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Mathematics

Chaotic dynamics of the sugarcane borer-two parasitoid
agroecosystem with seasonality
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ABSTRACT

Sugarcane production is a significant and profitable agribusiness sector in many countries. Nevertheless,
this industry suffers significant losses from sugarcane pests, among which the most important is the
sugarcane borer (Diatraea saccharalis). This pest population is hard to control due to its different life
stages, thus biological control (with more than one predator species) can be applied. Therefore, in this
work, we present and analyze a mathematical model that describes the dynamics of the sugarcane borer
and its two parasitoids ub tge egg stage (Trichogramma galloi) and larval stage (Cotesia flavipes). First, a
host-parasitoid model is used to obtain the population dynamics, which also considers the influence of
seasonal variations. Then, system simulations and bifurcation diagrams show that the introduction of
seasonality perturbations causes complex dynamics and results in limit cycles and strange attractors.
Keywords: Sugarcane borer; Parasitoids; Dynamics; Seasonality; Chaos

RESUMO

A produção de cana-de-açúcar é um setor significativo e lucrativo do agronegócio em muitos páıses. No
entanto, essa indústria sofre perdas significativas com as pragas da cana-de-açúcar, dentre as quais a
mais importante é a broca da cana-de-açúcar (Diatraea saccharalis). Essa população de pragas é dif́ıcil
de ser controlada devido às suas diferentes fases de vida, portanto o controle biológico (com mais de
uma espécie de predador) pode ser aplicado. Neste trabalho, apresentamos e analisamos um modelo
matemático que descreve a dinâmica da broca da cana-de-açúcar e seus dois parasitoides, nos estágios
de ovos (Trichogramma galloi) e de larvas (Cotesia flavipes). Primeiro, um modelo hospedeiro-parasitoide é
usado para obter a dinâmica populacional, que também considera a influência das variações sazonais. Em
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seguida, simulações do sistema e diagramas de bifurcação mostram que a introdução de perturbações
de sazonalidade causam dinâmicas complexas e resultam em ciclos limite e atratores estranhos.
Palavras-chave: Broca da cana; Parasitoides; Dinâmica; Sazonalidade; Caos

1 INTRODUCTION

Sugarcane is produced in the tropics, as a global commodity, it is used in the
manufacture of sweeteners, biofuels and a growing range of bioproducts (including
bioplastics) (Commodities Jurisdictions (2022)). Several pests affect the sugarcane’s
production, specially the sugarcane borer D. sacharalis (Parra et al. (2002); Parra and
Coelho (2019)). Significant damages of the plant are caused by this peculiar insect, that
lays eggs on the surface of the sugarcane leaves, while the larvae lives inside the
sugarcane stalk, carving internal galleries. Because the larvae live hidden from the
surface, the pesticide control becomes inefficient and biological control is the
alternative for this case.

The sugar borer infestation can cause direct and indirect damages. Direct
damage includes the breaking of stalks and the demise of young plants, often caused
by the condition referred to as “dead heart”, resulting from the destruction of the
apical meristem. Additionally, indirect damage occurs as the borer creates openings
for fungi to enter, triggering the red rot disease in the stalk. This disease not only
compromises the quality of production but also reduces sugar content in plants.
Quantities of sugar losses (per ton of processed sugarcane) caused by the intensities
of D. saccharalis infestations can be seen in the technical report Nava et al. (2009). In
this technical report, the authors also indicate that the level of economic damage to
the sugarcane borer is 1000 larvae/ hectare, which in other studies such as Rafikov and
Silveira (2013) and Rafikov and Silveira (2014), can reach 2500 larvae/ hectare.

The damage caused by the sugarcane borer to sugarcane crops has been
analyzed and debated by several researchers. In the search to minimize losses in the
production of alcohol and sugar, the researchers’ focus is on combating this pest. In
the works of Belezini Vinha et al. (2019); Borges Filho et al. (2018,1); Parra et al. (2021),
one can notice a concern with understanding the behavior of the sugarcane borer and
proposing biological control strategies.
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In biological control, the pest populations are reduced by the insertion of their
natural enemies(predators, parasitoids and pathogens) in the environment. The
sugarcane borer larvae population has been controlled since the 1970s by the
parasitoid, C. flavipes. Recently, the T. galloi parasitoid is a new alternative for biological
control of its egg population Parra et al. (2002); Parra and Coelho (2019). The works
Gámez et al. (2009,1); Venturino (2007); Venturino et al. (2008) presented mathematical
modeling in biological control applications of prey-predator and host-parasitoid.

In biological systems with more than two species, prey-predator interactions
become complex and consequently harder to model prey invasions. Mathematical
modeling can be an important feature providing information about the natural
systems’ stability (Goh (2012)), along with computational simulations, revealing the
behavior of these complex systems and understanding how the prey interacts with
other species in the environment.

Mathematical models for biological control, with only one predator population,
are considered in Rafikov and Holanda Limeira (2012) and Rafikov and Silveira (2014)
for egg and larval parasitoid, respectively. The mathematical model of interactions
between the sugarcane borer and its eggs and larval parasitoids was proposed by
Rafikov and Silveira (2013). In Molnár et al. (2016), this model was used for the
formulation of some scenarios of biological pest control. In both publications, the
populations are described by four population compartments: sugarcane borer’s eggs
population, sugarcane borer’s larvae population, T. galloi(eggs parasitoid) population,
C. Flavipes(larval parasitoid) population.

As pointed out by Rinaldi et al. (1993), periodic external forces are of great
importance in ecological systems since environments of the population communities
vary periodically. There are many systems that have a very simple dynamic behavior in
the constant parameter case but become very complex (multiplicity of attractors,
catastrophes, and chaos) when they are periodically perturbed.

Seasonality in biological systems has already been addressed in several works,
such as Altizer et al. (2006); Bezerra et al. (2021); Gakkhar et al. (2003); Gakkhar and
Naji (2003); Rinaldi et al. (1993); Stollenwerk et al. (2017); White and Hastings (2020);
Zhang et al. (2012). Meanwhile, the inclusion of two parasitoids (eggs and larval)
populations, as well as seasonal variations in the sugarcane borer agroecosystem
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dynamics are novelties. In Bezerra et al. (2021), models sugarcane borer and its larval
parasitoid (C. flavipes) interaction, considering the influence of the seasonal variations
on the dynamics of the system. Their results show that this variation generates chaotic
dynamics in the system.

The system model in the present paper is an extension of the mathematical
model in Rafikov and Silveira (2013), with the addition of the parasitized egg and larvae
population of the sugarcane borer. This addition improves the estimation and
observation of the system parameters, as it is much easier to monitor sugarcane
borer’s parasitized eggs and parasitized larvae than adult parasitoid population in real
conditions. Moreover, seasonality variations are introduced into the system dynamics
resulting in chaotic behavior.

The paper is organized as follows. In Section 2, our six-dimensional,
continuous-time, dynamical system is proposed. Section 3 is dedicated to the study of
the system’s local and global dynamics. Seasonal dynamics of the sugarcane borer
parasitoid agroecosystem is considered in Section 4. Section 5 discusses the results of
previous Sections and concludes this paper.
2 MATHEMATICAL MODEL

The proposed continuous-time mathematical model describes the interactions
between the sugarcane borer, its egg and larval parasitoid, considering six population
densities: the un-parasitized egg population density of the sugarcane borer, x1; the
parasitized egg population density of the sugarcane borer, x2; the density of the adult
egg parasitoid T. galloi, x3; the unparasitized larvae density of the sugarcane borer, x4;
the parasitized larvae density of the sugarcane borer, x5; the density of the adult larval
parasitoid C. flavipes, x6. So, the mathematical model has the following form:

Ci. e Nat., Santa Maria, v.46, e75328, 2024



Rafikov, M., Molter, A., Bezerra, J. I. M., Rafikova, E., & Varriale, M. C. | 5

dx1

dt
= rx1

(
1− x1

K

)
−m1x1 − n1x1 − αx1x3,

dx2

dt
= αx1x3 −m2x2 − n2x2,

dx3

dt
= γ1n2x2 −m3x3,

dx4

dt
= n1x1 −m4x4 − n3x4 − βx4x6, (1)

dx5

dt
= βx4x6 −m5x5 − n4x5,

dx6

dt
= γ2n4x5 −m6x6.

In the system of differential equations (1), the 16 parameters are defined as
follows. r is the intrinsic oviposition rate of female sugarcane borer; K is the potential
maximum of oviposition rate of female sugarcane borer; m1,m2,m3,m4,m5 and m6 are
the mortality rates of the un-parasitized egg, parasitized egg, egg parasitoid, un-
parasitized larvae, parasitized larvae and larvae parasitoid populations, respectively; n1

is the fraction of the sugarcane borer larvae population which emerges from the eggs
per unit of time; n2 is the fraction of the parasitized egg population from which larval
parasitoids emerge in a time unit; n3 is the fraction of the un-parasitized sugarcane
borer larvae from which pupae emerge in a time unit; n4 is the fraction of the
parasitized sugarcane borer larvae from which larvae parasitoids emerge in a time
unit; α and β are are the intrinsic parasitism rate of the egg and larvae parasitoids,
respectively; γ1 and γ2 are numbers of adult parasitoids which emerge from a unit of
parasitized eggs and larvae, respectively.

3 SYSTEM EQUILIBRIUM STATES AND THEIR STABILITY

3.1 Equilibrium states

To obtain the equilibrium points, we equal the right-hand sides of the system (1)
to zero. We obtain five following equilibrium by sequences of xi, i = 1, 2, · · · , 6.

• Extinction of all populations: E1 = (0, 0, 0, 0, 0, 0).
• Extinction of all parasitoid and parasitized populations:
E2 =

(
K
r
(r −m1 − n1), 0, 0,

Kn1(r−m1−n1)
r(m4+n3)

, 0, 0
).

• Extinction of the egg parasitoid and parasitized egg populations:
Ci. e Nat., Santa Maria, v.46, e75328, 2024
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E3 =
(
K
r
(r −m1 − n1), 0, 0, p

∗
4, p

∗
5, p

∗
6

).

• Extinction of the larvae parasitoid and parasitized larvae populations:
E4 = (x∗

1, x
∗
2, x

∗
3, q

∗, 0, 0).

• Coexistence of all populations: E5 = (x∗
1, x

∗
2, x

∗
3, x

∗
4, x

∗
5, x

∗
6).

The values cited above are given as follows.
x∗
1 =

m3(m2 + n2)

αγ1n2

, x∗
3 =

1

α

[
r

(
1− m3(m2 + n2)

αγ1n2K

)
−m1 − n1

]
, x∗

2 =
m3

γ1n2

x∗
3,

x∗
4 =

m6(m5 + n4)

βγ2n4

, x∗
5 =

m3n1(m2 + n2)

αγ1n2(m5 + n4)
− m6(m4 + n3)

βγ2n4

, x∗
6 =

γ2n4

m6

x∗
5,

p∗4 =
m6(m5 + n4)

βγ2n4

, p∗5 =
n1

m5 + n4

[
K

r
(r −m1 − n1)

]
− m6(m4 + n3)

βγ2n4

, p∗6 =
γ2n4

m6

p∗5,

q∗ =
n1

m4 + n3

x∗
1.

Since we are modelling a biological system, where the dependent variables are
populations, the space phase includes only positive or zero values for all coordinates,
thus defining their biological viability. When analyzing, in next section, each one of these
equilibrium points, conditions will be set for their biological viability.
3.2 Local stability analysis of equilibrium points

In order to study the local the stability of these equilibrium states, system (1) is
linearized in a small neighborhood of each equilibrium state, and the Jacobian matrix
being computed as:

J =



a11 0 a13 0 0 0

a21 a22 a23 0 0 0

0 a32 a33 0 0 0

a41 0 0 a44 0 a46

0 0 0 a54 a55 a56

0 0 0 0 a65 a66


, (2)
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in which:
a11 = r − 2rx1

K
−m1 − n1 − αx3, a13 = −αx1, a21 = αx3, a22 = −m2 − n2,

a23 = αx1, a32 = γ1n2, a33 = −m3, a41 = n1, a44 = −m4 − n3 − βx6,

a46 = −βx4, a54 = βx6, a55 = −m5 − n4, a56 = βx4, a65 = γ2n4, a66 = −m6.

The matrix (2) can be written as a block matrix:A 0

C B

 , (3)

in which:

A =


a11 0 a13

a21 a22 a23

0 a32 a33

 , C =


a41 0 0

0 0 0

0 0 0

 , B =


a44 0 a46

a54 a55 a56

0 a65 a66

 ,

and 0 is a matrix with all elements equal to zero.
Matrices of the form (3) are called block-lower-triangular. The full explanation on

the block-triangular matrix determinant computation method can be found in
Gantmacher (1960), and briefly described below:

If D is a block-triangular matrix, then the determinant of the matrix is equal to the
product of determinant of diagonal cells:
det (D) = det (D11) det (D22) · · · det (Dnn). (4)
The matrix D = J −λI , where I is the identity matrix of dimensions n×n, is block-lower-
triangular too. Using the above mentioned rule, the characteristic equation is given as
follows:
det (D) = det (A− λI) det (B − λI) = 0. (5)

Ci. e Nat., Santa Maria, v.46, e75328, 2024
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Hence, the characteristic equation (5) is given by:∣∣∣∣∣∣∣∣∣
a11 − λ 0 a13

a21 a22 − λ a23

0 a32 a33 − λ

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
a44 − λ 0 a46

a54 a55 − λ a56

0 a65 a66 − λ

∣∣∣∣∣∣∣∣∣ = 0. (6)

From (6), we get that:∣∣∣∣∣∣∣∣∣
a11 − λ 0 a13

a21 a22 − λ a23

0 a32 a33 − λ

∣∣∣∣∣∣∣∣∣ = 0, or (7)

∣∣∣∣∣∣∣∣∣
a44 − λ 0 a46

a54 a55 − λ a56

0 a65 a66 − λ

∣∣∣∣∣∣∣∣∣ = 0. (8)

Now, applying this rule to the equilibrium points found above, we obtain for the
equilibrium point E1 = (0, 0, 0, 0, 0, 0), the matrix (2) has a triangular form, and the
eigenvalues are given by:

λ1 = r−m1−n1, λ2 = −m2−n2, λ3 = −m3, λ4 = −m4−n3, λ5 = −m5−n4, andλ6 =

−m6. Therefore, it follows that equilibrium E1 is asymptotically stable if r < m1 + n1.
For the equilibrium E2 =

(
K
r
(r −m1 − n1), 0, 0,

Kn1(r−m1−n1)
r(m4+n3)

, 0, 0
), which is

biologically viable if r > m1 + n1, the parameters of the characteristic equation (5) are
given as:
a11 = −(r −m1 − n1), a13 = −αK

r
(r −m1 − n1), a21 = 0, a22 = −m2 − n2,

a23 =
αK

r
(r −m1 − n1), a32 = γ1n2, a33 = −m3, a44 = −m4 − n3,

a46 = −βKn1(r −m1 − n1)

r(m4 + n3)
, a54 = 0, a55 = −m5 − n4, a56 =

βKn1(r −m1 − n1)

r(m4 + n3)
,

a65 = γ2n4, a66 = −m6.
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Rafikov, M., Molter, A., Bezerra, J. I. M., Rafikova, E., & Varriale, M. C. | 9

From (7) and (8), we obtain:
(a11 − λ)[λ2 − (a22 + a33)λ+ a22a33 − a23a32] = 0, or (9)
(a44 − λ)[λ2 − (a55 + a66)λ+ a55a66 − a56a65] = 0. (10)

The Routh-Hurwitz criterion states that the eigenvalues of the second-degree
polynomial have negative real parts if, and only if, both coefficients are positive.
Analyzing (7) and (8), we can conclude that when

(a) a11 < 0, (b) a22 + a33 − a23a32 > 0, (c) a55 + a66 − a56a65 > 0,
then all the eigenvalues of the equation (6) have negative real parts.

From conditions (a), (b) and (c), we obtain:
α <

rm3(m2 + n2)

γ1n2K(r −m1 − n1)
, (11)

β <
rm6(m4 + n3)(m5 + n4)

γ2n1n4K(r −m1 − n1)
, (12)

r > m1 + n1. (13)
Similarly, the equilibrium point E2 is asymptotically stable if, and only if, the

inequalities (11), (12) and (13) are satisfied.
The equilibrium point E3 =

(
K
r
(r −m1 − n1), 0, 0, p

∗
4, p

∗
5, p

∗
6

) is biologically viable if:
β >

rm6(m4 + n3)(m5 + n4)

γ2n1n4K(r −m1 − n1)
, (14)

r > m1 + n1.

The characteristic equation at E3 can be written in the form (6), where:
a11 = −(r −m1 − n1), a13 = −αK

r
(r −m1 − n1), a21 = 0, a22 = −m2 − n2,

a23 =
αK

r
(r −m1 − n1), a32 = γ1n2, a33 = −m3, a44 = −m4 − n3 − βp∗6,

a46 = −βp∗4, a54 = βp∗6, a55 = −m5 − n4, a56 = βp∗4, a65 = γ2n4, a66 = −m6.

The parameter values of determinant (7) are the same as E2, and the conditions
(11) and (13) are satisfied.
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Considering the determinant (8)∣∣∣∣∣∣∣∣∣
a44 − λ 0 a46

a54 a55 − λ a56

0 a65 a66 − λ

∣∣∣∣∣∣∣∣∣ = 0, (15)

we have
λ3 + b1λ

2 + b2λ+ b3 = 0, (16)
where
b1 = m4 + n3 + βp∗6 > 0, b2 = (m4 + n3 + βp∗6)(m5 + n4) > 0,

b3 = βm6(m5 + n4)p
∗
6 > 0, b1b2 − b3 > 0. (17)

Therefore, we obtain that the equilibrium point E3 is asymptotically stable if, and
only if, the inequalities (11), (14) and (13) are satisfied.

The equilibrium point E4 = (x∗
1, x

∗
2, x

∗
3, q

∗, 0, 0) is biologically viable if
α >

rm3(m2 + n2)

γ1n2K(r −m1 − n1)
, (18)

r > m1 + n1.

The characteristic equation at E4 can be written in the form (6) where:
a11 = −rx∗

1

K
, a13 = −ax∗

1, a21 = ax∗
3, a22 = −m2 − n2,

a23 = ax∗
1, a32 = γ1n2, a33 = −m3, a44 = −m4 − n3, (19)

a46 = −βq∗, a54 = 0, a55 = −m5 − n4, a56 = βq∗, a65 = γ2n4, a66 = −m6.

Considering the determinant (7) with parameter values (19) we have:
λ3 + c1λ

2 + c2λ+ c3 = 0. (20)
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where
c1 = m2 +m3 + n2 +

rx∗
1

K
> 0, c2 = (m2 +m3 + n2)

rx∗
1

K
> 0, c3 = αm3(m2 + n2)x

∗
3 > 0.

From c1c2 − c3 > 0, we obtain:
α <

rm3(m2 + n2)

γ1n2zK
, (21)

where
z = −h1

2
+

√
h2
1

4
+ h2 ,

h1 = m2 +m3 + n2 +
m3(m2 + n2)

m2 +m3 + n2

,

h2 =
m3(m2 + n2)(r −m1 − n1)

m2 +m3 + n2

.

Considering the determinant (8) with parameter values (19) we have:
(a44 − λ)[λ2 − (a55 + a66)λ+ a55a66 − a56a65] = 0, (22)
where a44 = −m4 − n3 < 0,−(a55 + a66) > 0.

From a55a66 − a56a65 > 0 we obtain:
β <

m6(m5 + n4)

γ2n4q∗
=

αγ1n2m6(m4 + n3)(m5 + n4)

γ2n1n4m3(m2 + n2)
. (23)

The equilibrium point E4 is asymptotically stable if, and only if, the following
inequalities are satisfied:

rm3(m2 + n2)

γ1n2K(r − n1 −m1)
< α <

rm3(m2 + n2)

γ1n2zK
, (24)

β <
αγ1n2m6(m4 + n3)(m5 + n4)

γ2n1n4m3(m2 + n2)
. (25)
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Consider the equilibrium point E5 = (x∗
1, x

∗
2, x

∗
3, x

∗
4, x

∗
5, x

∗
6) where

x∗
1 =

m3(m2 + n2)

αγ1n2

, x∗
3 =

1

α

[
r

(
1− m3(m2 + n2)

αγ1n2K
−m1 − n1

)]
, x∗

2 =
m3

γ1x2

x∗
3, (26)

x∗
4 =

m6(m5 + n4)

βγ2n4

, x∗
5 =

m3n1(m2 + n2)

αγ1n2(m5 + n4)
− m6(m4 + n3)

βγ2n4

, x∗
6 =

γ2n4

m6

x∗
5.

The equilibrium point E5 is biologically viable if x∗
3 > 0 and x∗

5 > 0. So, we get:
α >

rm3(m2 + n2)

γ1n2K(r − n1 −m1)
,

β >
αγ1n2m6(m4 + n3)(m5 + n4)

γ2n1n4m3(m2 + n2)
, (27)

r > m1 + n1.

The characteristic equation at E5 can be written in the form (6) where:
a11 = −rx∗

1

K
, a13 = −ax∗

1, a21 = ax∗
3, a22 = −m2 − n2,

a23 = ax∗
1, a32 = γ1n2, a33 = −m3, a44 = −m4 − n3 − βx∗

6, (28)
a46 = −βx∗

4, a54 = βx∗
6, a55 = −m5 − n4, a56 = βx∗

4, a65 = γ2n4, a66 = −m6.

The parameter values of determinant (7) are the same of E4, and the inequality
(21) is satisfied.

Considering the determinant (8), we obtain:
λ3 + g1λ

2 + g2λ+ g3 = 0, (29)
where
g1 = m4 +m5 +m6 + n3 + n4 + βx∗

6 > 0,

g2 = (m4 + n3 + βx∗
6)(m5 + n4 +m6) > 0, (30)

g3 = βm6(m5 + n4)x
∗
6 > 0, g1g2 − g3 > 0.
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Therefore, we obtain that equilibrium point E5 is asymptotically stable if, and only
if, the following inequalities are satisfied:

rm3(m2 + n2)

γ1n2K(r −m1 − n1)
< α <

rm3(m2 + n2)

γ1n2zK
, (31)

β >
αγ1n2m6(m4 + n3)(m5 + n4)

γ2n1n4m3(m2 + n2)
. (32)

We can now summarize the results of this local stability analysis, after defining
the following dimensionless parameters related to our resulting conditions (regions in
the parameter space) for biological viability (b. v.) and for local stability (l.s.) of each
equilibrium point:

A1 ≡
r

m1 + n1

; A2 ≡
αγ1n2K(r −m1 − n1)

rm3(m2 + n2)
; A3 ≡

βγ2n1n4K(r −m1 − n1)

rm6(m4 + n3)(m5 + n4)
; (33)

A4 ≡
βγ2n1n4m3(m2 + n2)

αγ1n2m6(m4 + n3)(m5 + n4)
=

A3

A2

; A5 ≡
αγ1n2zK

rm3(m2 + n2)
=

A2z

r −m1 − n1

.

With these dimensionless parameters, whose critical value 1 is associated with
a bifurcation in the behavior of the system, all conditions previously deduced can be
presented in a summary and complete form as shown in Table 1.
Table 1 – Local stability and biological viability of the system equilibria, in which b.v.means biologically viable, l.s. means locally stable and un. means unstable

E1 E2 E3 E4 E5

A1 < 1 b.v. l.s. Not b.v. Not b.v. Not b.v. Not b.v.

A1 > 1

A2 < 1
A3 < 1 b.v. un. b.v. l.s. Not b.v. Not b.v. Not b.v.
A3 > 1 b.v. un. b.v. un. b.v. l.s. Not b.v. Not b.v.

A2 > 1
A5 < 1

A4 < 1 b.v. un. b.v. un. b.v. un. b.v. l.s. Not b.v.
A4 > 1 b.v. un. b.v. un. b.v. un. b.v. un. b.v. l.s.

A5 > 1 A4 > 1 b.v. un. b.v. un. b.v. un. b.v. un. b.v. un.

3.3 Global stability analysis of the coexistence equilibrium

From local stability analysis, we get the equilibrium point E5 is the only one with
no null population density. Therefore this is the point of interest for the forthcoming
global stability analysis.

Ci. e Nat., Santa Maria, v.46, e75328, 2024
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We define a Lyapunov function as follows:

V (x1, x2, x3, x4, x5, x6) =

∫ x1

x∗
1

y − x∗
1

y
dy +

6∑
i=2

(xi − x∗
1)

2

2
. (34)

At the equilibrium point E5, V is zero, and it is positive for all other biologically
viable equilibria. The function is also radially unbounded, i.e., V → ∞ when x → ∞.

We can write the time derivative of V along (1) as
V̇ = eTPe, (35)
where the matrix P is


− r
K

0 −α 0 0 0

αx3 −m2 − n2 αx∗
1 0 0 0

0 γ1n2 −m3 0 0 0

n1 0 0 −m4 − n3 − βx6 0 −βx∗
4

0 0 0 βx6 −m5 − n4 βx∗
4

0 0 0 0 γ2n4 −m6


,

and the elements of vector e are: ei = xi − x∗
i , i = 1, 2, ..., 6.

If conditions (31) and (32) are satisfied then the matrix P in (35) is negative
definite, as is the time derivative of V along the trajectories of (1), and consequently
the equilibrium point E5 is globally asymptotically stable.
3.4 Hopf bifurcation analysis

From Table 1, it is evident the role of the dimensionless parameter A5 in
determining the region in the parameter space in which each one of the equilibrium
points E4 and E5 is asymptotically stable. Furthermore, from the definition of A5 in (33),
it can be seen that the condition A5 < 1 can be written equivalently in the form of
α < αc, where the critical value αc is defined by
αc ≡

rm3(m2 + n2)

γ1n2zK
(36)
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In (36) we observe that the condition is exactly the same one as we got in (21),
from the characteristic (20), for the local stability of the equilibria E4 and E5.

When A5 > 1, that is, α > αc, the positive coexistence equilibrium E5 becomes
unstable and a Hopf bifurcation occurs.

Now we can analyze the bifurcation of the model (1) assuming α as the bifurcation
parameter and considering only three first equations of the system (1) which are not
dependent on the variables x4, x5 and x6. The traditional Hopf bifurcation criterion is
stated in terms of the properties of the eigenvalues. Alternatively, Liu (1994) presented a
criterion of Hopf bifurcation without using the eigenvalues of the characteristic equation.
Liu’s approach is the one that is applied in the present Hopf bifurcation analysis, as
follows:

Liu’s criterion. If the characteristic equation of the positive equilibrium point is
given by: λ3+c1(α)λ

2+c2(α)λ+c3(α) = 0,where c1(α), c2(α) and c3(α) are smooth functions
of α in an open interval about αc ∈ R such that:

(a) c1(αc) > 0,∆(αc) = c1(αc)c2(αc)− c3(αc) = 0, c3(αc) > 0.
(b) (

d∆
dα

)
α=αc

̸= 0,
then a simple Hopf bifurcation occurs at α = αc.

Applying the Liu’s criterion to the characteristic equation (20), we observe that
c1 = m2 +m3 + n2 +

rx∗
1

K
> 0, c2 = (m2 +m3 + n2)

rx∗
1

K
> 0, c3 = α(m2 + n2)x

∗
3 > 0,

for all positive values of α.
Solving the equation c1(αc)c2(αc)− c3(αc) = 0, we obtain

αc =
rm3(m2 + n2)

γ1n2zK
, (37)

where
z = −h1

2
+

√
h2
1

4
+ h2 ,

h1 = m2 +m3 + n2 +
m3(m2 + n2)

m2 +m3 + n2

,

h2 =
m3(m2 + n2)(r −m1 − n1)

m2 +m3 + n2

.
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Considering condition (b) of the Liu’s criterion, we have
(
d∆

dα

)
α=αc

= −B1

α2
c

− 2B2

α3
c

< 0,

where
B1 =

rm3(m2 + n2 +m3)
2(m2 + n2) + rm3(m2 + n2)

2

γ1n2K
,

B2 =
r2(m2 + n2 +m3)(m2 + n2)

2 +m2
3

γ2
1n

2
2K

2
.

Hence, according to Liu’s criterion, a simple Hopf bifurcation occurs at α = αc, that
is, A5 = 1.
4 SEASONAL DYNAMICS OF THE SUGARCANE BORER-PARASITOID

AGRO-ECOSYSTEM

Several environmental parameters (such as air temperature, air humidity,
rainfall dispersion, among others) fluctuate periodically affecting an ecological system
dynamics. Thus, they can be represented as periodic-time functions. In this section, the
intrinsic growth rate r in system (1) is considered as a sinusoidal function representing
these seasonal perturbations. The parameter r being defined by the following function
Altizer et al. (2006); Gakkhar et al. (2003); Gakkhar and Naji (2003); Rinaldi et al. (1993):

r(t) = r0

(
1 + r1 sin

(
2πt

365

))
, (38)

where t is measured in days, so r0 is the average value of r over an integer number of
years. The parameter r1 represents the degree of seasonality, hence r0r1 is the
magnitude of the perturbation in r.

A population of pests in a crop can behave chaotically. Dennis et al. (2001)
estimated the possibility of chaotic dynamics in insect populations, and the possibility
of causing small cyclical chaotic events in the population dynamics of these organisms
can be very useful for controlling these populations, assisting in pest management. In
our study, chaotic dynamics occur with the inclusion of seasonality in the parameter r.

Next, we are interested in the seasonal dynamics of the equilibrium point E5,
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where there is coexistence of the parasitoid and pest populations. For this, we will
keep the values of the parameters fixed as follows Parra et al. (2002); Rafikov and
Holanda Limeira (2012); Rafikov and Silveira (2014).
m1 = 0, m2 = 0.03566, m3 =

1

4
, m4 = 0.00257, m5 = m4, m6 =

1

5
,

n1 =
1

8
, n2 =

1

9
, n3 =

1

50
, n4 =

1

16
, r0 = 0.19, (39)

β = 0.000009, γ1 = 2.29, γ2 = 40, K = 25000.

Setting the parameter values as specified in (39), it can be shown from (27) that
without seasonality, that is, r1 = 0 in (38), depending on the value of α > 0.169×10−4, the
attractor in the phase space can be an equilibrium point or a limit cycle, namely:

• For 0.169× 10−4 < α < αc, where αc = 0.9135× 10−4, the corresponding attractor is
the coexistence equilibrium point E5, whose components depend on the value of
α, as specified in (26);

• For α > αc, that is, beyond the Hopf bifurcation, the attractor is a period one
limit-cycle and, the amplitude of this limit cycle in the phase space increases with
increasing the value of α.
The addition of seasonality to the model, through the population growth rate

according to (38), induces a destabilizing effect and may even trigger chaotic behavior.
This destabilizing effect will be confirmed further by computer simulations with the
parameter values fixed according to (39). The initial conditions are
(1000,100,100,1000,100,300). In cases where there is chaos, the Lyapunov exponent
was calculated, with simulations in the time interval t ∈ [0, 3000]. The figure caption
shows the value around which the Lyapunov exponent oscillates.

First, we investigate the effect of seasonality for a value of α when the attractor
is the equilibrium point E5 in the 6D phase space, as shown in Fig. 1 for α = 0.6 × 10−4.
Considering this value of α, the bifurcation diagram for 0 ≤ r1 ≤ 0.35 is shown in Fig.
2, where it can be immediately verified that the value of x1(t) for r1 = 0 is, as expected,
the same value of this component of the equilibrium point obtained without seasonality,
given by (26), and shown in Fig. 1. Increasing the value of r1, there is a periodic solution,
which constitutes a route to chaos that occurs for r1 > 0.33. The projections of the
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6D strange attractor, in the phase space, with r1 = 0.35, are plotted in Fig. 3. Thus,
the seasonality destabilizes the E5 equilibrium, changing the attractor from equilibrium
point to limit cycle, and then to more complex dynamics as r1 increases.

Figure 1 – The equilibrium E5, reached by the populations of system (1), withoutseasonality, for the parameters fixed in (39) and α = 0.6× 10−4 < αc

Source: the authors (2024)

Figure 2 – Keeping the parameter values fixed in (39) and α = 0.6× 10−4, the bifurcationdiagram of x1(t) for 0 ≤ r1 ≤ 0.35

Source: the authors (2024)
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Figure 3 – Keeping the parameter values fixed according to (39) and α = 0.6× 10−4, theprojections of the 6D strange attractor in the phase space, corresponding to r1 = 0.35,in the subspaces x1x2x3 and x4x5x6

Source: the authors (2024)
Figure 4 – The projection of the 6D limit cycle reached by the populations of system (1),without seasonality, for the parameters fixed in (39) and α = 1× 10−4 > αc, in thesubspaces x1x2x3 and x4x5x6

Source: the authors (2024)

Now, the range α > αc is considered, with the system having a period one limit
cycle in the phase space, whose amplitude increases as α increases. We consider α =

1 × 10−4 in Fig. 4, and the maximum and minimum values of x1 as the same that as
we identify for r1 = 0 in the bifurcation diagram of x1(t) plotted with seasonality in Fig
6 for 0 ≤ r1 ≤ 0.35. Increasing the value of r1, a period doubling sequence can be
noted, which constitutes a route to chaos that occurs for r1 > 0.2. The projections of
the 6D strange attractor in the phase space, corresponding to r1 = 0.25, are plotted
in Figure 5. Increasing even more the value of r1, periodic attractors emerge, as the
one plotted in Fig. 7, corresponding to r1 = 0.28, and similar periodic attractors occur
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for 0.26 ≤ r1 ≤ 0.3. Therefore, the seasonality destabilizes the attractor from period
one limit cycle, changing the behavior of our system to more complex dynamics as r1

increases.
Regarding to the value of r1 at which chaos is observed to occur, the comparison

of bifurcation diagrams in Figs. 2 and 6 show that if α > αc, chaos occurs at a lower value
of r1 than if α < αc.
Figure 5 – Keeping the parameter values fixed in (39) and α = 1× 10−4, the projectionsof the 6D strange attractor in the phase space, corresponding to r1 = 0.25, in thesubspaces x1x2x3 and x4x5x6

Source: the authors (2024)

Figure 6 – Keeping the parameter values fixed in (39) and α = 1× 10−4, the bifurcationdiagram of x1(t) for 0 ≤ r1 ≤ 0.35

Source: the authors (2024)
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Figure 7 – Keeping the parameter values fixed in (39) and α = 1× 10−4, the projectionsof the 6D periodic attractor in the phase space, corresponding to r1 = 0.28, in thesubspaces x1x2x3 and x4x5x6

Source: the authors (2024)

Additionally, we can investigate the effect of seasonality for fixed values of its
degree r1, while varying the parameter α. For that, bifurcation diagrams of x1(t) are
plotted in Figures 8 and 9, keeping the parameter values fixed in (39) for 0.169× 10−4 ≤

α ≤ 1.2 × 10−4, and setting values for the parameter r1. The diagram presents in Fig. 8
corresponds to r1 = 0.25, whose strange attractor considering α = 1×10−4 was visualized
in Fig. 5, while the diagram in Fig. 9 the degree of seasonality is r1 = 0.35, whose strange
attractor for α = 0.6 × 10−4 was visualized in Fig. 3. Comparing these two bifurcation
diagrams, we conclude that the higher value of r1, the lower the value of α at which
chaos is established, as it occurs at α = 0.8× 10−4 for r1 = 0.25 and at α = 0.6× 10−4 for
r1 = 0.35.
Figure 8 – Bifurcation diagram of x1(t) for 0.169× 10−4 ≤ α ≤ 1.2× 10−4, and keeping theparameter values fixed according to 39, for r1 = 0.25

Source: the authors (2024)
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Figure 9 – Bifurcation diagram of x1(t) for 0.169× 10−4 ≤ α ≤ 1.2× 10−4, and keeping theparameter values fixed according to 39, for r1 = 0.35

Source: the authors (2024)

5 CONCLUSIONS

According to White and Hastings (2020), seasonality is a significant feature in
ecological systems driven by periodic climatic conditions, but it is often not explicitly
included in either empirical or theoretical studies. Therefore this article is an effort
toward the integration of the complex dynamics involving such seasonal influences
into the sugarcane borer agroecosystem and its parasitoids. In this work, we have
proposed a novel, six-dimensional continuous-time dynamical system, modeling
interactions between the sugarcane borer and its egg and larval parasitoid. On the
analytical side, five equilibrium states and conditions for their local stability were found
out. Moreover, the Lyapunov function stability analysis ensured the global
asymptotical stability of the equilibrium state in which all considered populations
coexist. Then, the occurrence of a Hopf bifurcation was investigated applying Liu’s
theorem. Numerical simulations revealed the chaotic behavior of the system with
seasonality. These results show how seasonality changes considerably the
agroecosystem dynamics leading an asymptotically stable system, as shown in Fig 1 to
the period-doubling and subsequently to a chaotic attractor shown in Fig 2. For a real
system, this means sudden changes can occur in populations that without seasonality
could coexist in an equilibrium. Moreover, when populations exhibit periodic
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oscillations, as shown in Fig. 4, the introduction of seasonality can transform these
oscillations into chaos, even for smaller values of r1 then in the case of Fig. 6. Finally,
bifurcation diagrams of the maximum and minimum population values, in the
presence of seasonal influences, show that an increase in the parasitism coefficient α
can lead the stabilized system to a chaotic regime, as shown by Figures 8 and 9.

The present results help understand the dynamics of the six-dimensional agro-
ecological system with the seasonal forcing. Using these results the biological control
strategies can be investigated in future research.
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Brasil: Parasitóides e Predadores. Manole.
Parra, J. R. & Coelho, A. (2019). Applied biological control in brazil: from laboratory assays

to field application. Journal of Insect Science, 19(2):5.

Ci. e Nat., Santa Maria, v.46, e75328, 2024



Rafikov, M., Molter, A., Bezerra, J. I. M., Rafikova, E., & Varriale, M. C. | 25

Parra, J. R. P., Pinto, A. d. S., Nava, D. E., Oliveira, R. C., & Diniz, A. J. F. (2021). Controle

biológico com parasitoides e predadores na agricultura brasileira. Fealq.
Rafikov, M. & Holanda Limeira, E. (2012). Mathematical modelling of the biological

pest control of the sugarcane borer. International Journal of Computer Mathematics,
89(3):390–401.

Rafikov, M. & Silveira, J. C. (2013). Dynamics of the sugarcane borer–egg parasitoid–
larvae parasitoid agro-ecosystem. Models in Population Dynamics and Ecology,
page 55.

Rafikov, M. & Silveira, J. C. (2014). On dynamical behavior of the sugarcane borer–
parasitoid agroecosystem. Ecological complexity, 18:67–73.

Rinaldi, S., Muratori, S., & Kuznetsov, Y. (1993). Multiple attractors, catastrophes and
chaos in seasonally perturbed predator-prey communities. Bulletin of mathematical

Biology, 55(1):15–35.
Stollenwerk, N., Sommer, P. F., Kooi, B., Mateus, L., Ghaffari, P., & Aguiar, M. (2017).

Hopf and torus bifurcations, torus destruction and chaos in population biology.
Ecological Complexity, 30:91–99.

Venturino, E. (2007). How diseases affect symbiotic communities. Mathematical

biosciences, 206(1):11–30.
Venturino, E., Isaia, M., Bona, F., Chatterjee, S., & Badino, G. (2008). Biological controls

of intensive agroecosystems: Wanderer spiders in the langa astigiana. Ecological

Complexity, 5(2):157–164.
White, E. R. & Hastings, A. (2020). Seasonality in ecology: Progress and prospects in

theory. Ecological Complexity, 44:100867.
Zhang, Q., Liu, C., & Zhang, X. (2012). Complexity, analysis and control of singular biological

systems, volume 421. Springer Science & Business Media.

Ci. e Nat., Santa Maria, v.46, e75328, 2024



26 | Chaotic dynamics of the sugarcane borer-two parasitoid agroecosystem...

Author contributions

1 – Marat Rafikov
Professor
https://orcid.org/0000-0002-3259-7871 • marat.rafikov@ufabc.edu.br
Contribution: Conceptualization; Data curation; Formal Analysis; Investigation;
Methodology; Project administration; Supervision; Validation; Writing – original draft;
Writing – review; Editing
2 – Alexandre Molter
Professor
https://orcid.org/0000-0001-8562-6376 • alexandre.molter@ufpel.edu.br
Contribution: Conceptualization; Data curation; Formal Analysis; Investigation;
Methodology; Project administration; Software; Supervision; Validation; Writing –
original draft; Writing – review; Editing
3 – João Inácio Moreira Bezerra
Computer Scientist
https://orcid.org/0000-0001-9217-5577 • jimbezerra@inf.ufpel.edu.br
Contribution: Conceptualization; Investigation; Methodology; Software; Writing –
original draft; Writing – review; Editing
4 – Elvira Rafikova
Professor
https://orcid.org/0000-0002-9802-5446 • elvira.rafikova@ufabc.edu.br
Contribution: Conceptualization; Data curation; Formal Analysis; Investigation;
Methodology; Validation; Writing – review; Editing
5 – Maria Cristina Varriale
Professor
https://orcid.org/0000-0002-4194-1064 • cristina.varriale@ufrgs.br
Contribution: Conceptualization; Data curation; Formal Analysis; Investigation;
Methodology; Supervision; Validation; Writing – review; Editing
How to cite this article

Rafikov, M., Molter, A., Bezerra, J. I. M., Rafikova, E., & Varriale, M. C. (2024).
Chaotic dynamics of the sugarcane borer-two parasitoid agroecosystem
with seasonality. Ciência e Natura, Santa Maria, v.46, e75328. DOI:
https://doi.org/10.5902/2179460X75328.

Ci. e Nat., Santa Maria, v.46, e75328, 2024


	INTRODUCTION
	MATHEMATICAL MODEL
	SYSTEM EQUILIBRIUM STATES AND THEIR STABILITY
	Equilibrium states
	Local stability analysis of equilibrium points
	Global stability analysis of the coexistence equilibrium
	Hopf bifurcation analysis

	SEASONAL DYNAMICS OF THE SUGARCANE BORER-PARASITOID AGRO-ECOSYSTEM
	CONCLUSIONS

