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ABSTRACT

We use the method of regularization of discontinuous vector fields, as described by (Sotomayor &
Teixeira, 1998), to explain, in terms of the classical smooth bifurcation, two codimension one
bifurcations of families of discontinuous vector fields generated by the collision of a saddle with the
discontinuity set, and the collision of a node with the discontinuity set. These bifurcations are contained
in the list presented both by in (Filippov, 1998), and by in (Kuznetsov et al., 2003).
Keywords: Bifurcation; Regularization; Discontinuous vector field

RESUMO

Utilizamos o método de regularização de campos vetoriais descont́ınuos, descrito por (Sotomayor &
Teixeira, 1998), para explicar, em termos das bifurcações clássicas, duas bifurcações de codimensão, um
de faḿılias de campos vetoriais descont́ınuos gerados pela colisão de uma sela com o conjunto de
descontinuidade, e outra a colisão de um nó com o mesmo conjunto. Essas bifurcações estão contidas
em uma lista apresentada igualmente por (Filippov, 1998), e por (Kuznetsov et al., 2003).
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1 INTRODUCTION

The classical theory of bifurcations of smooth vector fields is well understood
since the second half of last century. On the other hand, we still have some important
open problems concerning bifurcations of discontinuous vector fields, (Colombo et al.,
2012). So, it is relevant to know the bifurcation theory of discontinuous vector fields
applied to the real cases, see (Andronov et al., 1966), (Di Bernardo et al., 2008), (Jeffrey,
2020) and (Jeffrey, 2018). There are various approaches to increase the knowledge of
these systems, and one of these is the regularization method, which we choose to our
work. A interesting problem is the explanation of bifurcations in discontinuous vector
fields, through the well-known bifurcations in smooth vector fields, using the
Sotomatyor-Teixeira regularization method, see (Sotomayor & Teixeira, 1998). Our aim
is to work in this problem considering saddle and node bifurcations of discontinuous
vector fields. For our approach, we use a specific regularization function that allow us
to make some simple calculations. Recently, in (Buzzi & Santos, 2019), the authors
proposed studying bifurcations that occur when discontinuous vector fields contain a
saddle-fold singularity using the regularization method. For the sake of clarity let us
introduce the notions and results needed to our work.

Let M be a compact and connected subset of the plane R2 and F : M → R be a
C∞ function having 0 as a regular value. We suppose that the plane is provided with the
usual metric. We assume, for simplicity’s sake, that D = F−1(0) has a single connected
component so that M \ D consists of exactly two connected components, denoted by
N = F−1

(
[0,∞)

) and S = F−1
(
(−∞, 0]

)
.

The space of Cr vector fields defined on M, for r ≥ 1, will be denoted by Xr(M).

Let Ωr(M) = Ωr(M,F ), r ≥ 1, be the space of the vector fields Z defined on M , as
follows:

Z(p) =

X(p), F (p) ≥ 0

Y (p), F (p) ≤ 0

whereX, Y ∈ Xr(M). IfZ ∈ Ωr(M),we writeZ = (X, Y ). The elements ofΩr(M) are called
discontinuous vector fields. Notice that if Z ∈ Ωr(M) then it is bivalued along D, where
the set D is called discontinuity set. For applications of the theory of discontinuous vector
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fields we recommend Andronov et al. (1966), Di Bernardo et al. (2008), Kuznetsov et al.
(2003) and their references.

In the discontinuity set of Z ∈ Ωr(M), we have three subsets depending on the
intersection of the orbits of X and Y with D. Following Filippov terminology, we
distinguish these sets by

(SW) Sewing Arc: characterized by (XF )(Y F )(p) > 0,

(ES) Escaping Arc: characterized by XF (p) > 0 and Y F (p) < 0,

(SL) Sliding Arc: characterized by XF (p) < 0 and Y F (p) > 0.

In figure 1 we have each one of these sets, respectively.

Figure 1 – Sewing, escape and sliding sets

Source: the authors (2023)

As usual, XF will denote the derivative of function F in the direction of the vector
field X : XF = dF ·X, where the dot denotes the usual inner product on the plane.

On the arcs ES or SL, we define the Filippov vector field, FZ , associated to
Z = (X, Y ), as follows: if p ∈ SL or p ∈ ES, then FZ(p) denotes the vector tangent to D

contained in the cone spanned by X(p) and Y (p). From this definition, the expression
of FZ associated to the discontinuous vector field Z is
FZ(x, y) = lX(x, y) + (1− l)Y (x, y) (1)
where
l =

▽F (x, y) · Y (x, y)

▽F (x, y) ·
(
Y (x, y)−X(x, y)

) .
More details can be found in Filippov (1998) or Sotomayor & Machado (2002).

A point p ∈ D is called a critical point of the Filippov vector field FZ if XF (p)Y F (p) <

0 and det [X, Y ](p) = 0. Here [X, Y ] is the matrix whose lines are the expressions of the
Ci. e Nat., Santa Maria, v.47, e83931, 2025
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coordinates of the vector fields X and Y, in this order. If the derivative of (det [X, Y ]|D)

at point p is not null, we say that p is a hyperbolic critical point of FZ .

A hyperbolic critical point p of the Filippov vector field FZ is a saddle if either p

is in the sliding set and is a repelling point (i.e., satisfies d (det [X, Y ]|D) (p) > 0) or p

belongs to the escaping set and is an attracting point (i.e., d (det [X, Y ]|D) (p) < 0). An
attracting node (or stable node) p is a hyperbolic critical point of FZ if p that belongs to
sliding set and d (det [X, Y ]|D) (p) < 0. On the other hand, if p belongs to the escaping set
and d (det[X, Y ]|D) (p) > 0 we call p a repelling node of FZ . The definition of other types of
singularities of the Filippov vector field can be found in Sotomayor & Machado (2002).

Let Zλ = (Xλ, Yλ) ∈ Ωr, defined in M, a one-parameter family of discontinuous
vector fields with λ a parameter in a small interval around the origin. Our goal is to
analyze the bifurcations that occur with the presence of a saddle or a node for the
north set family of vector fields, Xλ, for small and negative values of the parameter,
that collides with the origin of the plane when the parameter vanishes. Other types of
bifurcation occur when we change the type of singularity of the family of vector fields
in the north set, the interesting case of a focus is still in preparation to a forthcoming
work by the authors. All this analysis is based on a slight modification of the
regularization method of discontinuous vector fields presented by Sotomayor and
Teixeira, see Sotomayor & Teixeira (1998). Our version of the regularization method is
presented below.

Let ε > 0,we define the regularization, ofZ = (X, Y ) ∈ Ωr(M) as the one parameter
family of vector fields Zε ∈ Xr(M) given by
Zε(p) =

(
1− φε(F (p))

)
Y (p) + φε(F (p))X(p) (2)

where φε(x) = φ(x/ε). The function φ : R → R, of class C∞, is called transition function

and, from now on, we consider
φ(x) =

1

2
+

x

2
√
x2 + 1

. (3)
The variable ε is called the regularization parameter. If Zλ = (Xλ, Yλ) and ε > 0, the
regularization of this family of discontinuous vector fields is the two-parameter family
of smooth vector fields given by
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Zλ,ε(p) =
(
1− φε(F (p))

)
Yλ(p) + φε(F (p))Xλ(p) (4)

with p ∈ M.

We notice that the function (3) is not a transition function as defined in Sotomayor
& Teixeira (1998), but for ε > 0 if we define the family of functions φε then this family
has the Heaviside function as a limit, when ε goes to zero. And this fact is the principal
property of the transition functions as defined by Sotomayor and Teixeira.

The next propositions give us interesting facts about the regularization using the
transition function (3) and the definitions and conventions above.
Proposition 1. Let p ∈ D be a hyperbolic singularity of the vector field FZ , where Z =

(X, Y ) ∈ Ωr(M). Then, there exists a neighborhood V of p in M and ε0 > 0 such that for

0 < ε < ε0, the respective regularized family of vector fields Zε, given by (2), has only one

singularity pε ∈ V which is hyperbolic and is a saddle or node as p is a saddle or node for FZ .

Proposition 2. Let Z = (X, Y ) ∈ Ωr(M). Let p ∈ D be a quadratic tangency of an orbit of Z

with the discontinuous set D. Then, there exists a neighborhood V of p in M and ε0 > 0 such

that for 0 < ε < ε0, the respective regularized family of vector fields Zε, given by (2), does not

have any singularity on V.

The proof of these propositions are a slight modifications of the respective result
of Sotomayor & Machado (2002), and we will omit they.

Various types of codimension one bifurcations for discontinuous vector fields on
the plane where presented initially in the book of Filippov (1998). In Kuznetsov et al.
(2003) presented the diagram for each one of these codimension one bifurcations. Our
aim here is first characterizes each of the mentioned cases, then we regularize and
explain in terms of the regular bifurcations each one of these five types of
regularization: two node boundary and three saddle boundary.

To obtain our results, this work is divided in the following manner. What
happens in the regularization of a discontinuous vector field which has singularities or
folds? This question will be answered in Section 2. These results will lead us to the
understanding of the bifurcations above mentioned. In Section 2 we present the
expression of a family of discontinuous vector fields Zλ = (Xλ, Yλ) with a singularity for
the vector field in the north set and assuming that vector field in the south set is
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constant. We also present the expression for the regularization of this family of
discontinuous vector fields. In section 3 first we show the bifurcations of type saddle
and node collision, following Filippov (1998) and Kuznetsov et al. (2003), secondly, we
obtain relations on the coefficients of the family of discontinuous vector fields, Zλ, that
characterizes each type of saddle and node boundary bifurcations. The regularization
and preliminary results for these families, for each type of discontinuous vector field,
are presented in Section 4. In Sections 5 and 6 we present, respectively, the
explanation, in terms of smooth bifurcations, for saddle and node bifurcations of
discontinuous vector fields.

2 FAMILY OF DISCONTINUOUS VECTOR FIELDS

For our purposes we will obtain the expression for a family of discontinuous
vector fields with a singularity in the north set which collides with the origin of the
plane, when the parameter vanish, and supposing that the vector field on the south set
is constant. To do this, let Zλ = (Xλ, Yλ) ∈ Ωr(M) be a one-parameter family of Cr, r ≥ 2,

discontinuous vector fields with λ ∈ J, where J is some small interval around the
origin.

Let Xλ̃(x̃, ỹ) =
(
X1(x̃, ỹ, λ̃), X2(x̃, ỹ, λ̃)

) be a one-parameter family of vector fields
of class C2 on M. By the Taylor series expansion in a neighborhood of the origin, the
family Xλ̃, when the parameter vanishes, has the following expression
x̃′ =

∂X1

∂x̃
(0, 0, 0)x̃+

∂X1

∂ỹ
(0, 0, 0)ỹ +

∂X1

∂λ̃
(0, 0, 0)λ̃+ R̃1

2(x̃, ỹ, λ̃)

ỹ′ =
∂X2

∂x̃
(0, 0, 0)x̃+

∂X2

∂ỹ
(0, 0, 0)ỹ +

∂X2

∂λ̃
(0, 0, 0)λ̃+ R̃2

2(x̃, ỹ, λ̃)

where R̃1
2(x̃, ỹ, λ̃) and R̃2

2(x̃, ỹ, λ̃) are remainders given by
R̃1

2(x̃, ỹ, λ̃) = X1
2,0,0(x̃, ỹ, λ̃)x̃

2 +X1
0,2,0(x̃, ỹ, λ̃)ỹ

2 +X1
0,0,2(x̃, ỹ, λ̃)λ̃

2

+X1
1,1,0(x̃, ỹ, λ̃)x̃ỹ +X1

1,0,1(x̃, ỹ, λ̃)x̃λ̃+X1
0,1,1(x̃, ỹ, λ̃)ỹλ̃

R̃2
2(x̃, ỹ, λ̃) = X2

2,0,0(x̃, ỹ, λ̃)x̃
2 +X2

0,2,0(x̃, ỹ, λ̃)ỹ
2 +X2

0,0,2(x̃, ỹ, λ̃)λ̃
2

+X2
1,1,0(x̃, ỹ, λ̃)x̃ỹ +X2

1,0,1(x̃, ỹ, λ̃)x̃λ̃+X2
0,1,1(x̃, ỹ, λ̃)ỹλ̃

(5)

where X i
j,k,l for i = 1, 2, and j, k, l = 0, 1, 2, are functions defined in a neighborhood of
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the origin given by the Theorem of Taylor.
For simplicity’s sake, we write the expression of family Xλ̃ as

x̃′ = ax̃+ bỹ + eλ̃+ R̃1
2

ỹ′ = cx̃+ dỹ + fλ̃+ R̃2
2

where a, b, c, d, e, f are real numbers and R̃1
2, R̃

2
2 are remainders given by (5).

Family Yλ̃ must be a constant vector field pointing to the north set. By the Tubular
Flow Theorem, let us suppose that Yλ̃ = (0, µ̃) where µ̃ is a real number.
Proposition 3. Let Z̃λ̃ =

(
X̃λ̃, Ỹλ̃

)
be a one-parameter family of discontinuous vector fields

defined in M where X̃λ̃ and Ỹλ̃ are Cr vector fields, r ≥ 2, given by

X̃λ̃(x̃, ỹ) =
(
ax̃+ bỹ + eλ̃+ R̃1

2, cx̃+ dỹ + fλ̃+ R̃2
2

)
Ỹλ̃(x̃, ỹ) = (0, µ̃)

(6)

where a, b, c, d, e, f, µ̃ are real constants and R̃1
2 and R̃2

2 are remainders with terms of order

greater than or equal to 2 in x̃, ỹ and λ̃, given by (5). If ε > 0, then there exists a change of

parameters so that the expression of the regularization of Z̃λ̃ is family Zλ, ε given by

Zλ,ε(x, y) =
(
Z1

λ,ε(x, y), Z
2
λ,ε(x, y)

)
where

Z1
λ,ε(x, y) =

(
1

2
+

y

2
√

y2 + ε2

)(
ax+ by + eλ+R1

2(x, y, λ)
)
,

Z2
λ,ε(x, y) =

(
1

2
− y

2
√

y2 + ε2

)
µ+

(
1

2
+

y

2
√
y2 + ε2

)(
cx+ dy

+ fλ+R2
2(x, y, λ)

)
.

Furthermore, the remainders R1
2 and R2

2 vanish when the parameter of regularization tends

to zero.

Proof. Let ε > 0 and Z̃λ̃ =
(
X̃λ̃, Ỹλ̃

) be defined by (6). By (2) we have that the expression
of the regularized family of vector fields is given by

Zλ̃, ε(x̃, ỹ) =
(
Z1

λ̃, ε
(x̃, ỹ), Z2

λ̃, ε
(x̃, ỹ)

)
Ci. e Nat., Santa Maria, v.47, e83931, 2025
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where
Z1

λ̃, ε
(x̃, ỹ) =

(
1− φε(F (x̃, ỹ))

)
Ỹ 1
λ̃
(x̃, ỹ) + φε(F (x̃, ỹ))X̃1

λ̃
(x̃, ỹ)

=

(
1

2
+

ỹ

2
√
ỹ2 + ε2

)(
ax̃+ bỹ + eλ̃+ R̃1

2

) (7)

and
Z2

λ̃, ε
(x̃, ỹ) =

(
1− φε(F (x̃, ỹ))

)
Ỹ 2
λ̃
(x̃, ỹ) + φε(F (x̃, ỹ))X̃2

λ̃
(x̃, ỹ)

=

(
1

2
− ỹ

2
√

ỹ2 + ε2

)
µ̃+

(
1

2
+

ỹ

2
√

ỹ2 + ε2

)(
cx̃+ dỹ + fλ̃+ R̃2

2

)
.

Now, we use the following change of parameters and variables
x̃ = εx, ỹ = εy, λ̃ = ελ e µ̃ = εµ

and in (7) we obtain

εx′ =

(
1

2
+

εy

2
√

ε2y2 + ε2

)(
aεx+ bεy + eελ+R1

2

)
where
R1

2 = R1
2(εx, εy, ελ) = X1

2,0,0(εx, εy, ελ)ε
2x2 +X1

0,2,0(εx, εy, ελ)ε
2y2

+X1
0,0,2(εx, εy, ελ)ε

2λ2 +X1
1,1,0(εx, εy, ελ)ε

2xy +X1
1,0,1(εx, εy, ελ)ε

2xλ

+X1
0,1,1(εx, εy, ελ)ε

2yλ.

So it is possible to cancel the parameter ε. In R1
2 we have, after the simplification, the

presence of the parameter ε in all of its terms which make that this expression vanishes
when ε → 0. So we have that the first coordinate of the family of regularized vector fields,
when ε → 0, is

x′ =

(
1

2
+

y

2
√

y2 + 1

)(
ax+ by + eλ

)
.

By analogous arguments, we verify the expression for the second coordinate of
Zλ,ε.

Ci. e Nat., Santa Maria, v.47, e83931, 2025
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So the regularized family of vector fields, Zλ, ε, has the following expression

x′ =

(
1

2
+

y

2
√

y2 + 1

)(
ax+ by + eλ

)
y′ =

(
1

2
− y

2
√

y2 + 1

)
µ+

(
1

2
+

y

2
√

y2 + 1

)(
cx+ dy + fλ

)
.

As a consequence of the proposition 3, we assume that the expression for the
one parameter family of discontinuous vector field Zλ = (Xλ, Yλ) with one singularity in
the north set, for negative values of the parameter, that collides with the origin of the
plane when λ = 0, and with constant vector field in the south set is
Xλ(x, y) = (ax+ by + eλ, cx+ dy + fλ)

Yλ(x, y) = (0, µ)
(8)

where a, b, c, d, e, f are real constants, µ = ±1 and λ belongs to a small interval around
the origin.

3 SADDLE AND NODE BOUNDARY BIFURCATION

In this section we present the bifurcations that occur when the singularity in the
north set, of type saddle or node, collides with the origin when parameter vanishes. We
start by defining the generic cases of a collision of a saddle in the north set with the
discontinuity set.

As noted in Filippov (1998) or Kuznetsov et al. (2003), if the singularity of Xλ is a
saddle, then the respective bifurcation is represented by three generic cases
characterized by the slope of the saddle zero isoclines. The main difference between
our and their presentation is that we consider the discontinuity set fixed, whereas they
consider it as a variable set.

Let us assume that λ = 0 and consider mu and mi be, respectively, the slope of
the unstable set of the saddle for the vector field X0, and the slope of the saddle zero
isocline. If mi < 0 and mu > 0 then we have the first case of saddle boundary bifurcation;
if mi < mu < 0 we have the second case and, finally, to the third case we must have
mu < mi < 0. These are the characterizations that allow us to have the following results.

Ci. e Nat., Santa Maria, v.47, e83931, 2025
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Theorem 1. Let Zλ = (Xλ, Yλ) be a one-parameter family of discontinuous vector fields on

M given by

Xλ(x, y) = (ax+ by + eλ, cx+ dy + fλ)

Yλ(x, y) = (0, 1)
(9)

where a, b, c, d, e, f are real coefficients and λ ∈ J, where J is a small interval around the

origin. If ad− bc < 0, ce− af > 0, a < 0 and

− c

d
< 0 <

d− a−
√

(a− d)2 + 4bc

2b
,

then Zλ is such that for small and negative values of the parameter λ there exists, on north

set, a saddle sλ which coexists with a stable node nλ, of the Fillipov vector field, and an

invisible tangent point tλ. The unstable set of the saddle sλ, for small and negative values of

λ, intersects set D in the point uλ, and we have that nλ belongs to the complement of the

interval [tλ, uλ] on the sliding set. The points nλ, tλ and uλ collide at the origin of the plane

when the parameter vanishes. For small and positive values of the parameter, there is only

a visible tangency at tλ.

Proof. The singularities of the family Xλ are points (x, y) on the plane where
x =

bf − de

ad− bc
λ

y =
ce− af

ad− bc
λ.

These expressions are well defined since the singularity of Xλ is a saddle.
Using the function F (x, y) = y that defines the discontinuity set D, we have that

XλF = (0, 1) · (ax+ by + eλ, cx+ dy + fλ) = cx+ dy + fλ

YλF = (0, 1) · (0, 1) = 1

which implies that (XλF )(YλF ) = cx+ fλ on D.

So the sewing arc is the set of points in set D where cx + fλ > 0. Let us suppose
that c ̸= 0, the point in set D, given by x = −fλ/c is the point of invisible tangency of Xλ,

i.e., we have that tλ = (−fλ/c, 0). Also, this is the transition point between the sewing
Ci. e Nat., Santa Maria, v.47, e83931, 2025
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and sliding sets. So the sewing set is characterized by x > −fλ

c
if c > 0, and x < −fλ

c
if

c < 0. The sliding set satisfies x < −fλ

c
if c > 0, and x > −fλ

c
if c < 0.

By (1) the expression of the Filippov vector field, FZλ
, is

FZλ
(x, y) =

(
ax+ eλ

1− cx− fλ
, 0

)
.

So the unique equilibrium of the Filippov vector field is the point nλ = (x, 0) where x =

−eλ/a. If a < 0 and λ < 0 then we have that nλ belongs to the sliding set. Furthermore,
d (det [Xλ, Yλ]|D) (nλ) = a < 0 implying that nλ is a stable node for negative values of the
parameter λ.

The slope of the unstable set for the saddle when λ = 0 is given by
mu =

d− a−
√
(a− d)2 + 4bc

2b
, which must be positive to this case, and the slope of the

saddle zero isoclines is mi = − c

d
and this must be negative.

For positive values of the parameter λ there are no singularities for Zλ.

We say that Zλ = (Xλ, Yλ) is of type BS1, if it is given by (9) and the coefficients
satisfies the hypothesis of Theorem 1. The figure 2 presents the diagram of the
bifurcation associated to a family of discontinuous vector fields of type BS1.

Figure 2 – Diagram of the case BS1

Source: the authors (2023)
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Theorem 2. Let Zλ = (Xλ, Yλ) be a one parameter family of discontinuous vector fields on

M given by

Xλ(x, y) = (ax+ by + eλ, cx+ dy + fλ)

Yλ(x, y) = (0, 1)

where a, b, c, d, e, f are real coefficients and λ ∈ J, where J is a small interval around the

origin. If ad− bc < 0, ce− af > 0, a < 0 and

− c

d
<

d− a−
√

(a− d)2 + 4bc

2b
< 0,

then Zλ is such that for small and negative values of the parameter λ there exists, on north

set, a saddle sλ which coexists with a stable node nλ, of the Fillipov vector field, and an

invisible tangent point tλ. The unstable set of the saddle sλ, for small and negative values of

λ, intersects set D in the point uλ, and we have that nλ belongs to the interval (tλ, uλ). The

points nλ, tλ and uλ collide at the origin of the plane when the parameter vanishes. For

small and positive values of the parameter, there is only a visible tangency at tλ.

Proof. The proof of this theorem is based on the calculations made in the proof of the
previous one. We need to make just one modification, which is mi < mu < 0.

Figure 3 – Diagram of the case BS2

Source: the authors (2023)
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We say that Zλ = (Xλ, Yλ) is of type S2, if it is given by (9) and the coefficients
satisfies the hypothesis of Theorem 2. Figure 3 presents the diagram of this case.
Theorem 3. Let Zλ = (Xλ, Yλ) be a one parameter family of discontinuous vector fields on

M given by

Xλ(x, y) = (ax+ by + eλ, cx+ dy + fλ)

Yλ(x, y) = (0, 1)

where a, b, c, d, e, f are real coefficients and λ ∈ J, where J is a small interval around the

origin. If ad− bc < 0, ce− af > 0, a < 0 and

d− a−
√
(a− d)2 + 4bc

2b
< − c

d
< 0,

then Zλ is such that for small and negative values of the parameter λ there exists, on north

set, a saddle sλ which coexists with an invisible tangent point tλ. These points collide at the

origin of the plane when the parameter vanishes, and for small and positive values of λ there

is a saddle sFλ of the Fillipov vector field and a visible tangency at tλ.

Proof. The proof of this theorem is analogous to the previous theorems.

Figure 4 – Diagram of the case BS3

Source: the authors (2023)
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We say that Zλ = (Xλ, Yλ) is of type BS3, if it is given by (9) and the coefficients
satisfies the hypothesis of Theorem 3.

The diagram of this case is in figure 4.
If the singularity of the family of vector fields Xλ that collides with the origin is a

stable node, we have two generic critical cases called BN 1 and BN 2.

(BN 1) We say that Zλ is a family of discontinuous vector fields of type BN 1 if, for small
and negative values of the parameter λ there exists, on north set, a stable node
nλ which coexists with a visible tangent point tλ. These points collide at the origin
of the plane when the parameter vanishes, and for small and positive values of λ
there is a stable node nλ of the Fillipov vector field and an invisible tangency at tλ.
The figure 5(a) presents the diagram of this case.

(BN 2) We say that Zλ is a family of discontinuous vector fields of type BN 2 if, for small
and negative values of the parameter λ there exists, on north set, a stable node
nλ which coexists with a saddle point sλ of the Filippov vector field. These points
collide at the origin of the plane when the parameter vanishes, and for small and
positive values of λ there is only one invisible tangency at tλ.
The figure 5(b) presents the diagram of this case.

Proposition 4. Let Zλ = (Xλ, Yλ) be a family of discontinuous vector field on M given by (8).
Let us suppose that ce− af < 0, ad− bc > 0 and (a+ d)2 − 4(ad− bc) > 0. Then the following

relations characterizes each type of the node boundary bifurcations.

a) If µ = 1, a+ d < 0, a < 0 and c < 0 then Zλ is of type BN 1.

b) If µ = −1, a+ d < 0, a < 0 and c < 0 then Zλ is of type BN 2.

Proof. In proof of the previous theorems we see that the sewing set is given by {x :

cx + fλ > 0}, so this give us that c < 0 for items a) and b). Another fact is the presence
of the singularity of the Filippov vector field and this lead us to the sign of a, i.e., a < 0

for booth items. By the definition of saddle, given in the introduction, we see that the
singularity of the Filippov vector field is a saddle to the case b).
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Maciel, A. L., & Lunkes, . A. D. L. Z. | 15

Figure 5 – Diagrams of the cases BN 1 and BN 2

(a) (b)

Caption: The (a) figure displays the Diagram of the case BN 1 and (b) Diagram of the case BN 2Source: the authors (2023)

4 BASIC ANALYSIS OF THE REGULARIZED FAMILIES OF DISCONTINUOUS
VECTOR FIELDS

If the family of discontinuous vector fields Zλ =
(
Xλ, Yλ

) is given by (8) with µ = 1,

the associated family of regularized vector fields, Zλ, ε, is given by

x′ =

(
1

2
+

y

2
√

y2 + 1

)(
ax+ by + eλ

)
,

y′ =
1

2
− y

2
√

y2 + 1
+

(
1

2
+

y

2
√

y2 + 1

)(
cx+ dy + fλ

)
.

(10)

The singularities of Zλ, ε, are points on the plane (x, λ) so that

x =
(de− bf)y + 2ey(y −

√
y2 + 1) + e

af − ce

λ =
(ad− bc)y + 2ay(y −

√
y2 + 1) + a

ce− af
.

(11)
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If we look at λ, given by (11), as a curve on the plane (y, λ) then this curve gives
us the exact quantity of singularities for each λ. The next two propositions give us these
quantities for the different types of discontinuous vector fields presented in the previous
section.
Proposition 5. Let Zλ = (Xλ, Yλ) be a family of discontinuous vector fields given by

x′ =
(
ax+ by + eλ, cx+ dy + fλ

)
y′ =

(
0, 1

)
.

a) If Zλ is of type BS1 or BS2, then the regularized family of vector fields Zλ, ε given by (10)
may have one, two or no singularities depending on the values of the parameter λ. The

expression of the ordinate of this unique singularity is given by

y∗ =
U2 − 192a2δ2 + δ4 − δ2U

24aδU
(12)

where δ = ad− bc and

U = 3

√
δ2
(
576a2δ2 + 3456a4 − δ4 + 24

√
3a(δ2 + 8a2)

√
108a2 + δ2

)
.

b) If Zλ is of type BS3, then the regularized family of vector fields Zλ, ε given by (10) has

one singularity.

Proof. Differentiating λ(y), given by (11), in relation to y and simplifying it, we have that
the critical point of this curve is the real root of
8aδy3 + δ2y2 + 8aδy + δ2 − 4a2 = 0. (13)
This real root is the point y∗ given by (12).

It is easy to verify that, for positive values of ad− bc

a
, this function has a unique

maximum local point, and this happens when a < 0, i.e., when Zλ is of type BS1 or BS2.

For negative values of the quantity ad− bc

a
this unique critical point is an inflection point

and there is only one singularity for any λ, this happens when Zλ is of type BS3.
Proposition 6. Let Zλ = (Xλ, Yλ) be a family of discontinuous vector fields given by (8).
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a) If Zλ is of type BN 1 then the regularized family of vector fields Zλ, ε given by (10) have

one singularity.

b) If Zλ is of type BN 2 then the regularized family of vector fields Zλ, ε is given by

x′ =

(
1

2
+

y

2
√

y2 + 1

)(
ax+ by + eλ

)
,

y′ = −1

2
+

y

2
√

y2 + 1
+

(
1

2
+

y

2
√

y2 + 1

)(
cx+ dy + fλ

)
.

(14)

may have one, two or no singularities depending on the values of the parameter λ. The

expression of the ordinate of this unique singularity given by

y∗ =
U2 − 192a2δ2 + δ4 + δ2U

24aδU

where δ = ad− bc and

U = 3

√
δ2
(
576a2δ2 − 3456a4 + δ4 + 24

√
3a(δ2 + 8a2)

√
108a2 + δ2

)
Proof. Item a) is treated similarly as the corresponding item of the Proposition 5.

To check item b) we must note that the curve of singularities of Zλ, ε on the plane
(x, λ) is

λ =
(ad− bc)y − 2ay(y −

√
y2 + 1)− a

ce− af
.

This smooth curve have just one maximal point, and its ordinate is y∗ given in the
statement b).

To analyze the type of each singularity presented in the previous propositions, we
will need to work with A =

(
aij
)
, 1 ≤ i, j ≤ 2, which is the Jacobian matrix of Zλ,ε, i.e.,

D(Zλ,ε)(x, y). So let us start when µ = 1, we have that

a11 =

(
1

2
+

y

2
√

y2 + 1

)
a

a12 =
ax+ by + eλ

2(y2 + 1)3/2
+

(
1

2
+

y

2
√

y2 + 1

)
b
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a21 =

(
1

2
+

y

2
√

y2 + 1

)
c

a22 =
cx+ dy + fλ− 1

2(y2 + 1)3/2
+

(
1

2
+

y

2
√

y2 + 1

)
d.

The determinant of A is

det(A) =

(
1

2
+

y

2
√

y2 + 1

)2

(ad− bc)

+

(
1

2
+

y

2
√

y2 + 1

)(
(ad− bc)y + (af − ce)λ− a

2(y2 + 1)3/2

) (15)

and the trace of this matrix is
tr(A) =

(
1

2
+

y

2
√

y2 + 1

)
(a+ d) +

cx+ dy + fλ− 1

2(y2 + 1)3/2
. (16)

Replacing the expressions of x and λ, given by (11), in (15) and (16) we obtain

dets(A) = y +
√
y2 + 1

4(y2 + 1)2

((
δ(y2 + 1) + 2ay

)√
y2 + 1 + (δy − 2a)(y2 + 1)

) (17)

trs(A) = 1

2(1 + y2)3/2

(
σ(y2 + 1)

(
y +

√
y2 + 1

)
− 2
(
y2 + 1− y

√
y2 + 1

)) (18)
where δ = ad− bc and σ = a+ d.

Proposition 7. Let Zλ = (Xλ, Yλ) be a one-parameter family of discontinuous vector fields

given by (8) with µ = 1. Let Zλ,ε the regularized family of discontinuous vector fields given

by (10), where the curve of its singularities is

λ(y) =
(ad− bc)y + 2ay(y −

√
y2 + 1) + a

ce− af
.

Then, the following statements are valid:

a) The determinant of the Jacobian matrix vanish in the point (y∗, λ(y∗)) where

y∗ =
U2 − 192a2δ2 + δ4 − δ2U

24aδU
, for δ = ad− bc and

U = 3

√
δ2
(
576a2δ2 + 3456a4 − δ4 + 24

√
3a(δ2 + 8a2)

√
108a2 + δ2

)
.
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b) If Zλ is of type BS1 or BS2, then there is a neighborhood I of y∗ such that this

determinant is negative if y ∈ I and y > y∗, and is positive if y ∈ I and y < y∗.

Proof. a)We have already obtained the point y∗ in (12). On the other hand,
simplifying (17) we obtain that the determinant of Jacobian vanishes exactly on the
root of (13), i.e., dets(A)(y

∗) = 0. All other points nearby y∗ we have that the
determinant is not null.

To check item b) we have that
d dets(A)

dy
(y∗) =

y∗ +
√

(y∗)2 + 1

2((y∗)2 + 1)5/2

(
− 3a(y∗)2 + (3ay∗ + δ)

√
(y∗)2 + 1

)
. (19)

Considering that y∗ is the critical point of λ(y), we have that
−4a(y∗)2 + (4ay∗ + δ)

√
(y∗)2 + 1 = 2a. Replacing this value in (19) we obtain that

d dets(A)

dy
(y∗) =

y∗ +
√

(y∗)2 + 1

2((y∗)2 + 1)5/2
a
(
2 + (y∗)2 − y∗

√
(y∗)2 + 1

)
which depends on the sign of a. Since, for the cases BS1 and BS2 we have a < 0, and
by the continuity of the determinant, there exists a neighborhood I of y∗ such that for
y > y∗ the determinant of the Jacobian matrix is negative, and the determinant is positive
if y < y∗.

Proposition 8. Let Zλ = (Xλ, Yλ) be a one-parameter family of discontinuous vector fields

of type BN 2. Let Zλ,ε be the regularized family of discontinuous vector fields given by (14),
where the curve of its singularities is

λ(y) =
(ad− bc)y − 2ay(y −

√
y2 + 1)− a

ce− af
.

Then there is a neighborhood I of y∗ such that this determinant is negative if y ∈ I and y > y∗,

and is positive if y ∈ I and y < y∗.

The proof of this proposition is a slight modification on the proof of Proposition 7
and we will omit it.

We end this section with a general result related to the type of singularities of
discontinuous vector fields from the previous section.
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Proposition 9. Let Zλ = (Xλ, Yλ) be a one-parameter family of discontinuous vector fields

given by (8). Let Zλ,ε the regularized family of the discontinuous vector fields (8). Then, the

following statements are true:

a) If Zλ is a family of discontinuous vector fields of type BS1 or BS2, then for y < y∗

the singularity is a node, and is a saddle if y > y∗, where y∗ is given in the item a) of

Proposition 5.

b) If Zλ is a family of discontinuous vector fields of type BS3, then for any value of y the

singularity is a saddle.

c) If Zλ is a family of discontinuous vector fields of type BN 1, then for any value of y the

singularity is a node.

d) If Zλ is a family of discontinuous vector fields of type BN 2, then for y > y∗ the singularity

is a node, and for y < y∗ the singularity is a saddle, where y∗ is given in item b) of

Proposition 6.

Proof. The proof of a) follows directly from Proposition 7, and d) follows from
Proposition 8.

Items b) and c) follow directly from Proposition 1.

5 REGULARIZED SADDLE BOUNDARY BIFURCATION

In this section, we will explain the saddle boundary bifurcations in terms of the
classical smooth bifurcations. For the cases BS1 and BS2, we will prove that when the
parameter is λ∗, related to the value y∗ given by (12), there occurs a saddle-node
bifurcation. For the case BS3, we have just a saddle that moves from S to N. To obtain
the saddle-node bifurcation, we use the following theorem, see Sotomayor (1973)
or Guckenheimer & Holmes (1983).
Theorem 4 (Sotomayor). Let ẋ = G(x, λ) be a one-parameter family of differential

equations in R2, where λ ∈ R is the parameter. When λ = λ0, we assume that there is a

singularity p0 = (x0, y0) which satisfies:

(SN1) the jacobian matrix of G applied in (p0, λ0) has only one zero eigenvalue µ0 with,

respectively, right and left eigenvectors v and w;
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(SN2) the following inequality is valid

〈
w,

d

dλ
G(p0, λ0)

〉
̸= 0

where <,> is the usual inner product of the plane;

(SN3) is valid 〈
w,D2

xG(p0, λ0)(v, v)
〉
̸= 0.

Then there is a smooth curve of singularities in R2 ×R passing by (p0, λ0), and tangent to the

hyperplane R2×{λ0}. Depending on the signs of the expressions in (SN2) and (SN3), there are

no singularities close to (p0, λ0) when λ < λ0 (λ > λ0) and two singularities close to (p0, λ0)

to each value of the parameter λ > λ0 (λ < λ0). Both the singularities of ẋ = G(x, λ) that are

close to (p0, λ0) are hyperbolic.

Let us apply this theorem to our cases.
Theorem 5. Let Zλ = (Xλ, Yλ) be a one-parameter family of discontinuous vector fields of

type BS1 or BS2. Let Zλ,ε be the regularized family of discontinuous vector fields given by (10).
Then Zλ,ε has a saddle-node point given by the expression pSN =

(
xSN , ySN , λSN

)
where

ySN =
U2 − 192a2δ2 + δ4 − δ2U

24aδU
,

for δ = ad− bc and

U = 3

√
δ2
(
576a2δ2 + 3456a4 − δ4 + 24

√
3a(δ2 + 8a2)

√
108a2 + δ2

)
.

The expressions of xSN and λSN are given, respectively, by (11), changing y into ySN .

Proof. Let Zλ = (Xλ, Yλ) a one-parameter family of discontinuous vector fields of type
BS1 or BS2, and let Zλ,ε be the regularized family of discontinuous vector fields given
by (10). Solving dets(A) = 0,where dets is (17), related to the variable y we obtain the point
of coordinates p∗ = (x∗, y∗) and the parameter λ∗ that satisfie (SN1) from the Theorem 4.
Let us check that (x∗, y∗, λ∗) is a saddle-node point from the previous Theorem.
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The right eigenvector associated to the eigenvalue µ1 = 0 is the non-zero vector
v = (v1, v2) which satisfy A(p∗, λ∗)v = µ1v = 0. So

v =

(
1,

−a
(√

1 + (y∗)2 + y∗
)
(1 + (y∗)2)

ax∗ + b(y∗)3 + 2by∗ + eλ∗ + b(1 + (y∗)2)3/2

)
(20)

similarly the left eigenvector associated to the eigenvalue µ1 = 0 is the non-zero solution
of wTA(p∗, λ∗) = 0 which has the following expression

w =
(
1,−a

c

)
.

This is the step (SN1) of Theorem 4.
Now, (SN2) is equivalent to show that the following inner product does not vanish

p1 =

〈
w,

d

dλ
G(p∗, λ∗)

〉
,

where G(x, y, λ) is the regularized family of discontinuous vector fields, i. e.,
G(x, y, λ) = Zλ,ε(x, y, λ) =

(
Z1

λ,ε(x, y), Z
2
λ,ε(x, y)

)
.

For this we have that
d

dλ
Zλ,ε(x

∗, y∗, λ∗) =

((
1

2
+

y∗

2
√

(y∗)2 + 1

)
e,

(
1

2
+

y∗

2
√

(y∗)2 + 1

)
f

)

and multiplying by w we have that
p1 =

(
1

2
+

y∗

2
√

(y∗)2 + 1

)(
ce− af

c

)
.

Which is non-zero by hypothesis, and this finishes the verifying of (SN2).
The final part is to prove that p2 ̸= 0 where

p2 =
〈
w,D2

xZλ,ε(p
∗, λ∗)(v, v)

〉
.

For this, we need to calculate D2
xZλ,ε(p

∗, λ∗)(v, v), and we will use the following notation
(x, y) = (x1, x2). So
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D2
xZλ,ε(p

∗, λ∗)(v, v) =

(
2∑

i,j=1

∂2Z1
λ,ε

∂xi∂xj

(p∗, λ∗)vjvi,
2∑

i,j=1

∂2Z2
λ,ε

∂xi∂xj

(p∗, λ∗)vjvi

)
.

Calculating the first component of this derivative, we have that
∂2Z1

λ,ε

∂x2
1

(p∗, λ∗)v21 + 2
∂2Z1

λ,ε

∂x1∂x2

(p∗, λ∗)v1v2 +
∂2Z1

λ,ε

∂x2
2

(p∗, λ∗)v22

=
av1v2(

(y∗)2 + 1
)3/2 +

y∗(−3ax∗ − 3eλ∗ − by∗) + 2b

2
(
(y∗)2 + 1

)5/2 v22,

the second component is
∂2Z2

∂x2
1

(p∗, λ∗)v21 + 2
∂2Z2

∂x1∂x2

(p∗, λ∗)v1v2 +
∂2Z2

∂x2
2

(p∗, λ∗)v22

=
cv1v2(

(y∗)2 + 1
)3/2 +

y∗(3− 3cx∗ − dy∗ − 3fλ∗) + 2d

2
(
(y∗)2 + 1

)5/2 v22.

So the expression of p2 is

p2 =
v22
(
δ(y∗)2 − 3ay∗ − 3νy∗λ∗ − 2δ

)
2c
(
(y∗)2 + 1

)5/2
where δ = ad− bc and ν = ce− af. From the expression of v, given by (20), we have that
v2 ≠ 0. Then, p2 = 0 if δ(y∗)2 − 3ay∗ − 3νy∗λ∗ − 2δ = 0. Replacing λ∗ by (11) and simplifying
we have that p2 = 0 if, and only if,
−3a(y∗)3 − δ(y∗)2 + 3a(y∗)2

√
1 + (y∗)2 − 3ay∗ − δ = 0. (21)

Comparing the expressions of (13), where one root is y∗, to (21), we notice that they do
not vanish at the same point. And this finishes the proof of (SN3).

Then, the point (xSN , ySN , λSN) = (x∗, y∗, λ∗) is a saddle-node point for family Zλ,ε.

The figure 6 represent the diagram of bifurcation of a regularized family of
discontinuous vector fields with a saddle-node bifurcation. Note that, with a small
modification, this diagram is useful to explain the bifurcation that occur in BS1 and
BS2.

The third case is simpler because it is a direct application of item b) of
Proposition 5 and item b) of Proposition 9. In this case, the regularized family of
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discontinuous vector fields of type BS3 has a unique saddle for different values of
parameter λ. So does not occur a bifurcation in the classic sense for this case.
Figure 6 – Diagram of bifurcation containing a saddle-node bifurcation

Source: the authors (2023)

6 REGULARIZED NODE BOUNDARY BIFURCATION

In the regularized family of vector fields associated to a discontinuous vector
field of type BN 1, we have the appearance of a stable node for any small values of the
parameter. This is a direct consequence of Proposition 9 and the expression of the
trace of the Jacobian matrix given by (18), which is negative for all values of the
parameter. So in this case, we do not have a bifurcation.

Now, regarding a discontinuous family of vector fields of type BN 2, its
regularization is such that there is a saddle-node bifurcation.
Theorem 6. Let Zλ = (Xλ, Yλ) be a one-parameter family of discontinuous vector fields given

by (8). Let Zλ,ε be the regularized family of discontinuous vector fields given by (10). If Zλ is

of type BN 2 then Zλ,ε has a saddle-node point given by the expression pSN =
(
xSN , ySN , λSN

)
where ySN is given by y∗ in item b) of Proposition (6).
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The proofs presented for the saddle boundary case can be easily adapted to this
case. The diagram of bifurcation for the family of regularization associated to a
discontinuous family of vector fields of type BN 2 is presented in figure 7.

Figure 7 – Diagram of bifurcation of a node

Source: the authors (2023)

7 CONCLUSION

The regularized method of discontinuous vector fields is an important tool to
understand discontinous bifurcations in classical sense. In this work we present two
discontinuous bifurcations with codimension one, obtained by the colision of a saddle
and a node with the discontinuity set. Professor Jorge Sotomayor conjectured that all
discontinuous codimension one bifurcation given by Filippov (1998) and Kuznetsov
et al. (2003), can be explained by classical bifurcations, using the regularization
method. Our work is a small contribution to the solution of this problem.
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