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ABSTRACT

L-ascorbic acid is a molecule used in the hydroxylation of various biochemical reactions in cells. Its 
main function is the hydroxylation of collagen, the fibrillar protein that gives resistance to bones, teeth, 
tendons and walls of blood vessels. Furthermore, it is a powerful antioxidant, being used to transform 
reactive oxygen species into inert forms. It is also used in the synthesis of some molecules that serve 
as hormones or neurotransmitters. In this review, a series of reactions are presented and discussed 
with the aim to discuss as some chemical parameters such as pH, redox potential, presence of different 
metal ions and ascorbic acid works effectively as a ligand. Several mechanisms are revisited and aspects 
as the effect of transition metals over the redox chemistry of acid is presented.
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RESUMO

O ácido L-ascórbico é uma molécula utilizada na hidroxilação de várias reações bioquímicas nas células. 
Sua principal função é a hidroxilação do colágeno, a proteína fibrilar que dá resistência aos ossos, dentes, 
tendões e paredes dos vasos sanguíneos. Além disso, é um poderoso antioxidante, sendo utilizado para 
transformar espécies reativas de oxigênio em formas inertes. Também é usado na síntese de algumas 
moléculas que servem como hormônios ou neurotransmissores. Nesta revisão, uma série de reações são 
apresentadas e discutidas com o objetivo de discutir alguns parâmetros químicos como pH, potencial redox, 
presença de diferentes íons metálicos e o ácido ascórbico funciona efetivamente como um ligante. Vários 
mecanismos são revisitados e aspectos como o efeito dos metais de transição sobre a química redox do 
ácido são apresentados.

Palavras-chave: Ácido L-ascórbico; Potencial redox; Ligante metálico
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1 INTRODUCTION

L-ascorbic acid (AscH2) is among the most widely cited forms of water-soluble 

biological antioxidants. The ability to scavenge free radicals appears, in part, to involve 

one-electron oxidation where ascorbate serves as reductant towards radical species 

(Crans et al., 2008). Reaction of AscH2 with peroxyl or hydroxyl radicals typically yields 

radical intermediate species, which can be subsequently quenched as part of an overall 

antioxidant effect (Yin et al., 2022). On the basis of the redox potential of AscH2, radical 

intermediates seem to be formed with nearly equal facility during radical scavenging 

reactions (Tu, Njus and Schlegel, 2017). Nevertheless, AscH2 is also known to act as a pro-

oxidant in fats, particularly in aqueous fat systems (Kanner, Mendel and Budowski, 1977).

Metal ions appear to be involved in the pro-oxidant activity of AscH2, as shown by 

the inhibition of such effect by metal chelating compounds as ethylenediaminetetraacetic 

acid (EDTA) or polyphosphates (Timoshnikov et al., 2022). Indeed, Fe3+ and Cu2+ have been 

reported to accelerate the pro-oxidant activity of AscH2 towards lipids (Ritacca et al., 2022).

The first standard reduction potential (E°) of AscH2 is around 0.72 V, while the second 

one is around −0.17 V; this means that, even though it is a great anti-radical agent, it is not 

necessarily a good reducing agent. Free radicals are unstable and have a high E°, allowing 

electron transfer (ET) from AscH2 . Its antioxidant character is linked to the availability of 

electrons to reduce strong oxidizing agents, as free radicals, but it is not intended to behave 

as a strong reducing agent in the biological environment (Tu, Njus and Schlegel, 2017).

The antioxidant potential of AscH2 comes from its ability to be converted into 

dehydroascorbate (dhAsc) through the abstraction of two protons and two electrons 

(Figure 1). This redox reaction provides the electrons needed to stabilize radicals, as 

well as the proton to balance charges (Nimse and Pal, 2015; Pehlivan, 2017).
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Figure 1 – Possible mechanisms for the oxidation of AscH2 to dhAsc

Source: Authors

It is very interesting to note that AscH2 is an extremely efficient molecule 

which is adapted to function in the physiological environment. Figure 1 shows that, 

at a pH close to 7.0, AscH2 appears almost entirely in its monoprotic AscH− form 

(pKa1r = 4.04), while the pKa2r value is 11.34. If AscH− (AscH−/AscH• E° = 0.72 V) meets a 

strong enough oxidizing agent, it undergoes oxidation by transferring one electron, 

which results in AscH• formation.

Once in radical form, it becomes a strong base, promptly losing the second 

proton (pKa2o = −0.45 against pKa2r = 11.34). The Asc•−/dhAsc pair is a much more efficient 

reducer (E° = −0.174 V), easily transferring the second electron to the substrate.

When deprotonated, AscH2 functions as an O-donor base with low polarizability, 

a hard base according to the hard and soft acids and bases (HSAB) theory; it easily 

forms complexes with various metal ions present in solution, mainly transition metals 
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showing high oxidation states (e.g. Fe3+, Co3+, Cu2+, Cr6+, V5+). Complexation occurs 

because the AscH− and Asc2− species must donate electronic density to the metal ions, 

forming a stable complex. Interaction with the metallic center totally changes the 

expected redox behavior of AscH2.

2 L-ASCORBIC ACID AS A LIGAND

In the nearly 90 years since its discovery (1928), AscH2 has become “the most 

famous yet least understood of the vitamins”. The crystal structure of AscH2 (Figure 2) 

has been reported by Hvoslef in 1964 (Hvoslef 1964). Despite being a simple molecule, 

its biochemistry is poorly understood owing to a quite complicated redox chemistry, 

which makes it both an interesting and intriguing reducing agent in inorganic systems. 

Many solution studies have since been carried out on reactions between AscH2 and 

metal ions. The important work of Martell has established the catalytic role of metals 

in AscH2 oxidation (Martell, 1982).

Figure 2 – Crystal structure of L-ascorbic acid

Source: Martell, 1982
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 As a weak diprotic acid (pKa1 = 4.25 and pKa2 = 11.79), the monoanion (AscH−) is 

formed at pH 4–5 with deprotonation of O(3)–H, and the dianion (Asc2−) is formed at pH 

11–12 with deprotonation of the O(2)–H. The mono-anionic form is more stable due to 

the delocalization of the negative charge between the oxygen atoms at positions 1 and 

3. Although AscH2 has numerous donor atoms to promote the formation of a metal 

complex, interaction of AscH− with metals mainly occurs monodentately through the 

O(3) atom, or by chelation via O(3) and O(2), depending on the nature of the metal 

cation and the solution pH. Multiple other bonding modes have been proposed in 

the solid state, including the participation of the carbonyl oxygen and side chain OH 

groups.

 Stability of complexes is generally less than might have been expected. The 

formation constants of the 1:1 complexes are in the range of 10 to 103.6 (Martell, 1982). 

The values are quite small, possibly as a result of the low negative charge on the ligand 

anion. Jabs and Gaube determined the ligand field parameters of the AscH− ligand and 

suggested that ascorbate should take an intermediate position in the spectroscopic 

series, around H2O and O2− and just before the fluoride ligand in the nephelauxetic 

series (Jabs and Gaube, 1986). Later, Cieslak-Golonka and co-workers calculated 

crystal field parameters of some chromium ascorbate complexes for octahedral and 

tetragonal symmetries from diffuse reflectance spectra (Adach, Janyst and Cieślak-

Golonka, 1995). They found that the Dq values are in the 1600–1800 cm−1 region and 

larger in solution, typical of oxygen ligands.

 Nearly all the work on transition metal pure ascorbate complexes has been 

performed with the first-row metals and on powdered samples. Since no single crystal data 

is available, the structural assignments have generally been deduced from UV-vis, NMR, IR 

and magnetic measurements. Due to the unstable nature of the molecule and hydrolytic 

instabilities of the complexes, there have not been many reports on the isolation of solid 

complexes of AscH2. The proposed structures of the pure ascorbate complexes have been 

the subject of the most controversy in the absence of X-ray crystal data.
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 The first systematic synthesis and isolation of binary ascorbate complexes with 

redox-inert transition metals have been described by Jabs and Gaube (JABS and GAUBE, 

1984). Complexes of the type M(AscH)n·xH2O (M = TiO2+, Cr3+, Mn2+, Co2+, Ni2+ and Zn2+) 

were obtained through the reaction:

 
(2.1)

 Since then, complexes with highly oxidized transition metals have been 

investigated by other authors. In these cases, the metal center is generally reduced 

by AscH2 via an inner-sphere reaction. Ferrer and co-workers demonstrated that the 

primary complexes generated by the interaction of dhAsc with metal ions are not 

stable and irreversibly hydrolyze to diketogulonic acid complexes of the related metal 

(Ferrer, Williams and Baran, 1998).

3 EFFECT OF TRANSITION METALS OVER THE REDOX CHEMISTRY OF 
L-ASCORBIC ACID 

Complexation of AscH2 with metal ions having E° greater than 0.72 V, e.g., 

Co3+, Cr6+ and V5+ (Table 1), promotes ET from AscH2 to the metal, leading to dhAsc 

formation. Usually, dhAsc is irreversibly hydrolyzed to diketogulonic acid (Figure 1) 

(Ferrer, Williams and Baran, 1998; Kontoghiorghes et al., 2020). In this scenario, there is 

a reduction in the concentration of AscH2 in the medium, leading to an underestimated 

measurement of the antioxidant activity, for example. Some of the known redox 

complexation reactions of AscH2 are:

3.1 High oxidation state metals: Co(III), Cr(VI) and V(V)

Complexation of AscH2 with metal ions having E° greater than 0.72 V, e.g., Co3+, Cr6+ and 

V5+ (Table 1), promotes ET from AscH2 to the metal, leading to dhAsc formation. Usually, dhAsc 

is irreversibly hydrolyzed to diketogulonic acid (Figure 1) (Ferrer, Williams and Baran, 1998; 
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Kontoghiorghes et al., 2020). In this scenario, there is a reduction in the concentration of AscH2 

in the medium, leading to an underestimated measurement of the antioxidant activity, for 

example. Some of the known redox complexation reactions of AscH2 are:

(3.1.1)

(3.1.2)

(3.1.3)

3.2 Redox inert transition metals: Zn(II), Cd(II), and Al(III)

Interaction of these metals with AscH2 has been assessed in the solution and solid 

phases (Zümreoglu-Karan, 2006). Complexes with general formula Mn+(AscH−)n·xH2O 

show good stability without any ET from AscH2 to the metal center (Cesario et al., 

2017; Davies, 1992). The complex stability can affect the species distribution and, 

consequently, the availability for redox reactions.

 A recent study with cichoric acid evaluated the effects of metal complexation 

on the antioxidant activity of the molecule, via radical scavenging capacity. Results 

showed a slight increase in radical inhibition for complexes with redox inert metals (Na+ 

and Zn2+) (Swiderski et al., 2020). Nonetheless, to the best of the authors’ knowledge, 

the effect of complexation upon the antioxidant activity of AscH2 has not yet been 

investigated.

3.3 Special cases, formation of catalytical systems: Cu(II) and Fe(III)

The E° for the redox pair Fe3+ + e− ⇌ Fe2+ is 0.77 V, which is relatively high and 

indicates that reduction of Fe3+ is thermodynamically favorable; however, it is unusual 

to find Fe2+ ions in oxidizing environment, as in the presence of O2. Fe3+ has a semi-
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filled d orbital (3d5), ensuring greater stability compared to Fe2+ (3d6), especially 

when complexed with intermediate or weak field ligands which promote a smaller 

unfolding of the crystalline field, thus stabilizing the high spin species. The easiness 

with which Fe2+ is quickly oxidized to Fe3+, in the presence of O2, provides a catalytic 

system that promotes AscH2 oxidation, even with trace amounts of Fe3+ in the medium 

(Kontoghiorghes et al., 2020; Martell, 1982). Interaction of iron complexes with AscH2 

form powerful catalysts for Fenton reactions which behave as pro-oxidants, as seen in 

the proposed mechanism illustrated in Figure 3 (Yuan et al., 2021).

Figure 3 – Proposed mechanism for the catalytic oxidation of AscH2 by Fe3+

Source: Yuan et al., 2021

The Cu2+ cation is a classic case of the Jahn-Teller effect with a greater stabilization 

of the  orbital in the 3d9 configuration. Cu+, in turn, has a full filled subshell (3d10) 

which can also provide stability to the monovalent cation. Nevertheless, since it is a 
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soft acid (HSAB theory), Cu+ needs an equally soft base, little polarizable, as an S-donor 

base in order to form a stable complex. In an aqueous medium, the hydration enthalpy 

for Cu+ is so high that the cation is quickly oxidized to the divalent state (Khan and 

Martell, 1967). The redox behavior of Cu2+ in aqueous solution promotes the catalytic 

oxidation of AscH2 with hydrogen peroxide formation (Martell, 1982), as seen in the 

proposed mechanism depicted in Figure 4.

Figure 4 – Proposed mechanism for the catalytic oxidation of AscH2 by Cu2+, with 

hydrogen peroxide formation

Source: Martell, 1982
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Table 1 – Selected standard reduction potentials for some transition metals (Lide, 2004)

Redox reaction E° Redox reaction E°

Cu2+ + e− ⇌ Cu+ 0.15 Co3+ + e− ⇌ Co2+ 1.92

Fe3+ + e− ⇌ Fe2+ 0.77 Co2+ + e− ⇌ Co −0.28

Ni2+ + 2e− ⇌ Ni −0.26 O2 + 2H+ + 2e− ⇌ H2O2 0.69

Cr3+ + e− ⇌ Cr2+ −0.41 VO2
+ + 2H+ + e− ⇌ VO2+ + H2O 0.99

Al3+ + 3e− ⇌ Al −1.62 Cr2O7
2– + 14H+ + 6e− ⇌ 2Cr3+ + 7H2O 1.36

4 CONCLUSION

Metal ions affect the reaction mechanism and antioxidant potentials. AscH2, 

one of the most classic antioxidant agents studied in the literature, suffers a strong 

influence in the presence of metal ions forming stable metal complexes.

Based on this logic, it would be interesting to have more experimental tests 

in future works, mainly evaluating the complexation chemistry for AscH2; in spite of 

having been studied for a long time, there is no clear information in the literature with 

respect to characterization of crystals, for instance. In addition, there are no studies 

assessing the antioxidant activity of AscH2 complexes, especially regarding complexes 

with fixed oxidation states; those are known complexes, but their antiradical potentials 

have not yet been evaluated.

Interference of traces of metals is also very relevant, since the ability to act as a 

reducing agent can lead AscH2 to promote the reduction of Fe3+ to Fe2+, for example, 

thus catalyzing Fenton reactions and resulting in an apparent pro-oxidant activity.
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