particle Swarm, Differential Evolution, among others) in applications 

in different fields of science and engineering, new strategies have been proposed. 

Among these, the Vibrating Particles System - VPS, proposed by Kaveh and Ghazaan 

(2017) for single-objective design problems, can be mentioned as a promising approach 

for solving optimization problems. VPS has been used to solve problems with different 

complexities, such as truss optimization with multiple natural frequency constraints 

(Kaveh & Ghazaan, 2017), tower cranes and supply points locating problems (Kaveh & 

Vazirinia, 2017), optimal design of reinforced concrete cantilever retaining walls (Kaveh 

& Jafarpour, 2017), and engineering system design (Andrade & Lobato, 2023).

This work aims to propose the extension of VPS to the multi-objective context, as 

well as compare it with other optimization strategies. This work is organized as follows. 

In Section 2, the VPS is briefly presented. The proposed methodology is described in 

Section 3. The results of two applications are presented in Section 4. Finally, in the last 

section, the conclusions are drawn.

2 VIBRATING PARTICLES SYSTEM ALGORITHM

2.1 Conceptual Conception

The VPS is an optimization approach proposed by Kaveh and Ghazaan (2017) 

for trusses design. This recent optimization strategy consists of simulating the free 

vibration of systems with one degree of freedom and that present viscous damping. 

In this case, particles are considered as solution candidates of a system that gradually 

tends toward its equilibrium position. The vibrations can be classified into free (motion 

is maintained only by conservative forces) and forced (a periodic force is applied to the 

system) (Kaveh & Ghazaan, 2017). 

Based on these concepts, the study object on which the VPS is founded refers to 

the free vibration of systems which can be represented as shown in Figure 1.
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Figure 1 – Free vibration of a system with one degree of freedom with damping

Source: Adapted from Kaveh & Ghazaan (2017)

In this figure, it is possible to observe a block of mass 𝑚, a spring of spring constant  

𝑘 and a damper of damping coefficient 𝑐. By displacing the block at a distance 𝑥 in relation 

to the equilibrium position (indicated by 𝑂), the block’s motion equation is given by Eq. (1):. (1): 

𝑚𝑚𝑥̈𝑥 + 𝑐𝑐𝑥̇𝑥 + 𝑘𝑘𝑘𝑘 = 0 (1) 

 

(1)

The critical damping coefficient (𝑐𝑐) is defined from the natural frequency (𝜔𝑛) of 

the system (Eq. (2) and Eq. (3)): (Eq. (2) and Eq. (3)): 

𝑐𝑐𝑐𝑐 = 2𝑚𝑚𝜔𝜔𝑛𝑛 (2) 

𝜔𝜔𝑛𝑛 = √𝑘𝑘 𝑚𝑚⁄  (3) 

 

(2)

 (Eq. (2) and Eq. (3)): 

𝑐𝑐𝑐𝑐 = 2𝑚𝑚𝜔𝜔𝑛𝑛 (2) 

𝜔𝜔𝑛𝑛 = √𝑘𝑘 𝑚𝑚⁄  (3) 

 

(3)

According to Kaveh and Ghazaan (2017), the value of the critical damping 

coefficient differentiates three types of systems: overdamped, critically damped, and 

underdamped. However, in VPS only the underdamped system is considered as the 

solution (the other two types refer to a non-vibratory movement). Thus, the solution of 

the differential equation (Eq. (1)) is given by Eq. (4):Eq. (4): 

𝑥𝑥(𝑡𝑡) = 𝜌𝜌𝑒𝑒−𝜉𝜉𝜔𝜔𝑛𝑛𝑡𝑡 sin(𝜔𝜔𝐷𝐷𝑡𝑡 + 𝜙𝜙) (4) 

𝜔𝜔𝐷𝐷 = 𝜔𝜔𝑛𝑛√1 − 𝜉𝜉2 (5) 

𝜉𝜉 = 𝑐𝑐 𝑐𝑐𝑐𝑐⁄  (6) 

 

(4)

Eq. (4): 

𝑥𝑥(𝑡𝑡) = 𝜌𝜌𝑒𝑒−𝜉𝜉𝜔𝜔𝑛𝑛𝑡𝑡 sin(𝜔𝜔𝐷𝐷𝑡𝑡 + 𝜙𝜙) (4) 

𝜔𝜔𝐷𝐷 = 𝜔𝜔𝑛𝑛√1 − 𝜉𝜉2 (5) 

𝜉𝜉 = 𝑐𝑐 𝑐𝑐𝑐𝑐⁄  (6) 

 

(5)
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Eq. (4): 

𝑥𝑥(𝑡𝑡) = 𝜌𝜌𝑒𝑒−𝜉𝜉𝜔𝜔𝑛𝑛𝑡𝑡 sin(𝜔𝜔𝐷𝐷𝑡𝑡 + 𝜙𝜙) (4) 

𝜔𝜔𝐷𝐷 = 𝜔𝜔𝑛𝑛√1 − 𝜉𝜉2 (5) 

𝜉𝜉 = 𝑐𝑐 𝑐𝑐𝑐𝑐⁄  (6) 

 

(6)

where the 𝜔𝐷  is the damped natural frequency and ξ is the damping rate.

The solution 𝑥(𝑡) requires the determination of constants 𝜌 and 𝜙, obtained by 

the definition of the initial conditions of the problem.

2.2 Basic Steps

The basic steps considered in VPS are presented as follows (Kaveh, 2017):

Step 1 – Initialization: The objective function, design variables (design space), 

constraints, and VPS parameters are defined. In order to initialize the optimization 

algorithm, the initial positions of particles are defined (randomly) inside the design space.

Step2 – Evaluation of the candidates’ solutions: Each potential candidate (particle) 

is evaluated according to the objective function defined by the user.

Step 3 – Update of the particle positions: For each particle, three equilibrium 

positions considering different weights are defined: i) the best solution found until the 

current generation (𝐻𝐵); ii) a good particle (𝐺𝑃); and iii) a bad particle (𝐵𝑃). To select  

and, a current population is ordered according to the values of the objective function. 

After this ordering, these values are randomly chosen from the first and second halves, 

respectively. To represent the effect of damping, a descending function, proportional 

to the number of generations, is proposed:d: 

𝐷𝐷 = ( 𝑞𝑞
𝑞𝑞𝑚𝑚𝑚𝑚𝑚𝑚

)
−𝛼𝛼

 (7) 

 

(7)

where 𝑞 is the actual generation, 𝑞𝑚𝑎𝑥 is the total number of generations and  is a 

constant defined by the user.

Thus, the particle positions are updated as: as: 

𝑥𝑥𝑖𝑖
𝑗𝑗(𝑞𝑞 + 1) = 𝑤𝑤1[𝐷𝐷𝐷𝐷𝑟𝑟1 + 𝐻𝐻𝐻𝐻𝑗𝑗] + 𝑤𝑤2[𝐷𝐷𝐷𝐷𝑟𝑟2 + 𝐺𝐺𝐺𝐺𝑗𝑗(𝑞𝑞)] + 𝑤𝑤3[𝐷𝐷𝐷𝐷𝑟𝑟3 + 𝐵𝐵𝐵𝐵𝑗𝑗(𝑞𝑞)] (8) 

𝐴𝐴 = [𝑤𝑤1 (𝐻𝐻𝐻𝐻𝑗𝑗 − 𝑥𝑥𝑖𝑖
𝑗𝑗(𝑞𝑞))] + [𝑤𝑤2 (𝐺𝐺𝐺𝐺𝑗𝑗(𝑞𝑞) − 𝑥𝑥𝑖𝑖

𝑗𝑗(𝑞𝑞))] + [𝑤𝑤3 (𝐵𝐵𝐵𝐵𝑗𝑗(𝑞𝑞) − 𝑥𝑥𝑖𝑖
𝑗𝑗(𝑞𝑞))] (9) 

𝑤𝑤1 + 𝑤𝑤2 + 𝑤𝑤3 = 1 (10) 

 

(8)

 as: 

𝑥𝑥𝑖𝑖
𝑗𝑗(𝑞𝑞 + 1) = 𝑤𝑤1[𝐷𝐷𝐷𝐷𝑟𝑟1 + 𝐻𝐻𝐻𝐻𝑗𝑗] + 𝑤𝑤2[𝐷𝐷𝐷𝐷𝑟𝑟2 + 𝐺𝐺𝐺𝐺𝑗𝑗(𝑞𝑞)] + 𝑤𝑤3[𝐷𝐷𝐷𝐷𝑟𝑟3 + 𝐵𝐵𝐵𝐵𝑗𝑗(𝑞𝑞)] (8) 

𝐴𝐴 = [𝑤𝑤1 (𝐻𝐻𝐻𝐻𝑗𝑗 − 𝑥𝑥𝑖𝑖
𝑗𝑗(𝑞𝑞))] + [𝑤𝑤2 (𝐺𝐺𝐺𝐺𝑗𝑗(𝑞𝑞) − 𝑥𝑥𝑖𝑖

𝑗𝑗(𝑞𝑞))] + [𝑤𝑤3 (𝐵𝐵𝐵𝐵𝑗𝑗(𝑞𝑞) − 𝑥𝑥𝑖𝑖
𝑗𝑗(𝑞𝑞))] (9) 

𝑤𝑤1 + 𝑤𝑤2 + 𝑤𝑤3 = 1 (10) 

 

(9)
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 as: 

𝑥𝑥𝑖𝑖
𝑗𝑗(𝑞𝑞 + 1) = 𝑤𝑤1[𝐷𝐷𝐷𝐷𝑟𝑟1 + 𝐻𝐻𝐻𝐻𝑗𝑗] + 𝑤𝑤2[𝐷𝐷𝐷𝐷𝑟𝑟2 + 𝐺𝐺𝐺𝐺𝑗𝑗(𝑞𝑞)] + 𝑤𝑤3[𝐷𝐷𝐷𝐷𝑟𝑟3 + 𝐵𝐵𝐵𝐵𝑗𝑗(𝑞𝑞)] (8) 

𝐴𝐴 = [𝑤𝑤1 (𝐻𝐻𝐻𝐻𝑗𝑗 − 𝑥𝑥𝑖𝑖
𝑗𝑗(𝑞𝑞))] + [𝑤𝑤2 (𝐺𝐺𝐺𝐺𝑗𝑗(𝑞𝑞) − 𝑥𝑥𝑖𝑖

𝑗𝑗(𝑞𝑞))] + [𝑤𝑤3 (𝐵𝐵𝐵𝐵𝑗𝑗(𝑞𝑞) − 𝑥𝑥𝑖𝑖
𝑗𝑗(𝑞𝑞))] (9) 

𝑤𝑤1 + 𝑤𝑤2 + 𝑤𝑤3 = 1 (10) 

 

(10)

where 𝑤1, 𝑤2and 𝑤3 are parameters that represent the relative importance of 𝐻𝐵,  

𝐺𝑃 and 𝐵𝑃, respectively, 𝑟1, 𝑟2 and 𝑟3 are random numbers in the interval [0,1]; and  

𝑥𝑥𝑖𝑖
𝑗𝑗
 is the 𝑗-th variable of the 𝑖-th particle. 

Parameters 𝐴 and 𝐷 (see Eq. (8)) represent the effect of 𝜌 and  𝑒𝑒−𝜉𝜉𝜔𝜔𝑛𝑛𝑡𝑡  ( (see Eq. (4)), 

while the value of of sin(𝜔𝜔𝐷𝐷𝑡𝑡 + 𝜙𝜙)   is considered equal to unity, for simplicity. The effect 

of a bad particle (𝐵𝑃) is not always considered during the optimization process in an 

attempt to improve the convergence of the algorithm. For this purpose, the parameter 

𝑝 (between 0 and 1) is defined and, for each particle, its value is compared with a 

random number (𝑟𝑎𝑛𝑑) in the range [0, 1]. If 𝑝 < 𝑟𝑎𝑛𝑑, then the weight of 𝐵𝑃 is equal to 

zero (𝑤3 = 0). As a consequence, 𝑤2 = 1 − 𝑤1

Step 4 – Stopping Criterion: Steps 2 and 3 are repeated until the established 

stopping criterion is satisfied and the optimal solution is presented.

3 MULTI-OBJECTIVE OPTIMIZATION VIBRATING PARTICLES SYSTEM

Figure 2 – MOVPS algorithm flowchart

Source: Authors (2023)
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Due to the success of VPS in applications considering only a single objective, its 

extension to the multi-objective context is a natural step. In this case, the VPS for multi-

objective problems, called here MOVPS (Multi-objective Optimization Vibrating Particles 

System), is structured as shown in Figure 2, with the main steps described below. 

Step 1 – Initialization: The problem of interest (objective function, design 

space and constraints) and the MOVPS parameters (population size -𝑁𝑃- 

and mutation probability -𝑝𝑚, in addition to 𝑞𝑚𝑎𝑥, 𝑤1, 𝑤2, 𝑝 and 𝛼) are defined. 

Furthermore, the initial positions of all particles are determined randomly within 

the defined design space.

Step 2 – Evaluation of candidate solutions: Each potential candidate (particle) is 

evaluated according to the objective vector.

Step 3 – Pareto dominance criterion: This criterion is applied to the current 

population by comparing each solution 𝑖 with all the others to check whether it is 

dominated by any other solution within the population. If so, there is at least one 

candidate that is better than 𝑖 considering all the objectives and, therefore, the particle  

𝑖 cannot belong to the non-dominated set. On the other hand, if no solution dominates 

𝑖, then this will constitute the non-dominated set. 

Step 4 – Registration of non-dominated solutions in the Repository: The non-

dominated solutions are stored in the Repository file. If the number of individuals 

in this file is greater than the size defined by the user, it is truncated according to a 

criterion called crowding distance (Deb, 2001). This operator describes the density of 

individuals present in the current solution so that the closest points are eliminated 

and the extreme points are always preserved.

Step 5 – Updating particle positions: In the multi-objective context, when using 

the main VPS operator, it does not make sense to order the population in terms of 

the values of the objective functions for the selection of 𝐻𝐵, 𝐺𝑃 and 𝐵𝑃, since the 

current optimal solution is composed of non-dominated candidates. Therefore, to 

order the population, the Euclidean distance computed between each point of the 
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current solution and the origin of the objective space will be considered. Thus, 𝐺𝑃 and 

𝐵𝑃 are chosen, randomly, from the first and second halves of the current ordered 

population, respectively. 𝐻𝐵 is determined through a random choice within the set 

of non-dominated solutions that constitute the population stored in the Repository. 

This choice is made after using the roulette method to select the cuboid that will 

contain the particle to represent 𝐻𝐵 (Coello, Pulido & Lechuga, 2004).

Step 6 – Application of the mutation operator: In order to avoid premature 

convergence to local solutions, the exploration of candidate neighborhoods is carried 

out by applying this mutation operator after dividing the population into three 

parts: i) the first is not modified; ii) the second is subjected to a uniform mutation 

over generations according to a defined probability; iii) and the third is modified by a 

non-uniform mutation over generations. In the latter case, the decay function (𝑃𝑓) to 

quantify the percentage of individuals that are affected by this type of refinement is 

defined as (Coello, Pulido & Lechuga, 2004):4): 

𝑃𝑃𝑓𝑓 = 1 − ( 𝑞𝑞
𝑞𝑞𝑚𝑚𝑚𝑚𝑚𝑚

)
(1/𝑝𝑝𝑚𝑚)

 (11) 

 

(11)

Thus, at the beginning of the evolutionary process, all particles in this population 

group are affected by the mutation operator and, as the evolutionary process 

progresses, it stops influencing this portion of the current population.

Step 7 – Repository Update: The new candidates generated are evaluated according 

to the vector of objective functions and grouped with the solutions present in the 

Repository. Then, the Pareto dominance criterion and, if necessary, the crowd distance 

operator are applied, so that only non-dominated candidates remain in Repository.

Step 8 – Stop Criteria: Steps 5 to 7 are repeated until the established stopping 

criterion is satisfied and then the optimal solution found by the algorithm, represented 

by the current population of the Repository, can be presented and submitted to the 

post-processing.
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4 RESULTS AND DISCUSSION

In order to evaluate the quality of obtained results by MOVPS, two case studies 

are considered (I-beam design and welded beam design). The population size (𝑁𝑃), the 

maximum number of generations (𝑞𝑚𝑎𝑥) and the mutation probability (𝑝𝑚) vary in these 

problems (these were defined after preliminary simulations). The number of particles 

in the repository was considered equivalent to 𝑁𝑃 and the other parameters used 

were: 𝑤1  = 0.3, 𝑤2 = 0.3, 𝑝 = 0.1 and 𝛼 =  0.05.

To evaluate the inequality constraints, the External Penalty Method (Vanderplaats, 

1999) was used (with a constant penalty factor equal to 106). The stopping criterion 

considered in all applications was the maximum number of generations. To compare 

the obtained results by MOVPS, the PMOGA (Pareto Multi-Objective Genetic Algorithm) 

(Castro, 2001) and MODE (Multi-objective Optimization Differential Evolution) (Lobato, 

2008) algorithms are considered.

4.1 Beam Design 

The first design problem considers a beam with an I-beam cross-section (Castro, 

2001), whose dimensions are the design variables 𝑥1, 𝑥2, 𝑥3 and 𝑥4, as observed in Figure 3.

Figure 3 – Schematic representation of an I-beam

Source: Adapted from Castro (2001)
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In this optimization problem, it is desired to minimize the cross-sectional area 

(cm2) and the maximum static displacement (cm), given respectively by:y: 

min𝑓𝑓1 = 2𝑥𝑥2𝑥𝑥4 + 𝑥𝑥3(𝑥𝑥1 − 2𝑥𝑥4) (12) 

 

(12)

min𝑓𝑓2 =
𝑃𝑃𝐿𝐿3
48𝐸𝐸𝐸𝐸

 (13) 

w 

(13)

where the moment of inertia 𝐼 is calculated as:

𝐼𝐼 = 𝑥𝑥3(𝑥𝑥1 − 2𝑥𝑥4)3 + 2𝑥𝑥2𝑥𝑥4(4𝑥𝑥42 + 3𝑥𝑥1(𝑥𝑥1 − 2𝑥𝑥4))
12

 (14) 

an 

(14)

and 𝐸 is Young’s Modulus (2×104 kN/cm2), 𝜎 is the beam design stress (16 kN/cm2), 𝑃 

and 𝑄 are the vertical (600 kN) and horizontal (50 kN) loads, applied at the midpoint of 

the beam, respectively.

Regarding lateral constraints of the design variables, the following ranges are 

defined: 10 cm ≤ 𝑥1 ≤ 80 cm, 10 cm ≤ 𝑥2 ≤ 50 cm, 0.9 cm ≤ 𝑥3 ≤ 5 cm and 0.9 cm ≤ 𝑥4 ≤ 5 

cm. Additionally, the following design constraint is considered:

𝑔𝑔(𝑥𝑥) = 𝑀𝑀𝑌𝑌
𝑊𝑊𝑌𝑌

+ 𝑀𝑀𝑍𝑍
𝑊𝑊𝑍𝑍

≤ 𝜎𝜎 (15) 

w 

(15)

where 𝑀𝑌 (30000 kN.cm) and 𝑀𝑍 (25000 kN.cm) are the maximum moments in the 𝑌 

and 𝑍 directions; and and are the resistance modules in the 𝑊𝑌 and 𝑊𝑍 directions. The 

resistance modules are calculated by the following expressions:ns: 

𝑊𝑊𝑌𝑌 =
𝑥𝑥3(𝑥𝑥1 − 2𝑥𝑥4)3 + 2𝑥𝑥2𝑥𝑥4(4𝑥𝑥42 + 3𝑥𝑥1(𝑥𝑥1 − 2𝑥𝑥4))

6𝑥𝑥1
 

(16) 

𝑊𝑊𝑍𝑍 =
(𝑥𝑥1 − 2𝑥𝑥4)𝑥𝑥33 + 2𝑥𝑥4𝑥𝑥23

6𝑥𝑥2
 (17) 

 

(16)

ns: 

𝑊𝑊𝑌𝑌 =
𝑥𝑥3(𝑥𝑥1 − 2𝑥𝑥4)3 + 2𝑥𝑥2𝑥𝑥4(4𝑥𝑥42 + 3𝑥𝑥1(𝑥𝑥1 − 2𝑥𝑥4))

6𝑥𝑥1
 

(16) 

𝑊𝑊𝑍𝑍 =
(𝑥𝑥1 − 2𝑥𝑥4)𝑥𝑥33 + 2𝑥𝑥4𝑥𝑥23

6𝑥𝑥2
 (17) 

 

(17)

The parameters considered by MOVPS are: 𝑝𝑚 = 0.8; 𝑁𝑃 = 60; 𝑞𝑚𝑎𝑥 = 200 

(these parameters represent 12060 objective function evaluations). Figure 4 

presents the solutions obtained by MOVPS, PMOGA (25050 evaluations) and 

MODE (15030 evaluations). In this figure, it is possible to observe that the 
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proposed methodology was able to obtain a good approximation of the Pareto 

curve concerning PMOGA and MODE algorithms. The observed differences are 

due to the scattering quality of the MOVPS in the extreme solutions found and a 

subtle dominance of the MOVPS points located in the neighborhood of point C in 

relation to other algorithms.

In this case, the reduction in the cross-sectional area of the I-beam (𝑓1) implies an 

increase in the maximum static displacement (𝑓2), and vice versa. This demonstrates 

the conflicting nature of the objectives. In Table 1 some points belonging to the optimal 

solution obtained by MOVPS are presented.

The extreme points obtained by MOVPS prioritize a single objective, allowing 

either a minimum deflection with an area of 782.4778 cm2 (point E) or a minimum 

area with a deflection of 0.0520 cm (point A). The intermediate points present 

two design variables with common results (𝑥1 assuming its maximum value and 𝑥3 

assuming its minimum value). Points B and D present a greater specification by 

minimizing 𝑓1 and 𝑓2, respectively, while point C is a point with a good compromise 

between the objectives, i.e.; the minimization of any objective is not privileged.

Figure 4 – Pareto curve for the I-beam design

Source: Authors (2023)
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Table 1 – Some points on the Pareto curve obtained by MOVPS for the I-beam 

design problem

A B C D E

𝑥1 (cm) 66.5244 80.0000 80.0000 80.0000 79.7800

𝑥2 (cm) 39.0870 38.5006 43.2309 50.0000 44.3796

𝑥3 (cm) 0.9000 0.9000 0.9000 0.9000 4.9675

𝑥4 (cm) 0.9000 0.9527 2.0082 4.0939 4.8991

𝑓1 (cm2) 128.6086 143.6477 242.0177 474.0221 782.4778

𝑓2 (cm) 0.0520 0.0333 0.0168 0.0081 0.0066

Organized by the authors (2023)

4.2 Welded Beam Design Problem

The last application considers the welded beam design problem to minimize 

both fabricating cost (Eq. (18)) and displacement of the free end of the beam (Eq. (19)), 

subject to constraints on shear stress (𝜏), bending stress (𝜎), buckling load (𝑃�), end 

deflection (𝛿), and side constraints. The design variables (geometric characteristics of 

the weld and beam) are indicated by 𝑥1, 𝑥2 , 𝑥3 and 𝑥4, according to Figure 5.

Figure 5 – Schematic representation of a welded beam design

Source: Adapted from Castro (2001)
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Mathematically, this problem can be represented by the following expressions (Castro, 

2001): 1): 

min𝑓𝑓1 = 1.10471𝑥𝑥12𝑥𝑥2 + 0.04811𝑥𝑥3𝑥𝑥4(𝐿𝐿 + 𝑥𝑥2) (18) 

min𝑓𝑓2 =
4𝐹𝐹𝐿𝐿3
𝑥𝑥33𝑥𝑥4𝐸𝐸

 
(19) 

𝜏𝜏 − 𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 0 (20) 

𝜎𝜎 − 𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 0 (21) 

𝐹𝐹 − 𝑃𝑃𝐶𝐶 ≤ 0 (22) 

4𝐹𝐹𝐿𝐿3
𝑥𝑥33𝑥𝑥4𝐸𝐸

− 𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 0 
(23) 

𝑥𝑥1 − 𝑥𝑥4 ≤ 0 (24) 

 

(18)
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(24)

where:where: 𝜏𝜏 = √𝜏𝜏1
2 + 𝜏𝜏2

2 + 𝑥𝑥2𝜏𝜏1𝜏𝜏2

√0.25(𝑥𝑥2
2+(𝑥𝑥1+𝑥𝑥3)2)

; 𝜏𝜏1 = 6000
√2𝑥𝑥1𝑥𝑥2

; 𝜏𝜏2 =
6000(14+0.5𝑥𝑥2)√0.25(𝑥𝑥2

2+(𝑥𝑥1+𝑥𝑥3)2)

2(0.707𝑥𝑥1𝑥𝑥2(𝑥𝑥2
2/12+0.25(𝑥𝑥1+𝑥𝑥3)2))

; 

𝜎𝜎 = 504000
𝑥𝑥3

2𝑥𝑥4
 ; 𝑃𝑃𝑐𝑐 = 64746.022(1 − 0.0282346𝑥𝑥3)𝑥𝑥3𝑥𝑥4

3. 

 

where: 𝜏𝜏 = √𝜏𝜏1
2 + 𝜏𝜏2

2 + 𝑥𝑥2𝜏𝜏1𝜏𝜏2

√0.25(𝑥𝑥2
2+(𝑥𝑥1+𝑥𝑥3)2)

; 𝜏𝜏1 = 6000
√2𝑥𝑥1𝑥𝑥2

; 𝜏𝜏2 =
6000(14+0.5𝑥𝑥2)√0.25(𝑥𝑥2

2+(𝑥𝑥1+𝑥𝑥3)2)

2(0.707𝑥𝑥1𝑥𝑥2(𝑥𝑥2
2/12+0.25(𝑥𝑥1+𝑥𝑥3)2))

; 

𝜎𝜎 = 504000
𝑥𝑥3

2𝑥𝑥4
 ; 𝑃𝑃𝑐𝑐 = 64746.022(1 − 0.0282346𝑥𝑥3)𝑥𝑥3𝑥𝑥4

3. 

 
To solve this problem, the following lateral constraints are considered: 

0.125 in ≤ 𝑥1, 𝑥4 ≤ 5 in, 0.1 in ≤ 𝑥2, 𝑥3 ≤10 in. In Eq. (18), the coefficients 1.10471 

and 0.04811 are related to the material cost per unit of volume. In addition, the 

following constants are considered (Castro, 2001): 𝐹 = 6000 lb, 𝜏𝑚𝑎𝑥 = 13600 psi, 𝐸 

= 30×106 psi, 𝜎𝑚𝑎𝑥 = 30000 psi, 𝑢𝑚𝑎𝑥 = 0.25 in and 𝐿 = 14 in.

The optimal solutions obtained by each optimization strategy are presented 

in Figure 6. This figure shows the conflicting nature between the objectives, 

as well as the agreement between the MOVPS solution and those obtained by 

PMOGA and MODE. The most evident difference refers to the fact that, in relation 

to solutions that preferentially minimize the cost (𝑓1), MOVPS was able to obtain 

some configurations not observed by the other algorithms (close to point A). 
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Figure 6 – Pareto curve for the welded beam design

Source: Authors (2023)

The parameters considered by MOVPS are: 𝑝𝑚  = 0.05; 𝑁𝑃 = 100; 𝑞𝑚𝑎𝑥 = 240 

(24100 objective function evaluations). About PMOGA and MODE algorithms, 100200 

and 25050 evaluations of the objective function vector were necessary to solve this 

problem, respectively.

In Table 2 some points (A, B, C, D and E) of the solution found by the proposed 

methodology are presented. In this case, the beam width (𝑥3) approaches the 

maximum limit (10 in). In relation to other design variables, it appears that the 

increase in thickness (𝑥1and 𝑥4) accompanied by the reduction in beam length 

(𝑥2) leads to the minimization of beam deflection at the expense of increasing 

the price, and vice versa. The extreme points A and E prioritize, in particular, the 

lowest cost ($2.66) and the lowest deflection (0.0004 in), respectively. Points B 

and D represent those that tend to favor one objective or the other, while point C 

seeks to balance the fulfillment of both objectives, resulting in a cost of $8.0255 

at a deflection of 0.0022 in.
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Table 2 – Some points on the Pareto curve obtained by MOVPS for the welded beam 

design problem

A B C D E

𝑥1 (in) 0.2394 0.3080 0.6920 0.8604 1.1167

𝑥2 (in) 5.2426 3.7144 1.3983 1.0727 0.8962

𝑥3 (in) 9.9671 10.0000 9.9797 10.0000 10.0000

𝑥4 (in) 0.2523 0.4349 0.9855 2.3275 5.0000

𝑓1 ($) 2.6600 4.0960 8.0255 17.7553 37.0673

𝑓2 (in) 0.0088 0.0050 0.0022 0.0009 0.0004

Organized by the authors (2023)

5 CONCLUSIONS

This work aimed to extend the VPS to the multi-objective context. The proposed 

methodology was applied to two classic design problems in the engineering area. The 

results obtained demonstrate that MOVPS was able to obtain, in each application, a 

good approximation to the Pareto curve in terms of convergence and diversity. It 

is worth noting that the results obtained by MOVPS were through a smaller number 

of evaluations of the objective function in relation to the algorithms considered for 

comparison. Furthermore, it is noteworthy that the MOVPS was easy to calibrate, i.e.; for 

the applications studied, no difficulties were observed when choosing the parameters of 

the proposed methodology. As a suggestion for future work, the MOVPS will be applied 

in engineering system design considering the effect of uncertainty and robustness.
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