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ABSTRACT

Given the recognized relevance of botanical identification for forest management and biodiversity 
conservation, this paper proposes the identification of plant species wood anatomy using computer 
vision techniques. Microscopic images of 30 species were sourced from the Forest Species Database and 
captured using an Olympus CX40 microscope at 100x magnification, ensuring high detail. Pre-processing 
techniques, including normalization and feature extraction, were applied to enhance texture and color 
characteristics. Statistical, structural, and spectral descriptors such as LBPHF 24,3 and the combination 
of LPQ and GLCM (GHS) were utilized. These descriptors were analyzed with MATLAB and classified 
using robust methods, including Ensemble classifiers. Cross-validation ensured reliability, and results 
achieved assertiveness rates of 96.7% and 99.3% for LBPHF and LPQ-GLCM combinations, respectively. 
This study demonstrates the effectiveness of automated methods in enhancing botanical identification 
processes, offering precise and efficient tools for forest management and biodiversity conservation.

Keywords: Botanical identification; Texture descriptors; Pattern recognition; Computer vision;  Ensemble 
classification

RESUMO

Dada a reconhecida relevância da identificação botânica para o manejo florestal e preservação da 
biodiversidade, o presente trabalho propõe a identificação da anatomia da madeira de espécies 
vegetais utilizando técnicas de visão computacional. Imagens microscópicas de 30 espécies foram 
extraídas do banco Forest Species Database e capturadas com um microscópio Olympus CX40 a 
100x de aumento, garantindo alta qualidade. As operações de pré-processamento foram realizadas 
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para destacar características de textura e cor, incluindo normalização e extração de atributos. Foram 
utilizados descritores estatísticos, estruturais e espectrais, como LBPHF 24,3 e a combinação de LPQ e 
GLCM (GHS). A análise foi feita no MATLAB, e os dados foram classificados com métodos robustos, 
incluindo o classificador Ensemble. A validação cruzada foi empregada para assegurar a confiabilidade 
dos modelos. Como resultado, alcançou-se uma assertividade de 96,7% para LBPHF e 99,3% para a 
combinação LPQ-GLCM. Este estudo destaca o potencial de métodos automatizados para aprimorar 
a identificação botânica, tornando-a mais precisa e eficiente, com aplicações promissoras no manejo 
florestal e conservação da biodiversidade.

Palavras-chave: Identificação botânica; Descritores de textura; Reconhecimento de padrões; Visão 
computacional; Classificação Ensemble

1 INTRODUCTION

The use of Amazonian natural resources for Amazon region development requires 

the sustainable use of such riches and it can be achieved through sustainable management 

plans that consider the ecological, socio-cultural, and economic characteristics of the 

region (Ribeiro, Da Fonseca, & Pereira, 2020). Botanical identification is an essential step 

for avoiding fraud in forest management (Ferreira et al., 2020), illegal trade, and forest 

preservation through the identification of extinct species.

Currently, taxonomist botanists empirically conduct this process. However, given 

the scarcity of specialized professionals, the identification ends up being conducted by 

natives with knowledge of the forest, the bushmen (parataxonomists) (De Paula, 2012; 

Tou, Lau, & Tay, 2007; Ponte, 2017).

These natives adopt popular names of the species that, in addition to differing 

from the scientific names, may also present regional differences (Martins-Da-Silva, 

2002), thus, inconsistency in botanical identification can lead to a reduction in 

biodiversity, devaluation of the wood product, financial loss in wood commercial 

transactions for domestic markets and export and in the exploitation of rare and 

endangered species (Ponte, 2017; Vieira, 2022).

It is believed that with the perspective of pattern recognition, artificial intelligence 

techniques, and computer vision, there may be an increase in the accuracy of the 
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botanical identification process, thus helping to fill the gaps of taxonomist botanists. 

Computer vision systems have wide applicability, such as botanical, people, signatures, 

and objects recognition, and guiding robots (Azevedo, Conci, & Leta, 2007). Image 

Analysis (IA) is extracting significant information from images, mainly through digital 

processing techniques (Solomon & Breckon, 2011). The significant information obtained 

by IA is the image descriptors and feature extraction techniques are used to obtain 

them. Gonzalez & Woods (2000) group the main feature extraction techniques based 

on the approach, which can be: Statistical, Structural, and Spectral. The classification, 

in particular, starts from the premise that the similarity between objects implies that 

they have similar characteristics, forming classes (Ponte, 2017). Certain difficulties may 

arise during the classification process, some species have very similar patterns to each 

other and some species have a large intraclass texture variation (De Paula, 2012).

Among the visual information that can be extracted from wood images, the 

texture is an appropriate feature for the identification of forest species (De Paula, 

2012), as it is the most important visual feature for the identification of homogeneous 

structures (Tuceryan & Jain, 1993), as it represents the surface and structure of an 

object through its properties. Texture can be enhanced through color features, which 

is a stable property, insensitive to rotation, scale and/or other types of deformation 

(Maenpaa, 2003; Yu, Cao, Liu, & Luo, 2009).

In this context, this work aimed to extract a combination of texture descriptors in 

wood images. The texture descriptors were analyzed through classifiers to determine 

the existence of pattern recognition in forest species by the anatomical characteristics 

of the wood exposed by the descriptors.

2 THEORETICAL FRAMEWORK

Botanical identification is a fundamental task for forest management, but 

it is still carried out by hand, which can lead to inconsistencies and take more time 

to identify species (Martins-da-Silva 2002). Due to the great challenge of ensuring 
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confidence in the identification of plant species, especially when dealing with species 

that are very similar to each other, numerous researchers have dedicated efforts to 

develop technological solutions to perform botanical identification with high accuracy 

and efficiency.

In a recent study, Veras et al. (2022) mapped Amazonian tree species from RGB 

images captured by a low-cost unmanned aircraft system and Convolutional Neural 

Networks (CNN). The identification was done through the tree crowns that were 

outlined individually in each image obtained, the images were captured in different 

seasons of the year. From the training of the CNN model, they observed that the images 

in the rainy season generated higher classification accuracy than in the dry season. 

Thus, they fused images from different seasons, generating an average increase of 

21.1 percentage points in the classification of species and reaching 90.5% accuracy.

Another study, that of Vieira et al. (2022), carried out the identification of 

commercially traded Amazonian wood species using a wood image pattern recognition 

system, intending to increase the accuracy and efficiency of current methods. In all, 

twenty images of each of the ten different species were used, with three polishing 

treatments. For image recognition, they established the use of textural segmentation 

associated with Haralick’s features and classified them by Artificial Neural Networks. 

With this they developed a model based on linear regression that achieved during 

training 94% accuracy in recognition, and in post-training for wood treated with 

sandpaper, a 65% accuracy rate.

In Maenpaa (2023) research, they explore methods for identifying and positioning 

corn based on machine vision. To do this, the ultra-green feature algorithm and the 

maximum variance method between classes were used to segment corn, weeds, and 

soil. The effect of the segmentation was satisfactory, and it was possible to perform the 

extraction of the shape features. As a result of the morphological reconstruction and 

pixel projection histogram method, they obtained the identification and positioning of 
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the corn. With this, they found that the recognition can reach 94.1% accuracy when the 

robot travels at a speed of 1.6 km/h.

Furthermore, in a study, Mangina et al. (2022), developed a deep learning 

Convolutional Neural Network (CNN), which was trained to perform the classification 

of plant species found in Ireland through images obtained by a cell phone camera. 

The RGB images of plants went through pre-processing, which includes background 

removal and data augmentation, and then were used in some deep-learning CNN 

models, which had different levels of layers and training methods. Several learning 

models were trained and evaluated for speed and robustness in plant identification, 

with this an application was developed to incorporate the highest-performing model.

Although the studies presented show that the use of technologies can be 

an effective tool for botanical identification, there are significant limitations to 

be considered. Most studies present relatively small samples, which may not be 

representative of the full diversity of species. In addition, variability in image capture 

conditions (such as season, sample processing and camera quality) can affect the 

accuracy of the models. The need to improve the technologies used and increase the 

robustness of the models to different conditions is evident. To make progress in this 

area, it is crucial to develop solutions that can be applied in a wide range of conditions 

and that take into account the intrinsic variability of species and natural environments.

3 MATERIAL AND METHODS

3.1 Classification and Pattern Recognition Process

To conduct the classification, it was necessary to find measures and characteristics 

inherent to each class that could be used to differentiate the plant species, these 

characteristics are called attributes (Ponti, 2004).

The attributes chosen for analysis are in Table 1. Their respective concepts are 

presented in the Theoretical Reference section and extraction methods are presented 
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in subsequent topics. The proposed attributes selection is based on studies by De 

Paula (2012), Ojala, Pietikainen, & Maenpaa (2002), Ahonen, Matas, He, & Pietikäinen 

(2009), and Zhu, Hoi, Lyu, & Yan (2008) given the satisfactory results obtained by them.

Normalization was performed with the complete set of data, attribute by 

attribute, concatenating the species next to each other so the process occurred 

independently of the species, normalizing it column by column. Given the generated 

vectors, normalize was applied, adopting the range method so that the data range was 

scaled between [−1; 1]. 

Table 1 – The table summarizes the features extracted for botanical classification, 

divided into different approaches: statistical, structural and spectral. The statistical 

approach includes methods based on the distribution of colors or textures in the 

different color spaces and on gray level co-occurrence matrices (GLCM). The attributes 

are Color (LAB) and Color (RGB), Color (Mixed Channels) and GLCM (Mixed Channels). 

The structural approach uses Local Binary Patterns (LBP) and their variations to 

capture the structure of the texture. The spectral approach includes methods based 

on Gabor filters

Approach Attribute Vector
Statistic Color (LAB) 81
Statistic Color (RGB) 81
Statistic Color (Mixed Channels) 18
Statistic GLCM (Mixed Channels) 84
Structural LBP8.1 59
Structural LBP16.1 243
Structural LBP8.2 59
Structural LBP16.2 243
Structural LBPHF 8.1 76
Structural LBPHF 16.2 276
Structural LBPHF 24.3 604
Structural LPQ 256
Spectral Gabor 120

Source: Organized by the authors (2023)
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After extracting the features, the supervised classification model was used, 

which consists of working with known samples of each class to find a classifier that 

can be used later to label unknown objects (Ponti, 2004). 

The models were validated by the Cross-Validation method, a technique to assess 

the generalizability of a model from a data set, especially when the objective of the model 

is prediction (Kohavi, 1995). In it, the dataset of size n is divided into m disjoint sets of size 

n/m, so that the algorithm is trained m times. At each iteration, a distinct set is reserved 

for validation. The performance is estimated as the average error or the average hit rate 

over these m data sets (Koerich, 2008). For this work, the data were divided into five 

groups, therefore, five sets of 120 observations were created. The proposed models 

were trained five times and validated with a set of 120 images.

3.2 Anatomical information

The Forest Species Database − MicroscopicI image bank was used (Martins, 

Oliveira, Nisgoski, & Sabourin, 2013) containing 2240 microscopic images of 112 

species. According to Martins, Oliveira, Nisgoski, & Sabourin (2013), the images were 

acquired from the wood leaves using an Olympus Cx40 microscope with 100x zoom. 

The resulting color image was saved in PNG (Portable Network Graphics) without 

compression and a resolution of 1024 x 768 pixels.

Given technological limitations, only 30 species randomly selected were used, 

totaling 600 observations, 20 per species. The species listed below, which are: Acacia 

tucumanensis  Griseb., Agathis beccarii  Warb., Araucaria angustifolia (Bertol.) Kuntze, 

Calocedrus decurrens (Torr.) Florin, Cariniana estrellensis (Raddi) Kuntze, Cephalotaxus 

drupacea Siebold & Zucc., Cephalotaxus harringtonia (Knight ex J.Forbes) K.Koch, 

Chamaecyparis formosensis Matsum., Chamaecyparis pisifera (Siebold & Zucc.) Endl., 

Chrysophyllum L., Copaifera trapezifolia Hayne, Couratari Aubl., Cupressus arizonica 

I http://web.inf.ufpr.br/vri/databases/forest-species-database-microscopic/
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Greene, Cupressus lindleyi Klotzsch ex Endl.,  Eperua falcata Aubl., Ephedra californica S.

Watson, Eschweilera matamata Huber, Eschweilera chartacea  (O.Berg) Eyma, Fitzroya 

cupressoides (Molina) I.M.Johnst., Ginkgo biloba L., Hymenaea courbaril L., Hymenaea  L., 

Larix laricina (Du Roi) K.Koch, Larix kaempferi (Lamb.) Carrière, Larix Mill., Micropholis 

guyanensis (A.DC.) Pierre, Chrysophyllum lucentifolium Cronquist, Pterocarpus 

violaceus Vogel, Schizolobium parahyba (Vell.) Blake, Torreya nucifera (L.) Siebold & Zucc.

3.3 Extraction 

Pre-processing operations are required, such as highlighting and segmentation, 

to bring out fine details in the image. Each feature extraction technique, however, 

requires specific preparation before its application, so the pre-processing and 

feature extraction process will be explained together. The tool that enabled the 

feature extraction was MATLAB, a high-performance software focused on numerical 

calculation, it has a series of tools aimed at digital image processing, signal processing, 

and machine learning. The work was subdivided to group the extraction techniques by 

the adopted approach: Statistical, Structural, or Spectral, as proposed by Gonzalez  & 

Woods (2000) and adopted by De Paula (2012).

3.4 Statistical Approach

3.4.1 Color Analysis

Following De Paula (2012), the color channels L(Luv), S(HSV), and G(RGB) were 

highlighted. For each one, histograms were generated normalized between 0 and 255, 

and from these, two color regions were defined that allowed a better representation of 

the species (De Paula, 2012). The pre-processing operations consisted of extracting the 

color channels individually and normalizing the data, so that the L and S channels were 

rescaled to assume values between 0 and 255, through the rescale function, such as the 

G channel, to allow the slicing of the L and S channels in the ranges from 0 to 200 and 

from 201 to 255, while for the G channel, it was from 0 to 127 and 128 to 255.
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From these six slices, information on mean, kurtosis, and obliquity was extracted, 

generating a vector of 18 attributes (De Paula, 2012). The second color analysis was 

performed for the RBG and Lab models. In them, each image was subdivided into a 

3x3 grid, and mean variance, and obliquity were extracted from each of the nine sub-

images of this grid. For each color channel, two vectors of 81 attributes were generated.

3.4.2 Co-occurrence Matrix - GLCM

For the extraction of GLCM, channels H, S (HSV), and G (RGB) were used. Once 

again, the images were rescaled and for each color channel, the tones co-occurrence 

matrix and graycomatrix for angles 0º, 45º, 90º, and 135º were extracted, using 

distance 1 (one). Based on the findings of De Paula (2012), Contrast, Correlation, 

Entropy, Homogeneity, 3rd Order Moment, and Maximum Probability were calculated, 

generating a vector of 28 attributes for each channel.

3.5 Structural Approach

3.5.1 Local Binary Pattern – LBP

In this technique, tests were performed using LBPu2 and LBP-HF from grayscale 

images, where the notation u2 refers to the use of uniform rotation with U having 

a maximum value of 2 (Ojala, Pietikainen, & Maenpaa, 2002), while the LBP-HF 

represents the use of the discrete Fourier transform in the LBP histogram (De Paula, 

2012). The algorithms for feature extraction by the method in question are presented 

in the appendix.

3.5.2 Local Phase Quantization - LPQ

To extract features by the LPQ method, the application provided by the group 

and computer vision of the University of Oulu was used. The neighborhood size of 

3 × 3 was used, so that as a result the algorithm returns a vector of 256 positions, 
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which represents the histogram generated by the LPQ. As with LBP, LPQ requires the 

processed image to be in grayscale.

3.6 Spectral Approach

3.6.1 Gabor filter

	The functions used by Haghighat, Zonouz, & Abdel-Mottaleb (2015) that allowed 

a FilterBank were applied here, with eight variations of the orientation factor (µ = 0, 1, 

..., 7) and five scales (v = 0, 1, ..., 4). Forty filters were generated, applied to the image, 

totaling 40 sub-images, and from these the statistical moments were calculated: mean, 

variance and obliquity, generating a vector of 120 attributes, as shown by De Paula 

(2012). The filters for this work were generated by algorithm 3 in the appendices.

3.7 Classification methodology

The Classification Learner application was used, where it was possible to 

explore supervised machine learning using several classifiers, such as: Decision 

Trees, Discriminant Analysis, Support Vector Machines (SVM), Logistic Regression, 

Nearest Neighbors and Ensemble Classification (The MathWorks, 2019). 

Subsequently, the obtained data were structured in the table data type and passed 

as input to the application.

The images were classified one descriptor at a time and the resulting accuracy 

and method that presented the best performance was recorded. A single classifier that 

performs well is sometimes sufficient to solve the problem. However, in more complex 

problems, the choice of a single classifier can become difficult since it could limit the 

system recognition capacity. In these cases, combination is recommended (Ponti, 2004). 

Therefore, the descriptors were combined to verify if there was an accuracy improvement.
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4 RESULTS AND DISCUSSION

In general, high performance for the studied descriptors can be observed, 

especially LBP-HF (3.24) and LPQ (Tables 2, 3), with 96.7% and 96% assertiveness, 

respectively. Ensemble frequently showed better results, especially for the structural 

approach, but sometimes also Discriminant Analysis and SVM, both robust classification 

methods.

Table 2 – The table shows the performance results for different color and texture 

descriptors using robust classifiers. The descriptor that stood out the most was 

the Gray-Level Co-Occurrence Matrix (GLCM) applied to the Green (RGB), Hue 

and Saturation (HSV) channels, showing an assertiveness rate of 94.8% with the 

Discriminant Analysis classifier

Describer Best Result (%) Classifier

Color (Lab) 67.3 Ensemble

Color (RGB) 66.3 SVM

Color (GLS) 83.8 Discriminant Analysis

GLCM (GHS) 94.8 Discriminant Analysis

Source: Organized by the authors (2023)

The descriptor that stands out is the Gray-Level Co-Occurrence Matrix (GLCM) 

applied to the Green (RGB), Hue and Saturation (HSV) channels, which presented 94.8% 

when the Discriminant Analysis classifier was applied (Table 2). The GLCM method has 

already been widely used for forest species recognition, with an accuracy of 55.97% (De 

Paula 2012), 72% (Tou, Lau, & Tay, 2007) and 95% (Khalid, Lee, Yusof, & Nadaraj, 2008).

Figure 1 represents the data scatter plot for the GLCM descriptor, it can be seen 

how the classes are well defined, although there are certain overlapping points. In the 

literature GLCM presents satisfactory results for classification, which was reaffirmed by 

these results. As for the classifier, Discriminant Analysis was the highlight. Even though 

Lattin, Carroll, & Green (2011) considered it very efficient, it is a technique sensitive to 
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the proportion between the sample size and the number of predictor variables and 

therefore it would be interesting to evaluate the classifier performance for a larger 

number of observations and/or descriptors.

Figure 1 – Scatter plot of the data for the GLCM (Gray-Level Co-Occurrence Matrix) 

descriptor applied to the Green (RGB), Hue and Saturation (HSV) channels. The graph 

shows that the classes are well defined, despite some overlapping points

Source: Author’s/ Authors’ private collection (2023)

It is worth noting that De Paula (2012) obtained a high accuracy degree of 79.5% 

for the LAB color descriptor, but for macroscopic images, the SVM classifier and a 

more comprehensive image base. These factors may justify the discrepancy in the 

67.3% accuracy obtained in this research. The Ensemble classifier had a performance 

of 35.8%, considered low when compared to the 67.97% accuracy for the SVM classifier 

obtained by De Paula (2012). The negative discrepancy raises questions regarding the 

size of the database used and the use of macroscopic images by the referenced author.
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Table 3 – The table shows the performance results for different structural descriptors 

using robust classifiers. The structural approach proved to be highly effective in this 

work, with predictable behavior: as the number of neighbors for the LBP and LBPHF 

descriptors increases, so does the classification performance. However, increasing the 

number of neighbors increases the computational cost of analysis

Describer Best Result (%) Classifier
LBP8.1 89.2 Discriminant Analysis
LBP8.2 92 Discriminant Analysis
LBP16.1 95.5 Ensemble
LBP16.2 94.3 Ensemble
LBPHF 8.1 90.2 Ensemble
LBPHF 16.2 95.2 Ensemble
LBPHF 24.3 96.7 Ensemble
LPQ 96 Ensemble

Source: Organized by the authors (2023)

The results for Structural Approach are shown in Table 3 and they presented 

the best results in this research. The performance is very predictable, for example, as 

the number of neighbors for LBP and LBP-HF increases, classification performance 

is also increased. However, increasing the number of neighbors also increases the 

computational cost for analysis. 

For the analyses, a 96.7% performance was measured at a high computational 

cost for the LBPHF 24.3 descriptor. The classes are visually less perceptible, yet the 

Ensemble classifier achieves excellent results (Figure 2).

The second-best performer is LPQ, a noise-insensitive variation of LBP, with 

a performance of 96%. Although the performance was 0.7% below LBP, the LPQ 

descriptor has an excellent computational cost, making the superiority of this method 

quite evident. The structural methods are suited well to microscopic images in which 

the image primitives are quite evident. Figure 3 shows scatter plot for LPQ, illustrating 

distinguishable classes and well-distributed data.
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Figure 2 – Scatter plot of the data for the LBPHF 24.3 descriptor (Local Binary Patterns 

with Fourier Histograms, 24 neighbors, 3 radii). The graph shows that, despite the 

classes being visually less noticeable, the Ensemble classifier managed to achieve an 

impressive assertiveness rate of 96.7%

Source: Author’s/ Authors’ private collection (2023)

Figure 3 – Scatter plot of the data for the LPQ (Local Phase Quantization) descriptor, 

where the classes are well distinguishable, and the data has a uniform distribution. The 

combination of the LPQ and GLCM (Gray-Level Co-Occurrence Matrix) descriptors applied 

to the Green (RGB), Hue and Saturation (HSV) channels proved to be highly effective

Source: Author’s/ Authors’ private collection (2023)
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The combination of the LPQ and GLCM(GHS) descriptors reached a precision 

of 99.3% for the Ensemble classifier’s best training, out of the 600 observations, the 

Ensemble classifier misclassified only four, resulting in a precision of 99.3%. The 

combination LBPHF 24.3 and GLCM(GHS) resulted in 98.7% for the Ensemble classifier. 

Even with a significant result and LBPHF 24.3 being a robust descriptor, it has a high 

computational cost and the combination of GLCM with LPQ was more effective. 

Therefore, the combination of the LPQ and GLCM(GHS) descriptors would be interesting 

for a future application of botanical identification, as they are established descriptors, 

easy to implement, and have low computational cost that, associated with the Ensemble 

classifier, present excellent performance for microscopic image classification.

5 CONCLUSIONS

Through the Classification Learner tool, the best classification method was 

observed, where the Ensemble method stood out, based on using the set of distinct 

classifiers and combining their responses to achieve the best result. The combination 

method was also effective when the LPQ and GLCM descriptors were grouped, 

achieving a 99.3% performance in the classification process, a result superior to the 

individual use of the descriptors.

The hope is that, In the future, we hope to carry out botanical identification 

specifically of Amazonian species and aggregate the results for the development of a 

botanical recognition application that can be validated and adopted by environmental 

inspection bodies, as well as further the area of research into species characteristic 

of the Amazon region, thus contributing to environmental conservation and the 

protection of biodiversity.



Ci. e Nat., Santa Maria, v. 47, e86097, 2025

 | Computer vision-based wood identification: an approach with LPQ and GLCM... 16

ACKNOWLEDGEMENTS

The authors would like to express their immense gratitude to Julie Flávia 

Vieira Vinente (in memoriam), for all the effort put into the development of this 

work, which would not have been possible without her initiative and dedication. It is 

worth mentioning, therefore, that her name will be present in all the directions this 

research will take us, always leading to better results. We would also like to thank the 

Universidade Federal do Oeste do Pará (UFOPA), for all the support given during the 

research.

REFERENCES

Ahonen, T., Hadid, A., & Pietikainen, M. (2006). Face description with local binary patterns: 
Application to face recognition. IEEE Transactions on Pattern Analysis and Machine 
Intelligence, 28(12), 2037–2041. Retrieved from: https://ieeexplore.ieee.org/
document/1717463. doi: 10.1109/TPAMI.2006.244 

Ahonen, T., Matas, J., He, C., & Pietikäinen, M. (2009). Rotation invariant image description 
with local binary pattern histogram fourier features. In 16th Scandinavian Conference, 
Image Analysis (pp. 61–70). Oslo: SCIA. 

Azevedo, E., Conci, A., & Leta, F. R. (2007). Computação gráfica: Teoria e prática (Vol. 2). Rio de 
Janeiro: Alta Books.

De Paula, P. L. (2012). Reconhecimento de espécies florestais através de imagens macroscópicas 
(Master’s thesis). Universidade Federal do Oeste do Pará, Santarém, PA, Brazil.

Ferreira, R. L. A., Cerqueira, R. M., & Junior, R. C. C. (2020). Análise da identificação botânica 
em inventários florestais de planos de manejo sustentáveis no oeste paraense. Nature 
and Conservation, 13(3), 136-145. Retrieved from: https://sustenere.inf.br/index.php/
nature/article/view/CBPC2318-2881.2020.003.0014.  doi: https://doi.org/10.6008/
CBPC2318-2881.2020.003.0014 

Gonzalez, R. C., & Woods, R. E. (2000). Processamento de magens digitais. Blucher.

Haghighat, M., Zonouz, S., & Abdel-Mottaleb, M. (2015). CloudID: Trustworthy cloud-based 
and cross-enterprise biometric identification. Expert Systems with Applications, 42(21), 
7905–7916. Retrieved from: https://www.sciencedirect.com/science/article/abs/pii/
S0957417415004273?via%3Dihub  doi: https://doi.org/10.1016/j.eswa.2015.06.025

Haralick, R. M., Shanmugam, K., & Others. (1973). Textural features for image classification. IEEE 
Transactions on Systems, Man, and Cybernetics, 3(6), 610–621. Retrieved from: https://
ieeexplore.ieee.org/document/4309314. doi: 10.1109/TSMC.1973.4309314

https://ieeexplore.ieee.org/document/1717463
https://ieeexplore.ieee.org/document/1717463
https://sustenere.inf.br/index.php/nature/article/view/CBPC2318-2881.2020.003.0014
https://sustenere.inf.br/index.php/nature/article/view/CBPC2318-2881.2020.003.0014
https://www.sciencedirect.com/science/article/abs/pii/S0957417415004273?via%3Dihub
https://www.sciencedirect.com/science/article/abs/pii/S0957417415004273?via%3Dihub
https://ieeexplore.ieee.org/document/4309314
https://ieeexplore.ieee.org/document/4309314


Ci. e Nat., Santa Maria, v. 47, e86097, 2025

Costa Lopes, A. T., Ponte, M. J. M. da, Rodrigues, R. de A., & Moutinho, V. H. P.| 17

Ci. e Nat., Santa Maria, v. 46, e83711, 2024

Khalid, M., Lee, E. L. Y., Yusof, R., & Nadaraj, M. (2008). Design of an intelligent wood species 
recognition system. International Journal of Simulation Systems, Science and Technology, 
9(9), 9–19. Retrieved from: https://ijssst.info/Vol-09/No-3/paper2.pdf 

Koerich, A. L. (2008). Reconhecimento de padrões em imagens (Ph.D’s thesis). Universidade 
Federal do Paraná, Curitiba, PR, Brazil. 

Kohavi, R. (1995). A study of cross-validation and bootstrap for accuracy estimation and model 
selection. In 14th International Joint Conference on Artificial Intelligence (Vol. 2, pp. 1137–
1145). San Francisco: Morgan Keufmann Publishers Inc.

Lattin, J., Carroll, J. D., & Green, P. E. (2011). Análise de dados multivariados. Cengage Learning.

Maenpaa, T. (2003). The local binary pattern approach to texture analysis: Extensions and 
applications (Ph.D’s thesis). Oulun Yliopisto, Oulu, Finland.

Mangina, E., Burke, E., Matson, R., O’Briain, R., Caffrey, J. M., & Saffari, M. (2022). Plant species 
detection using image processing and deep learning: A mobile-based application. In 
Information and Communication Technologies for Agriculture—Theme II: Data (pp. 103–
130). Springer International Publishing. Retrieved from: https://link.springer.com/
chapter/10.1007/978-3-030-84148-5_5. doi: 10.1007/978-3-030-84148-5_5

Martins-Da-Silva, R. C. V. (2002). Coleta e identificação de espécimes botânicos. Belém: Embrapa 
Amazônia Oriental.

Martins, J., Oliveira, L., Nisgoski, S., & Sabourin, R. (2013). A database for automatic classifica-
tion of forest species. Machine Vision and Applications, 24(3), 567–578. Retrieved from: 
https://link.springer.com/article/10.1007/s00138-012-0417-5. doi: 10.1007/s00138-012-
0417-5

Ojala, T., Pietikäinen, M., & Harwood, D. (1996). A comparative study of texture measures with 
classification based on featured distributions. Pattern Recognition, 29(1), 51–59. Retrieved 
from: https://www.sciencedirect.com/science/article/abs/pii/0031320395000674. doi: 
https://doi.org/10.1016/0031-3203(95)00067-4

Ojala, T., Pietikainen, M., & Maenpaa, T. (2002). Multiresolution gray-scale and rotation invariant 
texture classification with local binary patterns. IEEE Transactions on Pattern Analysis 
and Machine Intelligence, 24(7), 971–987. Retrieved from: https://ieeexplore.ieee.org/
document/1017623. doi: 10.1109/TPAMI.2002.1017623

Ponte, M. J. M. D. (2017). Referencial semântico no suporte da identificação botânica de espécies 
amazônicas (Ph.D’s thesis). Universidade Federal do Oeste do Pará, Santarém, PA, Brazil. 
Retrieved from: https://repositorio.ufopa.edu.br/jspui/handle/123456789/51

Ponti, M. P. Jr. (2004). Combinação de múltiplos classificadores para identificação de materiais em 
imagens ruidosas (Master’s thesis). Universidade Federal de São Carlos, São Carlos, SP, 
Brazil.

https://ijssst.info/Vol-09/No-3/paper2.pdf
https://link.springer.com/chapter/10.1007/978-3-030-84148-5_5
https://link.springer.com/chapter/10.1007/978-3-030-84148-5_5
https://link.springer.com/article/10.1007/s00138-012-0417-5
https://www.sciencedirect.com/science/article/abs/pii/0031320395000674
https://ieeexplore.ieee.org/document/1017623
https://ieeexplore.ieee.org/document/1017623
https://repositorio.ufopa.edu.br/jspui/handle/123456789/51
https://repositorio.ufopa.edu.br/jspui/handle/123456789/51


Ci. e Nat., Santa Maria, v. 47, e86097, 2025

 | Computer vision-based wood identification: an approach with LPQ and GLCM... 18

Ribeiro, A. C. F., Da Fonseca, L. C., & Pereira, C. M. P. (2020). O plano de manejo florestal 
como instrumento de desenvolvimento sustentável na Amazônia. Direito e 
Desenvolvimento, 11(1), 264-276. Retrieved from: https://periodicos.unipe.edu.br/
index.php/direitoedesenvolvimento/article/view/875. doi: https://doi.org/10.26843/
direitoedesenvolvimento.v11i1.875

Solomon, C., & Breckon, T. (2011). Fundamentals of Digital Image Processing: A practical approach 
with examples in Matlab. John Wiley & Sons. 

The MathWorks, I. (2019). Classification Learner. The MathWorks.

Tou, J. Y., Lau, P. Y., & Tay, Y. H. (2007). Computer vision-based wood recognition system. 
Plant Methods, 17, 47. Retrieved from: https://plantmethods.biomedcentral.com/
articles/10.1186/s13007-021-00746-1#citeas. doi: https://doi.org/10.1186/s13007-021-
00746-1.  

Tuceryan, M., & Jain, A. K. (1993). Texture analysis. In Handbook of Pattern Recognition and Com-
puter Vision (pp. 235–276). World Scientific. Retrieved from: https://www.worldscientific.
com/doi/abs/10.1142/9789814343138_0010?srsltid=AfmBOorz5xKFY6nf3KymhYLgYX6I
0l6Vf5z3ymXo4LfsmXfsQRqViEiU. doi: https://doi.org/10.1142/9789814343138_0010

Veras, H. F., Ferreira, M. P., Neto, E. M. C., Figueiredo, E. O., Corte, A. P. D., & Sanquetta, C. R. 
(2022). Fusing multi-season UAS images with convolutional neural networks to map tree 
species in Amazonian forests. Ecological Informatics, 71, 101815. Retrieved from: https://
www.sciencedirect.com/science/article/abs/pii/S1574954122002655. doi: https://doi.
org/10.1016/j.ecoinf.2022.101815

Vieira, G. L. S., Ponte, M. J. M., Moutinho, V. H. P., Jardim-Gonçalves, R., Lima, C. P., & Vinagre, M. V. 
(2022). Identification of wood from the Amazon by characteristics of Haralick and Neural 
Network: image segmentation and polishing of the surface. iForest - Biogeosciences and 
Forestry, 15(4), 234. Retrieved from:  https://iforest.sisef.org/abstract/?id=ifor3906-015. 
doi: https://doi.org/10.3832/ifor3906-015

Xu, B., Chai, L., & Zhang, C. (2021). Research and application on corn crop identification and 
positioning method based on Machine vision. Information Processing in Agriculture, 
8(4), 505–513. Retrieved from: https://www.sciencedirect.com/science/article/pii/
S2214317321000603?via%3Dihub. doi: https://doi.org/10.1016/j.inpa.2021.07.004 

Yu, H., Cao, J., Liu, Y., & Luo, W. (2009). Non-equal spacing division of HSV components for 
wood image retrieval. International Congress on Image and Signal Processing, New York, 
USA, 2. Retrieved from: https://ieeexplore.ieee.org/document/5303915/similar. doi: 
10.1109/CISP.2009.5303915

Zhu, J., Hoi, S. C., Lyu, M. R., & Yan, S. (2008). Near-duplicate keyframe retrieval by nonrigid image 
matching. In Proceedings of the 16th ACM international conference on Multimedia (pp. 41–
50). New York: ACM. Retrieved from: https://dl.acm.org/doi/10.1145/1459359.1459366. 
doi: https://doi.org/10.1145/1459359.1459366 

https://periodicos.unipe.edu.br/index.php/direitoedesenvolvimento/article/view/875
https://periodicos.unipe.edu.br/index.php/direitoedesenvolvimento/article/view/875
https://www.worldscientific.com/doi/abs/10.1142/9789814343138_0010?srsltid=AfmBOorz5xKFY6nf3KymhYLgYX6I0l6Vf5z3ymXo4LfsmXfsQRqViEiU
https://www.worldscientific.com/doi/abs/10.1142/9789814343138_0010?srsltid=AfmBOorz5xKFY6nf3KymhYLgYX6I0l6Vf5z3ymXo4LfsmXfsQRqViEiU
https://www.worldscientific.com/doi/abs/10.1142/9789814343138_0010?srsltid=AfmBOorz5xKFY6nf3KymhYLgYX6I0l6Vf5z3ymXo4LfsmXfsQRqViEiU
https://www.sciencedirect.com/science/article/abs/pii/S1574954122002655
https://www.sciencedirect.com/science/article/abs/pii/S1574954122002655
https://iforest.sisef.org/abstract/?id=ifor3906-015
https://www.sciencedirect.com/science/article/pii/S2214317321000603?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S2214317321000603?via%3Dihub
https://ieeexplore.ieee.org/document/5303915/similar
https://dl.acm.org/doi/10.1145/1459359.1459366


Ci. e Nat., Santa Maria, v. 47, e86097, 2025

Costa Lopes, A. T., Ponte, M. J. M. da, Rodrigues, R. de A., & Moutinho, V. H. P.| 19

Ci. e Nat., Santa Maria, v. 46, e83711, 2024

APPENDICES

Algorithm 1 – The LBP feature extraction algorithm in MATLAB

function [descripteurs] = haralick(chemin,granule,d)
fprintf (chemin);
fprintf(‘...\n’);
descripteurs=zeros(40,24,’double’);
Ng = 256;

for cpt = 1:40
    fprintf(‘   Image %d \n’,cpt);
    if (cpt < 10)
        image = imread([chemin granule ‘-0’ num2str(cpt) ‘.bmp’]);
    end;
    if (cpt >= 10)
        image = imread([chemin granule ‘-’ num2str(cpt) ‘.bmp’]);
    end;
    
    image = rgb2gray(image);
    image = double(image);
    
    Nx = size(image,1);
    Ny = size(image,2);
    temp=zeros(2,24,’double’);
    
    for i = 1:2    
            subimage = image(((i-1)*128 + 1):(i*128), 1:128);
            gtsdmMatrix = zeros(Ng,Ng,4,’double’);
            nbRows = size(subimage,1);
            nbColumns = size(subimage,2);
                        
            % Calcul des 4 Gray Tone Spatial Dependence Matrices (gtsdm)
            for k = 1:nbRows
                for l = 1:nbColumns
                    for m = (-d):d
                        for n = (-d):d
                            if ((k + m >= 1) && (k + m  <= nbRows) && (l + n >= 1) && (l + n <= nbCol-

umns)) 
                                currentPixelValue = subimage(k,l);
                                neighborPixelValue = subimage(k + m, l + n);
                                
                                % Horizontal
                                if (m == 0 && abs(n) == d)
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                                    gtsdmMatrix(currentPixelValue + 1 , neighborPixelValue + 1,1)= 
gtsdmMatrix(currentPixelValue + 1 , neighborPixelValue + 1,1) + 1;

                                else
                                    % 45 degrees
                                    if (m == (-n) && abs(m) == d)
                                        gtsdmMatrix(currentPixelValue + 1 , neighborPixelValue + 1,2)=
 gtsdmMatrix(currentPixelValue + 1 , neighborPixelValue + 1,2) + 1;
                                    else
                                        % Vertical
                                        if (n == 0 && abs(m) == d)
                                            gtsdmMatrix(currentPixelValue + 1 , neighborPixelValue + 1,3)=
 gtsdmMatrix(currentPixelValue + 1 , neighborPixelValue + 1,3) + 1;
                                        else
                                            % 135 degrees
                                            if (m == n && abs(m) == d)
                                                gtsdmMatrix(currentPixelValue + 1 , neighborPixelValue + 
1,4)= gtsdmMatrix(currentPixelValue + 1 , neighborPixelValue + 1,4) + 1;
                                            end;
                                        end;
                                    end;
                                end;
                            end;
                        end;
                    end;
                end;
            end;
            
            % Normalization
            %R = 4 * (nbRows -1) * (2 * nbColumns - 1);
            %gtsdmMatrix = gtsdmMatrix./R;
            
            Px = zeros(Ng,4,’double’);
            for k = 1:Ng
                for l = 1:Ng
                    for m = 1:4
                        Px(k,m) = Px(k,m) + gtsdmMatrix(k,l,m);
                    end;
                end;
            end;
            Py = Px;
            
            Pxplusy = zeros(2*Ng,4,’double’);
            for k = 1:Ng
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                for l = 1:Ng
                    for m = 1:4
                        Pxplusy((k+l),m) = Pxplusy((k+l),m) + gtsdmMatrix(k,l,m);
                    end;
                end;
            end;
            
            Pxmoinsy = zeros(Ng,4,’double’);
            for k = 1:Ng
                for l = 1:Ng
                    for m = 1:4
                        Pxmoinsy(abs(k-l)+1,m) = Pxmoinsy(abs(k-l)+1,m) + gtsdmMatrix(k,l,m);
                    end;
                end;
            end;
            
            % Angular Second Moment
            f1 = zeros(1,4,’double’);
            for k = 1:Ng
                for l = 1:Ng
                    for m = 1:4
                        f1(m) = f1(m) + gtsdmMatrix(k,l,m)^2;
                    end;
                end;
            end;
            
            % Contrast
            f2 = zeros(1,4,’double’);
            for k = 1:Ng
                for l = 1:Ng
                    for m = 1:4
                        f2(m) =  f2(m) + (abs(k-l))^2 * gtsdmMatrix(k,l,m);
                    end;
                end;
            end;
            
            % Correlation
            ux = mean(Px);
            uy=ux;
            sigmax = std(Px);
            sigmay = sigmax;
            f3 = zeros(1,4,’double’);
            for k = 1:Ng
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                for l = 1:Ng
                    for m = 1:4
                        f3(m) = f3(m) + k*l*gtsdmMatrix(k,l,m);
                    end;
                end;
            end;
            for m = 1:4
                f3(m) = (f3(m) - ux(m)*uy(m)) / (sigmax(m)*sigmay(m));
            end;
            
            % Sum of squares
            f4 = zeros(1,4,’double’);
            for k = 1:Ng
                for l = 1:Ng
                    for m = 1:4
                        f4(m) =  f4(m) + (k - ux(m))^2 * gtsdmMatrix(k,l,m);
                    end;
                end;
            end;
           
            % Inverse difference moment
            f5 = zeros(1,4,’double’);
            for k = 1:Ng
                for l = 1:Ng
                    for m = 1:4
                        f5(m) =  f5(m) + (1 / (1 + (k - l)^2)) * gtsdmMatrix(k,l,m);
                    end;
                end;
            end;
            
            % Sum of average
            f6 = zeros(1,4,’double’);
            for k = 2:(2*Ng)
                for m = 1:4
                    f6(m) =  f6(m) + k * Pxplusy(k,m);
                end;
            end;
            
            % Sum entropy
            f8 = zeros(1,4,’double’);
            for k = 2:(2*Ng)
                for m = 1:4
                    f8(m) =  f8(m) + Pxplusy(k,m) * log(Pxplusy(k,m) + 1e-1);
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                end;
            end;
            f8 = -f8;
            
            % Sum variance
            f7 = zeros(1,4,’double’);
            for k = 2:(2*Ng)
                for m = 1:4
                    f7(m) =  f7(m) + (k - f8(m))^2 * Pxplusy(k,m);
                end;
            end;
	
            % Entropy
            f9 = zeros(1,4,’double’);
            for k = 1:Ng
                for l = 1:Ng
                    for m = 1:4
                        f9(m) =  f9(m) + gtsdmMatrix(k,l,m) * log(gtsdmMatrix(k,l,m) + 1e-1);
                    end;
                end;
            end;
            f9 = -f9;
            
            % Difference variance
            f10 = std(Pxmoinsy);
            
            % Sum variance
            f11 = zeros(1,4,’double’);
            for k = 0:(Ng - 1)
                for m = 1:4
                    f11(m) =  f11(m) + Pxmoinsy(k+1,m) * log(Pxmoinsy(k+1,m) + 1e-1);
                end;
            end;
            f11 = -f11;
            
            % Information measures of correlation
            % Px entropy
            HX = zeros(1,4,’double’);
            for k = 1:Ng
                for m = 1:4
                    HX(m) =  HX(m) + Px(k,m) * log(Px(k,m) + 1e-1);
                end;
            end;
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            HX = -HX;
            HY = HX;
            
            %HXY1
            HXY1 = zeros(1,4,’double’);
            for k = 1:Ng
                for l = 1:Ng
                    for m = 1:4
                        HXY1(m) =  HXY1(m) + gtsdmMatrix(k,l,m) * log(Px(k,m) * Py(l,m) + 1e-1);
                    end;
                end;
            end;
            HXY1 = -HXY1;
            
            %HXY2
            HXY2 = zeros(1,4,’double’);
            for k = 1:Ng
                for l = 1:Ng
                    for m = 1:4
                        HXY2(m) =  HXY2(m) + Px(k,m) * Py(l,m) * log(Px(k,m) * Py(l,m) + 1e-1);
                    end;
                end;
            end;
            HXY2 = -HXY2;
            
            f12 = zeros(1,4,’double’);
            f13 = zeros(1,4,’double’);
            for m = 1:4
                f12(m) = (f9(m) - HXY1(m)) / max(HX(m),HY(m));
                f13(m) = -sqrt(1 - exp(-2 * (HXY2(m) - f9(m))));
            end;
            
            % maximal correlation coefficient
            %             Q = zeros(Ng,Ng,4,’double’);
            %             for k = 1:Ng
            %                 for l = 1:Ng
            %                     for p = 1:Ng
            %                         for m = 1:4
            %                             Q(k,l,m) =  Q(k,l,m) + (gtsdmMatrix(k,p,m) * gtsdmMatrix(l,p,m)) 

/ (Px(k,m) * Py(p,m) + 1);
            %                         end;
            %                     end;
            %                 end;
            %             end;
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            %             eigenvalues = zeros(1,Ng,4,’double’);
            %             for k = 1: Ng
            %                 for m = 1:4
            %                     eigenvalues(1,k,m) = Q(k,k,m);
            %                 end;
            %             end;
            %             f14 = zeros(1,4,’double’);
            %             for m = 1:4
            %                 u = unique(eigenvalues(:,:,m));
            %                 f14(m) = u(end-1);
            %             end;
            
            temp(i,1) = mean(f1);
            temp(i,2) = std(f1);
            temp(i,3) = mean(f2);
            temp(i,4) = std(f2);
            temp(i,5) = mean(f3);
            temp(i,6) = std(f3);
            temp(i,7) = mean(f4);
            temp(i,8) = std(f4);
            temp(i,9) = mean(f5);
            temp(i,10) = std(f5);
            temp(i,11) = mean(f6);
            temp(i,12) = std(f6);
            temp(i,13) = mean(f7);
            temp(i,14) = std(f7);
            temp(i,15) = mean(f8);
            temp(i,16) = std(f8);
            temp(i,17) = mean(f9);
            temp(i,18) = std(f9);
            temp(i,19) = mean(f10);
            temp(i,20) = std(f10);
            temp(i,21) = mean(f11);
            temp(i,22) = std(f11);
            temp(i,23) = mean(f12);
            temp(i,24) = std(f12);
            temp(i,25) = mean(f13);
            temp(i,26) = std(f13);
            %temp(ij,25) = mean(f14);
            %temp(ij,26) = std(f14);
            
        end;
    descripteurs(cpt,1) = mean(temp(1:2,1));
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    descripteurs(cpt,2) = mean(temp(1:2,2));
    descripteurs(cpt,3) = mean(temp(1:2,3));
    descripteurs(cpt,4) = mean(temp(1:2,4));
    descripteurs(cpt,5) = mean(temp(1:2,5));
    descripteurs(cpt,6) = mean(temp(1:2,6));
    descripteurs(cpt,7) = mean(temp(1:2,7));
    descripteurs(cpt,8) = mean(temp(1:2,8));
    descripteurs(cpt,9) = mean(temp(1:2,9));
    descripteurs(cpt,10) = mean(temp(1:2,10));
    descripteurs(cpt,11) = mean(temp(1:2,11));
    descripteurs(cpt,12) = mean(temp(1:2,12));
    descripteurs(cpt,13) = mean(temp(1:2,13));
    descripteurs(cpt,14) = mean(temp(1:2,14));
    descripteurs(cpt,15) = mean(temp(1:2,15));
    descripteurs(cpt,16) = mean(temp(1:2,16));
    descripteurs(cpt,17) = mean(temp(1:2,17));
    descripteurs(cpt,18) = mean(temp(1:2,18));
    descripteurs(cpt,19) = mean(temp(1:2,19));
    descripteurs(cpt,20) = mean(temp(1:2,20));
    descripteurs(cpt,21) = mean(temp(1:2,21));
    descripteurs(cpt,22) = mean(temp(1:2,22));
    descripteurs(cpt,23) = mean(temp(1:2,23));
    descripteurs(cpt,24) = mean(temp(1:2,24));
    descripteurs(cpt,25) = mean(temp(1:2,25));
    descripteurs(cpt,26) = mean(temp(1:2,26));
end;

Algorithm 2 – Algorithm for LBP-HF features in MATLAB, by Ahonen et al. (2009)

% Reads, converts to grayscale
imagem = rgb2gray(imagem);
% rotates the image
I2 = imrotate(imagem,90);
% generates a para with size 8
mapping = getmaplbphf(8);
% extracts the LBP and extracts the histogram
h = lbp(imagem,1,8,mapping,’h’);
h = h/sum(h);
histograms(1,:) = h;
% extracts the LBP for the rotated image
h = lbp(I2,1,8,mapping,’h’);
h = h/sum(h);
histograms(2,:)=h;
% applies the Fourrier transform and generates the feature vector
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result = constructhf(histograms,mapping);

Algorithm 3 – Creates a quantity u*v of gabor filters per Haghighat et al. (2015)

function gaborArray = gaborFilterBank(u,v,m,n)
gaborArray = cell(u,v);
fmax = 0.25;
gama = sqrt(2);
eta = sqrt(2);
for i = 1:u do

fu = fmax/((sqrt(2))(i − 1)) alpha = f u/gama beta = f u/eta
for j = 1:v do

	tetav = ((j-1)/v)*pi;
gFilter = zeros(m,n);
for x = 1:m do

for y = 1:n do
	xprime = (x-((m+1)/2))*cos(tetav)+(y-((n+1)/2))*sin(tetav);
yprime = -(x-((m+1)/2))*sin(tetav)+(y-((n+1)/2))*cos(tetav);

gFilter(x,y) = (fu2/(pi * gama  * eta)) * exp(−((alpha2) ∗ (xprime2) + (beta2) * (ypri
me2)))* exp(1i * 2 * pi * f u * xprime)

end
end

gaborArrayi,j = gFilter;
end

end

end
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