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ABSTRACT

This article presents explicit formulas for the class of homogeneous linear recurrence of order 2 with
constant coefficients associated with hybrid sequences, determined through generating functions.
Furthermore, the applications of the resolution method in each case are all displayed and the relations
between Binet’s formulas and the expressions obtained via generating functions are discussed.
Illustrative examples are given to clarify the approach.
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RESUMO

Este artigo apresenta fórmulas expĺıcitas para a classe de recorrência linear homogênea de ordem 2
com coeficientes constantes associados à sequência h́ıbrida, determinados através de funções
geradoras. Além disso, as aplicações do método de resolução em cada caso são todos exibidos e as
relações entre as fórmulas de Binet e as expressões obtidas via funções geradoras são discutidas.
Exemplos ilustrativos são dados para esclarecer o abordado.
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geradoras

Published by Ciência e Natura under a CC BY-NC-SA 4.0 license.

https://orcid.org/0000-0002-8181-5361
https://orcid.org/0000-0002-3902-7003
https://orcid.org/0000-0001-6079-2458
https://orcid.org/0000-0003-2839-2598
https://orcid.org/0000-0002-4678-3237
https://creativecommons.org/licenses/by-nc/4.0/


2 | On second-order linear difference equations associated with...

1 INTRODUCTION

Complex, hyperbolic and dual numbers are two-dimensional systems known in
the literature and researched in the last century for preliminary and physical
application models. In Physics, when we interpret and demonstrate each space-time
as being generated by the characteristic of the ideal of a hypercomplex ring, we can
say that space-time is a structure generated by the algebra of hybrid numbers. This
means that the hybrid numbers generate all space-times, then, through the study of
hybrids, we can deduce in a purely algebraic way how each space-time is structured by
numbers and how it evolved from coordinates.

The space where the events occur is a four-dimensional space called space-time,
composed not only by the usual spatial directions, but also by a temporal direction.
Furthermore, this space-time does not have a Euclidean structure, like that of
three-dimensional physical space. In the world of mathematics, the four-dimensional
space is given with the formalism of equations for can be understood and interpreted,
but the need for four-dimensional thinking is still an obstacle, (see more in (Özdemir,
2018), and references therein).

Geometric algebras, also known as Clifford algebras, offer distinct advantages
for formulating and analyzing physical models due to their associativity and the
existence of an inverse element. Specifically, the geometric algebra of Euclidean space
provides a comprehensive framework for classical areas of physics, including
mechanics and electromagnetism, with a variety of benefits over traditional
formulations.

When analyzing numerical sequences, it may be beneficial to consider the
complex number system. By studying the difference equations that are relevant to this
number set, we can uncover potential solutions. Additionally, we can apply established
methods from the literature to better understand and analyze these solutions. In this
context, this work consists of establishing a connection between solutions for
difference equations and generating functions. More specifically, using the technique
of ordinary generating functions, the solutions are obtained by solving homogeneous
recurrence relations of order 2 with constant coefficients and initial values, without
using resolution of Vandermonde systems.
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In addition, this work focuses on various mathematical disciplines such as
functions, polynomials, numerical sequences, progressions, linear systems, solving
algebraic equations, and algebraic manipulations. The aim is to create a
comprehensive resource for teachers that will enable them to use algebraic knowledge
to solve homogeneous linear recurrences of order 2 with constant coefficients, using
explicit formulas. All of this is applicable to Basic Education. On the other hand, we
show clear examples of counting problems, which can serve as material for the teacher
to apply directly in the classroom. In addition to the resolution of the associated
recurrence, we emphasize here the case of simple roots that is more common in the
literature, thus bringing a possible didactic sequence that the teacher can use in the
classroom.

The content of this article is as follows. In Section 2, we give a brief overview of
generating function as a power series and provide the generating function of
homogeneous second-order recurrence with constant coefficients associated with
hybrid sequence, with initial conditions. In Section 3, we use the generating function to
establish the solution of homogeneous second-order recurrence with constant
coefficients associated with hybrid sequence, with initial conditions. Section 4
concerns the connection between the analytic form (Binet’s formula) given in terms of
roots of characteristic polynomial and the results given in Section 3. Finally, Section 5 is
dedicated to final considerations, with a discussion on the scope of our approach both
in terms of teacher training and in terms of didactic approach.

2 GENERATING FUNCTION AND LINEAR DIFFERENCE EQUATION OF
ORDER 2 ASSOCIATED WITH HYBRID SEQUENCE

2.1 Generating function and power series

Generating functions are power series where the coefficients give us information
about a sequence (an)n∈N and the exponent of the variable in the series quantifies some
property we are interested in about this sequence. If we associate such powers of the
variable x by adding them together, the coefficient of xn will be the term of the sequence
at position n that presented the solution in the problem, (see details in (Lima, 2009)).
Follows the definition,
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Definition 2.1. Power series or formal series are infinite series of the form

∑
n≥0

anx
n = a0 + a1x+ a2x

2 + · · ·

where each term is a constant multiplied by a power of x.

In the combinatorial point of view, it is not necessary to observe the convergence
aspect of the power series. However, if the variable x takes on a specific numeric value,
the series becomes a constant sequence of terms that either converges or diverges.
A power series may converge for some values of x and diverge for others. It can be
shown that to each power series there corresponds a symmetric interval −L < x < L,
inside which the series converges and outside which it diverges. At the edge points,
x = −L and x = L, it can either converge or diverge. The number L is called the radius

of convergence, and the set of all numbers for which the series converges is called the
interval of convergence. This interval can be infinite if the series is convergent for all
values of x in the set of real numbers (see (Lima, 2009) for more details).

Example 2.1. The geometric series 1

1− x
= 1+ x+ x2 + x3 + . . . has convergence ratio L = 1

and is derivable in (−1,1). Then,

1

(1− x)2
= 1 + 2x+ 3x2 + · · ·+ nxn−1 + · · · =

∞∑
n=1

nxn−1.

2.2 Linear Difference Equation of order 2 associated with hybrid sequence

Recently, many studies have been devoted to hybrid numbers whose
components are taken from special integer sequences, such as Fibonacci, Lucas, Pell
and Jacobsthal, (see (Özdemir, 2018), (Szynal-Liana, 2018), (Szynal-Liana & Wlock,
2019a), (Catarino, 2019)) and references therein). Hybrid numbers have an algebraic
and geometric structure, but especially when they are elements of recurrence
sequences, such as Horadam and Leonardo numbers, they define complex
generalizations of generalized Fibonacci numbers. This new non-commutative
numbering system, the hybrid numbers, was introduced by Ozdemir (Özdemir, 2018)
as a generalization of complex numbers, dual numbers, and hyperbolic numbers, that
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are defined as the set
H = {a+ bi+ cϵ+ dh, | i2 = −1,ϵ2 = 0,h2 = 1,ih = −hi = ϵ+ i}.

In particular, Szynal-Liana (Szynal-Liana, 2018) introduced the hybrid numbers of
Horadam and several properties of special types of hybrid numbers were explored,
(Szynal-Liana & Wlock, 2019a), (Szynal-Liana & Wlock, 2019b), (Szynal-Liana & Wlock,
2018). Furthermore, Morales (Morales, 2018) worked on a generalization of the hybrid
numbers of (p, q)−Fibonacci and (p, q)−Lucas obtaining new identities between them.
Another class explored was the k−Pell hybrid numbers, investigated by Paula Catarino
(Catarino, 2019).

On the other hand, the sequences defining the generalized Fibonacci numbers,
the generalized Pell numbers or the Jacobsthal numbers, are special cases of the
sequences defined by linear recurrence relations.

Consider the sequence (Vn)n≥0 of order 2, defined by
Vn + pVn−1 + qVn−2 = 0 for n ≥ 2, (1)

where V0 = a0, V1 = a1, and p, q are fixed real or complex numbers.
The hybrid number HVn is defined by the relation

HVn = Vn + Vn+1i+ Vn+2ϵ+ Vn+3h, (2)
where i,ϵ and h are hybrid units. Replacing the relation (1) in (2), we get the following
identities,

pHVn−1 = pVn−1 + pVni+ pVn+1ϵ+ pVn+2h (3)

qHVn−2 = qVn−2 + qVn−1i+ qVnϵ+ qVn+1h (4)
By Expressions (3) and (4) we obtain the following recurrence relation,

HVn + pHVn−1 + qHVn−2 = 0, (5)
with the initial conditions,
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HV0 = a0 + a1i− (pa1 + qa0)ϵ+ [(p2 − q)a1 + pqa0]h

HV1 = a1 − (pa1 + qa0)i+ [(p2 − q)a1 + pqa0)]ϵ+ [(−p3 + 2pq)a1 + (q2 − p2q)a0]h (6)
The Expression (5) shows that the recurrence relation associated with the hybrid

numbers is a homogeneous linear recurrence of order 2 with initial conditions. In
addition, since the coefficients of the recurrence relation and the hybrid recurrence
relation associated are the same, the characteristic polynomial and their roots are the
same. Under these observations, the approach to solving a homogeneous linear
recurrence of order 2 can be applied to solve the hybrid recurrence relation
associated.
2.3 The generating function

In this section we will apply the generating function technique to find an explicit
formula for a second-order homogeneous linear recurrence with constant coefficients
associated with hybrid sequence. Consider the linear recurrence of order 2 given by
Equation (5) with the initial conditions (6). Using the concept of power series, we define

Hf(x) =
∞∑
n=0

HVnx
n.

By multiplication of xn in both sides of equality (5), we obtain,
HVnx

n = −pHVn−1x
n − qHVn−2x

n,

HVnx
n = −pxHVn−1x

n−1 − qx2HVn−2x
n−2,

∞∑
n=2

HVnx
n = −px

∞∑
n=2

HVn−1x
n−1 − qx2

∞∑
n=2

HVn−2x
n−2,

−HV0 −HV1x+
∞∑
n=0

HVnx
n = pxHV0 − px

∞∑
n=0

HVnx
n − qx2

∞∑
n=0

HVnx
n.

Then,
(1 + px+ qx2)

∞∑
n=0

HVnx
n = HV0 +HV1x+ pHV0x,
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Hf(x) =
HV0 + (HV1 + pHV0)x

1 + px+ qx2
. (7)

Expression (7) is the generating function to the linear recurrence HVn + pHVn−1 +

qHVn−2 = 0. In fact, this result is a particular case of a result published in the article
(Craveiro et al., 2022), that established the explicit formula for the generating functions
for the homogeneous linear recurrence relation of order 2, namely,

Theorem 1 (Theorem 3.2, (Craveiro et al., 2022)). Given a linear homogeneous recurrence

with constant coefficients p, q, where q ̸= 0, initial conditions a0 and a1, and equation an+2 +

pan+1 + qan = 0, n ≥ 0, then the generating function of sequence (an)n≥0 is equal to

f(x) =
a0 + a1x+ pxa0
1 + px+ qx2

.

The direct application of Theorem 1 for Equation (5) with the initial conditions (6)
give us the same result via generating function.

Proposition 2.1. Consider the homogeneous linear recurrence with constant coefficients

p, q, where q ̸= 0, associated with the hybrid numbers (HVn)n≥0 with initial conditions HV0,

HV1, (6), and equation HVn+2 + pHVn+1 + qHVn = 0, n ≥ 0, (5). Then, the generating function

of sequence (HVn)n≥0 is equal

Hf(x) =
HV0 + (HV1 + pHV0)x

1 + px+ qx2
.

Note that the Expression (7) is a rational function. With a new perspective, we
focus in analyse the denominator of Expression (7) and provide an explicit formula for
the coefficient xn in expansion of Hf(x). By considering p and q real numbers, since 1 +

px+ qx2 is a second degree polynomial, there are three possibilities for the discriminant
∆ = p2 − 4q, ∆ > 0,∆ < 0 or ∆ = 0. The next section is devoted to study each case of
discriminant.
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3 EXPLICIT FORMULAS

3.1 The case ∆ > 0 of polynomial 1 + px+ qx2

Let ∆ = p2 − 4q > 0 be the discriminant of polynomial s(x) = 1 + px + qx2. Since
∆ > 0, then s(x) have simple roots λ1, λ2 ∈ R such that

qx2 + px+ 1 = q(x− λ1)(x− λ2) (8)

where, λ1 =
−p+

√
p2 − 4q

2q
and λ2 =

−p−
√

p2 − 4q

2q
, q ̸= 0.

Since λ1,λ2 ̸= 0, then the Expressions (7) and (8) allow us to obtain
Hf(x) =

HV0 +HV1x+ pHV0x

1 + px+ qx2
=

(
1

q

)[
HV0 +HV1x+ pHV0x

(x− λ1)(x− λ2)

]
. (9)

Decomposing (9) into partial fractions (more details in (Lima, 2009)) we obtain,
HV0 +HV1x+ pHV0x

(x− λ1)(x− λ2)
=

(
1

λ1 − λ2

)(
HV0 +HV1λ1 + pλ1HV0

x− λ1

)
(10)

+

(
1

λ2 − λ1

)(
HV0 +HV1λ2 + pλ2HV0

x− λ2

)
.

By replacing Expression (10) in (9) follows the result,

Hf(x) =
1

q

HV0 +HV1λ1 + pλ1HV0

λ1 − λ2

 1

1−
(

x

λ1

)
(−1

λ1

)
(11)

+
HV0 +HV1λ2 + pλ2HV0

λ2 − λ1

 1

1−
(

x

λ2

)
(−1

λ2

) .

By considering
∣∣∣∣ xλ1

∣∣∣∣ < 1 and
∣∣∣∣ xλ2

∣∣∣∣ < 1, the geometric series 1

1−
(

x

λ1

) and
1

1−
(

x

λ2

) converge. Then, we obtain,

Hf(x) =
−1

q

[
∞∑
n=0

(
HV0 +HV1λ1 + pλ1HV0

λ1(λ1 − λ2)

)(
x

λ1

)n

+

(
HV0 +HV1λ2 + pλ2HV0

λ2(λ2 − λ1)

)(
x

λ2

)n
]
,
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where the coefficient of xn is given by
−1

q

[
HV0 +HV1λ1 + pHV0λ1

(λ1 − λ2)λ
n+1
1

+
HV0 +HV1λ2 + pHV0λ2

(λ2 − λ1)λ
n+1
2

]
. (12)

Under the previous discussion, follows the result,

Proposition 3.1. Consider the homogeneous linear recurrence with constant coefficients p, q,

where q ̸= 0, associated with the hybrid numbers (HVn)n≥0 with initial conditions HV0 and

HV1, (6), and equation HVn+2 + pHVn+1 + qHVn = 0, n ≥ 0, (5). If the associated polynomial

s(x) = 1 + px + qx2 has discriminant ∆ = p2 − 4q > 0, then the explicit formula for HVn is

given by,

HVn =
−1

q

[
HV0 +HV1λ1 + pHV0λ1

(λ1 − λ2)λ
n+1
1

+
HV0 +HV1λ2 + pHV0λ2

(λ2 − λ1)λ
n+1
2

]
.

where λ1 and λ2 are simple roots of s(x).

The Proposition 3.1 gives us the explicit formula for HVn in the case ∆ > 0.

Example 3.1. Consider the usual Fibonacci sequence given by Fn = Fn−1 + Fn−2,n ≥ 2, and

initial conditions F0 = 0,F1 = 1. The hybrid sequence associated with Fibonacci numbers is

given by,

HFn+2 −HFn+1 −HFn = 0 (13)
for n ≥ 0, with initial conditions HF0 = i+ ϵ+ 2h,HF1 = 1 + i+ 2ϵ+ 3h.

The polynomial associated s(x) = 1 − x − x2 has roots λ1 =
−1−

√
5

2
and λ2 =

−1 +
√
5

2
. Then, by direct application of Proposition 3.1, is derived the explicit formula,

HFn =

(i+ ϵ+ 2h) + (1 + i+ 2ϵ+ 3h)
(

−1−
√
5

2

)
− (i+ ϵ+ 2h)

(
−1−

√
5

2

)
−
√
5
(

−1−
√
5

2

)n+1


+

(i+ ϵ+ 2h) + (1 + i+ 2ϵ+ 3h)
(

−1+
√
5

2

)
− (i+ ϵ+ 2h)

(
−1+

√
5

2

)
√
5
(

−1+
√
5

2

)n+1

 .
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3.2 The case ∆ = 0 of polynomial 1 + px+ qx2

Recall the denominator of HVn in Theorem 2.1, the polynomial s(x) = 1 + px+ qx2

with q and p constants, q ≠ 0. Consider the discriminant of s(x) equal zero, or, ∆ =

p2 − 4q = 0. Thus q =
p2

4
and the root λ = − p

2q
of s(x) has multiplicity 2. Then, we obtain

1 + px+ qx2 = q(x− λ)2. This implies,
Hf(x) =

HV0 +HV1x+ pHV0x

1 + px+ qx2

=
HV0 +HV1x+ pHV0x

q
· 1

(x− λ)2

=
HV0 +HV1x+ pHV0x

qλ2
· 1(

1− x

λ

)2 . (14)

Let 1

1−
(x
λ

) =
∞∑
n=0

(
1

λ

)n

xn be the geometric series. The convergence radius is
given by ∣∣∣x

λ

∣∣∣ < 1, or |x| < |λ|. Thus the function g(x) =
1

1−
(x
λ

) is derivable in the

interval (−|λ|,|λ|). In addition, g′(x) = ∞∑
n=1

n

(
1

λ

)n

xn−1 with convergence radius ∣∣∣x
λ

∣∣∣ < 1.

On the other side, since g′(x) =
1

λ
· 1(

1− x

λ

)2 , follows the result,

1(
1− x

λ

)2 =
∞∑
n=0

(n+ 1) · 1

λn
· xn. (15)

By replacing Expression (15) in Expression (14) we get,
Hf(x) =

HV0 +HV1x+ pHV0x

qλ2
·

∞∑
n=0

(n+ 1) · 1

λn
· xn

= (HV0 +HV1x+ pHV0x) ·
∞∑
n=0

(n+ 1)xn

qλn+2
. (16)

The coefficient of xn in (16) is given by,
HVn =

HV0(n+ 1)

qλn+2
+

HV1n

qλn+1
+

pHV0n

qλn+1
.

Based on the previous discussion, we obtain the following proposition.
Proposition 3.2. Consider the homogeneous linear recurrence with constant coefficients p, q,
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where q ̸= 0, associated with the hybrid numbers (HVn)n≥0 with initial conditions HV0 and

HV1, (6), and equation HVn+2 + pHVn+1 + qHVn = 0, n ≥ 0, (5). If the associated polynomial

s(x) = 1 + px + qx2 has discriminant ∆ = p2 − 4q = 0, then the explicit formula for HVn is

given by,

HVn =
HV0(n+ 1)

qλn+2
+

HV1n

qλn+1
+

pHV0n

qλn+1
. (17)

λ is a root of s(x) with multiplicity 2.

Example 3.2. Consider the numerical sequence (HOn)n∈N given by,

HOn+2 −HOn+1 +
1

4
HOn = 0, n ≥ 0,

HO0 =
1

2
i+

1

2
ϵ+

3

8
h,

HO1 =
1

2
+

1

2
i+

3

8
ϵ+

1

4
h.

(18)

By direct application of Proposition 3.2 with s(x) = 1− x+ 1
4
x2 and λ = 2, we obtain,

HOn =
HO0 · (n+ 1)

1

4
· 2n+2

+
HO1 · n
1

4
· 2n+1

− HO0 · n
1

4
· 2n+1

HOn =

(
1

2
i+

1

2
ϵ+

3

8
h

)
· (n+ 1)

2n
+

(
1

2
+

1

2
i+

3

8
ϵ+

1

4
h

)
· n

2n−1
+

(
1

2
i+

1

2
ϵ+

3

8
h

)
· n

2n−1

HOn =

(
1

2
i+

1

2
ϵ+

3

8
h

)
·
(
1

2

)n

+

(
1

2
i+

1

2
ϵ+

3

8
h

)
· n ·

(
1

2

)n

+

(
1

2
+

1

2
i+

3

8
ϵ+

1

4
h

)
· n ·

(
1

2

)n−1

+

(
1

2
i+

1

2
ϵ+

3

8
h

)
· n ·

(
1

2

)n−1

HOn =

(
1

2
i+

1

2
ϵ+

3

8
h

)
·
(
1

2

)n

+

(
1 +

1

2
i+

1

4
ϵ+

1

8
h

)
· n ·

(
1

2

)n

.

3.3 The case ∆ < 0 of polynomial 1+ px+ qx2

The approach for ∆ < 0 is not similar than the previous cases. Recall the Formula
(7), namely,
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Hf(x) =
HV0 +HV1x+ pHV0x

1 + px+ qx2
=

HV0 +HV1x+ pHV0x

q
(
x2 + p

q
x+ 1

q

) .

The denominator x2+
p

q
x+

1

q
, of generating function Hf(x), has discriminant given

by
∆′ =

p2

q2
− 4

q
=

p2 − 4q

q2
.

Since∆ = p2−4q < 0 and q2 > 0, then∆′ < 0, and the roots of polynomial x2+
p

q
x+

1

qare the following complex numbers,

λ =

−p

q
±

√
p2 − 4q

q2

2
=

−p

q
±
√

p2 − 4q

|q|
2

= − p

2q
± i

√
4q − p2

2q
.

Consider the notation
x2 +

p

q
x+

1

q
=

(
x+

p

2q

)2

− p2

4q2
+

1

q
=

(
x+

p

2q

)2

+
1

4

[
−p2 + 4q

q2

]
= u2 + A2,

where u = x+
p

2q
and A2 =

1

4

[
−p2 + 4q

q2

]
> 0. A long straightforward computation allows

us to verify the following identity,
1

x2 +
p

q
x+

1

q

=
∞∑
j=0

2j∑
k=0

(−1)j

A2j+2

(
2j

k

)(
p

2q

)2j−k

xk. (19)

Then, the generating function for (HVn)n∈N can be write under the form,

Hf(x) = HV0

q

∞∑
j=0

2j∑
k=0

(−1)j

A2j+2

(
2j
k

)( p

2q

)2j−k

xk (20)
+
(

HV1+pHV0

q

) ∞∑
j=0

2j∑
k=0

(−1)j

A2j+2

(
2j
k

)( p

2q

)2j−k

xk+1,

where A2 =
1

4

[
−p2 + 4q

q2

]
.

In addition, if λ = − p

2q
± i

√
4q − p2

2q
= λR ± iλI are the roots of x2 +

p

q
x +

1

q
, then

Ci. e Nat., Santa Maria, v.47, e84462, 2025
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u = x− λR and A2 = (λI)
2. Thus, in terms of complex roots, we get

Hf(x) = HV0||λ||2
∞∑
j=0

2j∑
k=0

(−1)k+1

(λ2
I)

j+1

(
2j

k

)
(λR)

2j−kxk

+ (HV1 − 2λRHV0) ||λ||2
∞∑
j=0

2j∑
k=0

(−1)k+1

(λ2
I)

j+1

(
2j

k

)
(λR)

2j−kxk+1.

The coefficient of xn in Hf(x) given by Expression (20) is the explicit formula for
HVn, namely,

HVn =
1

q

∞∑
j=0

(−1)j

A2j+2

(
p

2q

)2j−n(
HV0

(
2j

n

)
+ (HV1 + pHV0)

(
2j

n− 1

)(
p

2q

))
,

where A2 =
1

4

[
−p2 + 4q

q2

]
.

Similarly, the explicit formula ofHVn derived from generating function (20) is given
by,

HVn = HV0||λ||2
∞∑
j=0

(−1)n+1

(λ2
I)

j+1

(
2j

n

)
(λR)

2j−n (21)
+ (HV1 − 2λRHV0) ||λ||2

∞∑
j=0

(−1)n

(λ2
I)

j+1

(
2j

n− 1

)
(λR)

2j−n+1.

The previous discussion can be resumed in the following proposition,

Proposition 3.3. Consider the homogeneous linear recurrence with constant coefficients p, q,

where q ̸= 0, associated with the hybrid numbers (HVn)n≥0 with initial conditions HV0 and

HV1, (6), and equation HVn+2 + pHVn+1 + qHVn = 0, n ≥ 0, (5). If the associated polynomial

s(x) = x2 + p
q
x+ 1

q
is such that ∆ =

p2 − 4q

q2
< 0, then the explicit formula for HVn is given by,

HVn = HV0||λ||2
∞∑
j=0

(−1)n+1

(λ2
I)

j+1

(
2j

n

)
(λR)

2j−n

+ (HV1 − 2λRHV0) ||λ||2
∞∑
j=0

(−1)n

(λ2
I)

j+1

(
2j

n− 1

)
(λR)

2j−n+1,

where λ = − p

2q
± i

√
4q − p2

2q
= λR ± iλI is root of x2 +

p

q
x+

1

q
.
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Example 3.3. Consider the sequence given by Vn = Vn−2 − Vn−1,n ≥ 2, and initial conditions

V0 = 1,V1 = 1. The hybrid sequence associated is given by,

HVn+2 −HVn+1 +HVn = 0 (22)
for n ≥ 0, with initial conditions HV0 = 1 + 2i+ ε− h,HV1 = 2 + i− ε− 2h.

The polynomial associated s(x) = 1 − x + x2 has discriminate ∆ < 0, then, by direct

application of Proposition 3.3, the explicit formula for HVn is given by,

HVn =
∞∑
j=0

(−1)j(
3
4

)j+1

(
−1

2

)2j−n(
(1 + 2i+ ε− h)

(
2j

n

)
+ (2 + i− ε− 2h− 1− 2i− ε+ h)

(
2j

n

)(
−1

2

))
,

HVn =
∞∑
j=0

(−1)j

3j+1
(−1)2j−n22j+2 1

22j−n

(
(1 + 2i+ ε− h)

(
2j

n

)
− 1

2
(1− i− 2ε− h)

(
2j

n

))
,

HVn =
∞∑
j=0

(−1)3j−n

3j+1
2n+2

(
1

2
+

5

2
i+ 2ε− 1

2
h

)(
2j

n

)
.

4 THE ANALYTIC FORMULA

The explicit formulas for the solutions of linear recurrence relations with constant
coefficients are widely known in the literature. The analytic form is given by a linear
combination of the powers of the roots of the characteristic polynomial, so-called Binet‘s
formula. Consider the linear recurrence relation an+2 + pan+1 + qan = 0, n ≥ 0, where
q ̸= 0, with initial conditions a0 and a1. The characteristic polynomial associated is r(x) =

x2 + px + q. In (Craveiro et al., 2022) was established the relationship of the polynomial
r(x) and the polynomial s(x) = 1 + px + qx2 = q

(
x2 +

p

q
x+

1

q

)
in the denominator of
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generating function (7), namely,
r(x) = x2 + px+ q = x2

[
1 +

1

x
p+

1

x2
q

]
= x2s

(
1

x

)
, (23)

for ∆ > 0 and ∆ = 0, and
r(x) = x2 + px+ q = x2s

(
1

x

)
= x2q

[
1

q
+

p

qx
+

1

x2

]
, (24)

for ∆ < 0.

In addition, since q ≠ 0, then if α is a root of r(x) then α ̸= 0. Similarly, since
s(0) = 1 ̸= 0, then if λ is a root of s(x) then λ ̸= 0. Therefore, α is a root of r(x) implies
that 1

α
is a root of s(x). Otherwise, if α is root of s(x) then 1

α
is root of r(x). By these

observations and the direct application of Proposition 2.1 and Equations (23) -(24), we
can derive the Binet’s formula as well-know in the literature. In analogous way we can
derive the result given in previous sections. In the next subsections each case are
discussed and illustrative examples are given.
4.1 Binet’s Formula in the cases ∆ > 0

Recall the recurrence relation (5) with initial conditions (6), namely, HVn+pHVn−1+

qHVn−2 = 0, and
HV0 = a0 + a1i− (pa1 + qa0)ϵ+ [(p2 − q)a1 + pqa0]h,

HV1 = a1 − (pa1 + qa0)i+ [(p2 − q)a1 + pqa0)]ϵ+ [(−p3 + 2pq)a1 + (q2 − p2q)a0]h.

The characteristic polynomial associated with (5) is given by r(x) = x2 + px + q.

Suppose that the roots x1 ̸= x2 of characteristic polynomial are simple. Thus x1 =
−p+

√
∆

2

and x2 =
−p−

√
∆

2
, where ∆ = p2 − 4q. The explicit formula for HVn is given by,

HVn = C1x
n
1 + C2x

n
2 . (25)

The constants C1 and C2 are determined by solving the Vandermonde system
 1 1

x1 x2

 C1

C2

 =

 HV0

HV1

 .
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16 | On second-order linear difference equations associated with...

Then, we get C2 =
HV1 − x1HV0

x2 − x1

and C1 =
x2HV0 −HV1

x2 − x1

. The preceding discussion
is resumed in the following result,
Proposition 4.1. (Binet’s Formula for the case ∆ > 0) Consider the homogeneous linear

recurrence with constant coefficients p, q, where q ̸= 0, associated with the hybrid numbers

(HVn)n≥0 with initial conditions HV0 and HV1, (6), and equation HVn+2 + pHVn+1 + qHVn =

0, n ≥ 0, (5), where is verified ∆ = p2 − 4q > 0. Then the explicit formula of HVn is given by

HVn =
x2HV0 −HV1

x2 − x1

xn
1 +

HV1 − x1HV0

x2 − x1

xn
2 , (26)

where x1 =
−p+

√
p2−4q

2
and x2 =

−p−
√

p2−4q

2
.

By Expression (23), if λ1 ≠ λ2 ̸= 0 are roots of s(x) = 1 + px+ qx2 then 1
λ1

= x1 and
1
λ2

= x2 are roots of r(x) = x2 + px + q. Since λ1λ2 =
1

q
and λ1 + λ2 = −p

q
, we obtain the

equalities λ1

λ2

= −pλ1 − 1 and λ2

λ1

= −pλ2 − 1. Thus, multiplying the Equation (26) to λ1λ2

λ1λ2and replacing 1
λ1

= x1 and 1
λ2

= x2 permit us to obtain the Expression (12), namely,

HVn =
λ1λ2

λ1λ2

[
1
λ2
HV0 −HV1

1
λ2

− 1
λ1

(
1

λ1

)n

+
HV1 − 1

λ1
HV0

1
λ2

− 1
λ1

(
1

λ2

)n
]
,

HVn =
λ1λ2

λ1λ2

[
1
λ2
HV0 −HV1

λ1−λ2

λ1λ2

(
1

λ1

)n

+
HV1 − 1

λ1
HV0

λ1−λ2

λ1λ2

(
1

λ2

)n
]
,

HVn = λ1λ2

[
λ1λ2(

1
λ2
HV0 −HV1)

λ2(λ1 − λ2)

(
1

λ1

)n+1

+
λ1λ2(HV1 − 1

λ1
HV0)

λ1(λ1 − λ2)

(
1

λ2

)n+1
]
,

HVn = λ1λ2

[
λ1HV0 − λ1λ2HV1

λ2(λ1 − λ2)

(
1

λ1

)n+1

+
λ1λ2HV1 − λ2HV0

λ1(λ1 − λ2)

(
1

λ2

)n+1
]
,

HVn =
λ1λ2

λ1 − λ2

[{
λ1

λ2

HV0 − λ1HV1

}(
1

λ1

)n+1

+

{
λ2HV1 −

λ2

λ1

HV0

}(
1

λ2

)n+1
]
,

HVn =
−λ1λ2

λ2 − λ1

[
{(−pλ1 − 1)HV0 − λ1HV1}

(
1

λ1

)n+1

+ {λ2HV1 − (−pλ2 − 1)HV0}
(

1

λ2

)n+1
]
,

HVn =
−1

q

[
HV0 + λ1HV1 + pλ1HV0

(λ1 − λ2)λ
n+1
1

+
HV0 + λ2HV1 + pλ2HV0

(λ2 − λ1)λ
n+1
2

]
.

Based on this discussion,
Ci. e Nat., Santa Maria, v.47, e84462, 2025
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Proposition 4.2. Consider the homogeneous linear recurrence with constant coefficients

p, q, where q ̸= 0, associated with the hybrid numbers (HVn)n≥0 with initial conditions HV0

and HV1, (6), and equation HVn+2 + pHVn+1 + qHVn = 0, n ≥ 0, (5), where ∆ = p2 − 4q > 0.

Then is verified the equality,

HV0x2 −HV1

x2 − x1

xn
1 +

HV1 − x1HV0

x2 − x1

xn
2 =

−1

q

[
HV0 + λ1HV1 + pλ1HV0

(λ1 − λ2)λ
n+1
1

+
HV0 + λ2HV1 + pλ2HV0

(λ2 − λ1)λ
n+1
2

]
,

(27)

where x1 =
1

λ1

=
−p+

√
p2−4q

2
and x2 =

−p−
√

p2−4q

2
=

1

λ2

.

Example 4.1. Recall the Example 3.1 which consist of the explicit formula for the hybrid

sequence associated with Fibonacci numbers, HFn = HFn−1 + HFn−2, n > 2 with initial

conditions HF0 = i+ ϵ+ 2h,HF1 = 1 + i+ 2ϵ+ 3h, given by,

HFn =

(i+ ϵ+ 2h) + (1 + i+ 2ϵ+ 3h)
(

−1−
√
5

2

)
− (i+ ϵ+ 2h)

(
−1−

√
5

2

)
−
√
5
(

−1−
√
5

2

)n+1


+

(i+ ϵ+ 2h) + (1 + i+ 2ϵ+ 3h)
(

−1+
√
5

2

)
− (i+ ϵ+ 2h)

(
−1+

√
5

2

)
√
5
(

−1+
√
5

2

)n+1

 .

The characteristic polynomial is given by x2 − x − 1 = 0 with simple roots x1 = 1+
√
5

2

and x2 =
1−

√
5

2
. Then, the Binet’s formula is given by,

HFn =
2 + (1 +

√
5)i+ (3 +

√
5)ϵ+ (4 + 2

√
5)h

2
√
5

(1 +
√
5)n

2n

+
2 + (1−

√
5)i+ (3−

√
5)ϵ+ (4− 2

√
5)h

−2
√
5

(1−
√
5)n

2n

Combining the Examples 3.1, 4.1 and the Proposition 4.2 we obtain the corollary
below,

Corollary 4.1. Consider the hybrid sequence associated with Fibonacci numbers, HFn =

HFn−1 +HFn−2, n > 2 with initial conditions HF0 = i+ ϵ+ 2h,HF1 = 1 + i+ 2ϵ+ 3h. Then, is

verified the equality,(i+ ϵ+ 2h) + (1 + i+ 2ϵ+ 3h)
(

−1−
√
5

2

)
− (i+ ϵ+ 2h)

(
−1−

√
5

2

)
−
√
5
(

−1−
√
5

2

)n+1


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18 | On second-order linear difference equations associated with...

+

(i+ ϵ+ 2h) + (1 + i+ 2ϵ+ 3h)
(

−1+
√
5

2

)
− (i+ ϵ+ 2h)

(
−1+

√
5

2

)
√
5
(

−1+
√
5

2

)n+1


=

2 + (1 +
√
5)i+ (3 +

√
5)ϵ+ (4 + 2

√
5)h

2
√
5

(1 +
√
5)n

2n

+
2 + (1−

√
5)i+ (3−

√
5)ϵ+ (4− 2

√
5)h

−2
√
5

(1−
√
5)n

2n
.

4.2 Binet’s Formula in the cases ∆ = 0

Now, suppose that the characteristic polynomial has one root x1 with multiplicity
2. Thus x1 =

−p
2
. The explicit formula for HVn is given by,

HVn = C1x
n
1 + C2nx

n
1 . (28)

The constants C1 and C2 are determined by solving the Vandermonde system
 1 0

x1 x1

 C1

C2

 =

 HV0

HV1

 .

Then, we get C1 = HV0 and C2 =
HV1 − x1HV0

x1

. The preceding discussion is
resumed in the following result,
Proposition 4.3. (Binet’s Formula for the case ∆ = 0) Consider the homogeneous linear

recurrence with constant coefficients p, q, where q ̸= 0, associated with the hybrid numbers

(HVn)n≥0 with initial conditions HV0 and HV1, (6), and equation HVn+2 + pHVn+1 + qHVn =

0, n ≥ 0, (5), where is verified ∆ = p2 − 4q = 0. Then the explicit formula of HVn is given by

HVn = (1− n)HV0x
n
1 + nHV1x

n−1
1 , (29)

where x1 = −p

2
.

The Expression (23) allow us to observe that if λ1 ̸= 0 is a root of s(x) = 1+px+ qx2

then 1

λ1

= x1 is a root of r(x) = x2 + px+ q. Since λ2
1 =

1

q
and 2λ1 = −p

q
. Thus, multiplying

the Equation (29) by λ2
1

λ2
1

and substituting 1

λ1

= x1 we obtain the Expression (17), i.e,

HVn =
λ2
1

λ2
1

[
(1− n)HV0

(
1

λ1

)n

+ nHV1

(
1

λ1

)n−1
]
,
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HVn = λ2
1

[
(1− n)HV0

(
1

λ1

)n+2

+ nHV1

(
1

λ1

)n+1
]
,

HVn = λ2
1

[
(1 + n)HV0

(
1

λ1

)n+2

− 2HV0n

λ1

(
1

λ1

)n+1

+ nHV1

(
1

λ1

)n+1
]
,

HVn =
HV0(n+ 1)

qλn+2
1

+
HV1n

qλn+1
1

+
pHV0n

qλn+1
1

.

Under previous discussion, we have the identity,

Proposition 4.4. Consider the homogeneous linear recurrence with constant coefficients p, q,

where q ̸= 0, associated with the hybrid numbers (HVn)n≥0 with initial conditions HV0 and

HV1, (6), and equationHVn+2+pHVn+1+qHVn = 0, n ≥ 0, (5), where is verified∆ = p2−4q = 0.

Then is verified the equality,

(1− n)HV0x
n
1 + nHV1x

n−1
1 =

HV0(n+ 1)

qλn+2
1

+
HV1n

qλn+1
1

+
pHV0n

qλn+1
1

, (30)

where x1 = −p

2
=

1

λ1

.

Below, we provide an illustrative example.

Example 4.2. The Oresme sequence is defined by the homogeneous linear recurrence On =

On−1 − 1
4
On−2, for n ≥ 2, and initial conditions O0 = 0 and O1 = 1

2
. The hybrid sequence

associated with Oresme numbers is defined by,

HOn = HOn−1 −
1

4
HOn−2,

for n ≥ 2, and initial conditions HO0 =
1
2
i+ 3

8
ϵ+ 1

4
h,HO1 =

1
2
+ 1

2
i+ 3

8
ϵ+ 1

4
h.

The characteristic polynomial associated with the hybrid sequence is given by p(x) =

x2 − x+ 1
4
= 0. Since p(x) has one root with multiplicity 2, x1 =

1
2
, the Binet’s formula for the

hybrid numbers HOn, n ∈ N, is given by

HOn =

(
1

2
i+

1

2
ϵ+

3

8
h

)(
1

2

)n

+

(
1 +

1

2
i+

1

4
ϵ+

1

8
h

)
n

(
1

2

)n (31)
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4.3 Binet’s Formula in the cases ∆ < 0

The solution in this case depend on sine and cosine functions. However, these
studies offer concise treatments, with few examples in the literature. Given the
recurrence relation (5) with initial conditions (6), the characteristic polynomial
associated with (5) is given by r(x) = x2 + px + q. Suppose that the roots x1 ≠ x2 of
characteristic polynomial are complex numbers, or ∆ = p2 − 4q < 0, q > 0. The roots are
given under the trigonometric form, x1 = ρ[cos (θ) + i sin (θ)] and x2 = ρ[cos (θ)− i sin (θ)],

where ρ =

√√√√(−p

2

)2
+

(√
4q − p2

2

)2

=
√
q and θ is an angle such that cos (θ) = − p

2
√
q

and sin (θ) =

√
4q − p2

2
√
q

. Then the explicit formula for HVn is given by,
HVn = ρn[C1 cos (nθ) + C2 sin (nθ)]. (32)

The constants C1 and C2 are determined by solving the Vandermonde system
 1 0

ρ cos (θ) ρ sin (θ)

 C1

C2

 =

 HV0

HV1

 .

The preceding discussion is resumed in the following result,

Proposition 4.5. (Binet’s Formula for the case ∆ < 0) Consider the homogeneous linear

recurrence with constant coefficients p, q, where q > 0, associated with the hybrid numbers

(HVn)n≥0 with initial conditions HV0 and HV1, (6), and equation HVn+2 + pHVn+1 + qHVn =

0, n ≥ 0, (5), where is verified ∆ = p2 − 4q < 0. Then the explicit formula of HVn is given by

HVn = ρn[C1 cos (nθ) + C2 sin (nθ)]. (33)

where ρ =
√
q and θ is an angle such that cos (θ) = − p

2
√
q

and sin (θ) =

√
4q − p2

2
√
q

, and the

constants C1 and C2 are determined by solving the Vandermonde system.

Example 4.3. To clarify, let the homogeneous linear recurrence with constant coefficients,

HVn − HVn−1 + HVn−2 = 0, for n ≥ 2, and initial conditions HV0, HV1. The characteristic

polynomial, given by x2 − x + 1 = 0, has the roots are x1 =
1 + i

√
3

2
and x2 =

1− i
√
3

2
. In
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addition, ρ =

√√√√(1

2

)2

+

(√
3

2

)2

= 1 and θ =
π

3
.

Then, we obtain

HVn = C1 cos
(nπ

3

)
+ C2 sin

(nπ
3

)
,

where C1 = HV0 and C2 =
2HV1 −HV0√

3
.

Recall that the roots of the polynomial 1
q
s(x) = t(x) = x2+

p

q
x+

1

q
are the following

complex numbers,

λ =

−p

q
±

√
p2 − 4q

q2

2
=

−p

q
±
√

p2 − 4q

|q|
2

= − p

2q
± i

√
4q − p2

2q
,

and since q ̸= 0, λ is a root of s(x) if and only if λ is a root of t(x).
By Expression (24), if λ1 ̸= λ2 ≠ 0 are roots of s(x) = 1 + px+ qx2 then λ1 =

x1

q
and

λ2 =
x2

q
where x1 and x2 are the roots of characteristic polynomial r(x) = x2+px+ q. And

λ1λ2 =
1

q
.

In addition, if x = −p

2
± i

√
4q − p2

2
= xR ± ixI is a root of x2 + px+ q then, xR = qλR

and xI = qλI , u = x− 1

q
xR and A2 =

(
xI

q

)2

, where A2 =
1

4

[
−p2 + 4q

q2

]
.

Thus, by the Expression (20), in terms of complex roots of characteristic
polynomial r(x) = x2 + px+ q, we get,

Hf(x) =
HV0

||x||2
∞∑
j=0

2j∑
k=0

(−1)k+1((
xI

q

)2
)j+1

(
2j

k

)(
xR

q

)2j−k

xk (34)

+
(HV1 − 2xRHV0)

||x||2
∞∑
j=0

2j∑
k=0

(−1)k+1((
xI

q

)2
)j+1

(
2j

k

)(
xR

q

)2j−k

xk+1.

Then, the coefficient of xn in Hf(x) in (34) is the explicit formula for HVn, namely,
HVn =

HV0

||x||2
∞∑
j=0

(−1)n+1((
xI

q

)2
)j+1

(
2j

n

)(
xR

q

)2j−n (35)
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+
(HV1 − 2xRHV0)

||x||2
∞∑
j=0

(−1)n((
xI

q

)2
)j+1

(
2j

n− 1

)(
xR

q

)2j−(n−1)

.

HVn =
HV0

ρ2

∞∑
j=0

(−1)n+1((
ρ sin(θ)

q

)2
)j+1

(
2j

n

)(
ρ cos(θ)

q

)2j−n (36)

+
(HV1 − 2ρ cos(θ)HV0)

ρ2

∞∑
j=0

(−1)n((
ρ sin(θ)

q

)2
)j+1

(
2j

n− 1

)(
ρ cos(θ)

q

)2j−(n−1)

.

Proposition 4.6. Consider the homogeneous linear recurrence with constant coefficients p, q,

where q > 0, associated with the hybrid numbers (HVn)n≥0 with initial conditions HV0 and

HV1, (6), and equationHVn+2+pHVn+1+qHVn = 0, n ≥ 0, (5), where is verified∆ = p2−4q < 0.

Then

ρn[C1 cos (nθ) + C2 sin (nθ)] =
HV0

ρ2

∞∑
j=0

(−1)n+1((
ρ sin(θ)

q

)2
)j+1

(
2j

n

)(
ρ cos(θ)

q

)2j−n (37)

+
(HV1 − 2ρ cos(θ)HV0)

ρ2

∞∑
j=0

(−1)n((
ρ sin(θ)

q

)2
)j+1

(
2j

n− 1

)(
ρ cos(θ)

q

)2j−(n−1)

,

where ρ =
√
q and θ is an angle such that cos (θ) =

p

2
√
q

and sin (θ) =

√
4q − p2

2
√
q

, and the

constants C1 and C2 are determined by solving the Vandermonde system.

Example 4.4. Let the homogeneous linear recurrence with constant coefficients,

HVn −HVn−1 +HVn−2 = 0, for n ≥ 2, and initial conditions HV0, HV1. Then, is verified,

∞∑
j=0

(−1)3j−n

3j+1
2n+2

(
1

2
+

5

2
i+ 2ε− 1

2
h

)(
2j

n

)
= C1 cos

(nπ
3

)
+ C2 sin

(nπ
3

)

where C1 = HV0 and C2 =
2HV1 −HV0√

3
.
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5 CONCLUSION

This work presented a suggestion of using a counting tool, the ordinary generating
function; namely, a power series for obtaining formulas explicitly for solving a hybrid
homogeneous linear recurrence with constants of order 2 with initial values, without the
need to solve a Vandermonde system. With the mastery of the techniques guaranteed in
this work, it is enough for the student to know how to interpret and model the problem,
since the solution will appear naturally in the coefficients of the polynomials that model
them, which, in particular, is a series of powers.

In general, given the fact that most textbooks contain information on Algebra
and Geometry, using algebraic knowledge about functions and polynomials to solve
counting problems can also be a teaching approach. Specifically, with the use of
numerical sequences, content that must be perfectly understood in the classroom
according to the National Common Curricular Base - BNCC, the approach of this article
represents another approach to understand and deepen the process of creation of
combinatorial thinking, which is essential for understanding other mathematical
concepts, such as probabilities as a function of the cardinality quotient of events, a
subject also described in the National Curricular Common Base-BNCC.

Finally, the content of the previous sections shows that the mathematical tools,
put into play around the generating function, also constitute a mathematical culture for
the teacher. This will allow him to better visualize the close links between combinatorics
and other areas of mathematics.
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